Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Role of Plant-Derived Products Through Exhilarating Peroxisome Proliferator-Activated Receptor-γ (ppar-γ) in the Amelioration of Obesity Induced Insulin Resistance

Author(s): Devender Singh, Sachin Sharma, Manjusha Choudhary*, Prabhjeet Kaur and Vikas Budhwar

Volume 18, Issue 6, 2022

Published on: 13 April, 2022

Page: [549 - 558] Pages: 10

DOI: 10.2174/1573401318666220217111415

Price: $65

conference banner
Abstract

Insulin resistance is an elemental facet of the etiology of diabetes mellitus and the principal relating factor between obesity and diabetes. Oxidative stress, lipotoxicity, inflammation, and receptor dysfunction are the underlying determinants of insulin resistance commencement in metabolic illnesses. ppar-γ is a nuclear transcription factor whose activation or inhibition directly influences insulin resistance and controls glucose and lipid homeostasis by modulating gene expression. Synthetic ligands of ppar-γ are therapeutically employed to counter the hyperglycemia associated with obesity and type 2 diabetes, but they possess severe side effects. In the modern era, bioactive phytochemicals have been employed in the drug development process, and a considerable investigation has recently been initiated to analyze the ppar-γ activating ability of diverse phytochemicals. In this review, we outlined the role of phytochemicals in insulin resistance treatment through ppar-γ activation.

Keywords: Ppar-γ, insulin resistance, natural products, metabolic disorders, obesity, diabetes.

Graphical Abstract

[1]
Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res 2017; 122: 1-7.
[http://dx.doi.org/10.1016/j.phrs.2017.05.013] [PMID: 28532816]
[2]
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019; 92: 6-10.
[http://dx.doi.org/10.1016/j.metabol.2018.09.005] [PMID: 30253139]
[3]
Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism 2006; 55(8): 1088-96.
[http://dx.doi.org/10.1016/j.metabol.2006.04.003] [PMID: 16839846]
[4]
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840-6.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[5]
Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 2012; 19(2): 81-7.
[http://dx.doi.org/10.1097/MED.0b013e3283514e13] [PMID: 22327367]
[6]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[7]
Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: An overview of fundamental alterations. Eat Weight Disord 2018; 23(2): 149-57.
[http://dx.doi.org/10.1007/s40519-018-0481-6] [PMID: 29397563]
[8]
Ivy JL. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med 1997; 24(5): 321-36.
[http://dx.doi.org/10.2165/00007256-199724050-00004]
[9]
Matthaei S, Stumvoll M, Kellerer M, Häring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21(6): 585-618.
[PMID: 11133066]
[10]
Lebovitz HE, Banerji MA. Treatment of insulin resistance in diabetes mellitus. Eur J Pharmacol 2004; 490(1-3): 135-46.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.051] [PMID: 15094080]
[11]
Janani C, Ranjitha Kumari BD. PPAR gamma gene-a review. Diabetes Metab Syndr 2015; 9(1): 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[12]
Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem Biophys Res Commun 2006; 348(2): 571-8.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.095] [PMID: 16890192]
[13]
Lee D, Shin Y, Jang J, et al. The herbal extract ALS-L1023 from Melissa officinalis alleviates visceral obesity and insulin resistance in obese female C57BL/6J mice. J Ethnopharmacol 2020; 253(January): 112646.
[http://dx.doi.org/10.1016/j.jep.2020.112646] [PMID: 32027997]
[14]
Kamali SH, Khalaj AR, Hasani-Ranjbar S, et al. Efficacy of ‘Itrifal Saghir’, a combination of three medicinal plants in the treatment of obesity; A randomized controlled trial. Daru 2012; 20(1): 33.
[http://dx.doi.org/10.1186/2008-2231-20-33] [PMID: 23351558]
[15]
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409-35.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104018] [PMID: 11818483]
[16]
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45(2): 120-59.
[http://dx.doi.org/10.1016/j.plipres.2005.12.002] [PMID: 16476485]
[17]
Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes 2003; 27(Suppl. 3): S17-21.
[http://dx.doi.org/10.1038/sj.ijo.0802494] [PMID: 14704738]
[18]
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111(8): 76-85.
[http://dx.doi.org/10.1016/j.phrs.2016.02.028] [PMID: 27268145]
[19]
Giorgino F, Leonardini A, Laviola L, Perrini S, Natalicchio A. Cross-talk between PPARγ and insulin signaling and modulation of insulin sensitivity. PPAR Res 2009; 2009: 818945.
[20]
Song E-K, Lee Y-R, Kim Y-R, et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes. Cell Rep 2012; 2(6): 1607-19.
[http://dx.doi.org/10.1016/j.celrep.2012.10.018] [PMID: 23177620]
[21]
Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: The good, the bad and the future. Nat Med 2013; 19(5): 557-66.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[22]
Ferré P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes 2004; 53(Suppl. 1): S43-50.
[http://dx.doi.org/10.2337/diabetes.53.2007.S43] [PMID: 14749265]
[23]
He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 2003; 100(26): 15712-7.
[http://dx.doi.org/10.1073/pnas.2536828100] [PMID: 14660788]
[24]
Verma NK, Singh J, Dey CS. PPAR-γ expression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol 2004; 143(8): 1006-13.
[http://dx.doi.org/10.1038/sj.bjp.0706002] [PMID: 15504754]
[25]
Amin RH, Mathews ST, Camp HS, Ding L, Leff T. Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab 2010; 298(1): E28-37.
[http://dx.doi.org/10.1152/ajpendo.00446.2009] [PMID: 19843873]
[26]
Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003; 112(4): 608-18.
[http://dx.doi.org/10.1172/JCI17305] [PMID: 12925701]
[27]
Hevener AL, He W, Barak Y, et al. Muscle-specific PPARg deletion causes insulin resistance. Nat Med 2003; 9(12): 1491-7.
[http://dx.doi.org/10.1038/nm956] [PMID: 14625542]
[28]
Liu C, Feng T, Zhu N, et al. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep 2015; 5(1): 9530.
[http://dx.doi.org/10.1038/srep09530] [PMID: 25827822]
[29]
Amato AA, Rajagopalan S, Lin JZ, et al. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. J Biol Chem 2012; 287(33): 28169-79.
[http://dx.doi.org/10.1074/jbc.M111.332106] [PMID: 22584573]
[30]
Hou Y, Cao X, Hu X, et al. CMHX008, a PPARγ partial agonist, enhances insulin sensitivity with minor influences on bone loss. Genes Dis 2018; 5(3): 290-9.
[http://dx.doi.org/10.1016/j.gendis.2018.05.004] [PMID: 30320193]
[31]
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel) 2020; 9(9): 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[32]
Germoush MO, Elgebaly HA, Hassan S, Kamel EM, Bin-Jumah M, Mahmoud AM. Consumption of terpenoids-rich Padina pavonia extract attenuates hyperglycemia, insulin resistance and oxidative stress, and upregulates PPARγ in a rat model of type 2 diabetes. Antioxidants 2019; 9(1): 22.
[http://dx.doi.org/10.3390/antiox9010022] [PMID: 31887984]
[33]
Abdel Aziz SM, Ahmed OM. Abd EL-Twab SM, Al-Muzafar HM, Amin KA, Abdel-Gabbar M Antihyperglycemic effects and mode of actions of musa paradisiaca leaf and fruit peel hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats. Evidence-Based Complement Altern Med 2020; pp. 1-15.
[34]
Metwally FM, Rashad H, Mahmoud AA. Morus alba L. Diminishes visceral adiposity, insulin resistance, behavioral alterations via regulation of gene expression of leptin, resistin and adiponectin in rats fed a high-cholesterol diet. Physiol Behav 2018; 201: 1-11.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.010]
[35]
Zhu L, Tan J, Lou D, Guo T, Wang B. The effects of flavonoid compound from Agrimonia pilosa Ledeb on promotting 3T3-L1 preadipocytes differentiation by activating PPARγ partially. Med Chem Res 2017; 26(11): 2920-8.
[http://dx.doi.org/10.1007/s00044-017-1991-x]
[36]
Xie Z, Gao G, Wang H, et al. Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-γ and PPAR-α. Biomed Pharmacother 2020; 127: 110155.
[http://dx.doi.org/10.1016/j.biopha.2020.110155] [PMID: 32413669]
[37]
Li DD, Chen JH, Chen Q, et al. Swietenia mahagony extract shows agonistic activity to PPAR(gamma) and gives ameliorative effects on diabetic db/db mice. Acta Pharmacol Sin 2005; 26(2): 220-2.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00527.x] [PMID: 15663902]
[38]
Kim SH, Hur HJ, Yang HJ, Kim HJ, Kim MJ, Park JH. Citrus junos tanaka peel extract exerts antidiabetic effects via AMPK and PPAR- γ both in vitro and in vivo in mice fed a high-fat diet. Evid Based Complement Alternat Med 2013; 2013: 1-8.
[39]
Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol 2008; 46(7): 2376-83.
[http://dx.doi.org/10.1016/j.fct.2008.03.020] [PMID: 18474411]
[40]
Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 2010; 127(2): 457-62.
[http://dx.doi.org/10.1016/j.jep.2009.10.013] [PMID: 19837152]
[41]
Krisanapun C, Lee S-H, Peungvicha P, Temsiririrkkul R, Baek SJ. Antidiabetic activities of Abutilon indicum (L.) sweet are mediated by enhancement of adipocyte differentiation and activation of the GLUT1 promoter. Evid Based Complement Alternat Med 2011; 2011: 167684.
[http://dx.doi.org/10.1093/ecam/neq004] [PMID: 21603234]
[42]
Li RW, Douglas TD, Maiyoh GK, Adeli K, Theriault AG. Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model. J Ethnopharmacol 2006; 104(1-2): 24-31.
[http://dx.doi.org/10.1016/j.jep.2005.08.045] [PMID: 16202550]
[43]
Kim D, Park K-K, Lee SK, Lee S-E, Hwang J-K. Cornus kousa F.buerger ex miquel increases glucose uptake through activation of peroxisome proliferator-activated receptor γ and insulin sensitization. J Ethnopharmacol 2011; 133(2): 803-9.
[http://dx.doi.org/10.1016/j.jep.2010.11.007] [PMID: 21070843]
[44]
Khan MI, Shin JH, Shin TS, Kim MY, Cho NJ, Kim JD. Anthocyanins from Cornus kousa ethanolic extract attenuate obesity in association with anti-angiogenic activities in 3T3-L1 cells by down-regulating adipogeneses and lipogenesis. PLoS One 2018; 13(12): e0208556.
[http://dx.doi.org/10.1371/journal.pone.0208556] [PMID: 30521605]
[45]
Christensen KB, Petersen RK, Petersen S, Kristiansen K, Christensen LP. Activation of PPARgamma by metabolites from the flowers of purple coneflower (Echinacea purpurea). J Nat Prod 2009; 72(5): 933-7.
[http://dx.doi.org/10.1021/np900003a] [PMID: 19374389]
[46]
Liu Y, Wan L, Xiao Z, Wang J, Wang Y, Chen J. Antidiabetic activity of polysaccharides from tuberous root of Liriope spicata var. prolifera in KKAy mice. Evid Based Complement Alternat Med 2013; 2013: 349790.
[47]
Shih C-C, Lin C-H, Lin W-L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 2008; 81(2): 134-43.
[http://dx.doi.org/10.1016/j.diabres.2008.04.023] [PMID: 18550200]
[48]
Shih C-C, Lin C-H, Lin W-L, Wu J-B. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol 2009; 123(1): 82-90.
[http://dx.doi.org/10.1016/j.jep.2009.02.039] [PMID: 19429344]
[49]
Shin EJ, Hur HJ, Sung MJ, et al. Ethanol extract of the Prunus mume fruits stimulates glucose uptake by regulating PPAR-γ in C2C12 myotubes and ameliorates glucose intolerance and fat accumulation in mice fed a high-fat diet. Food Chem 2013; 141(4): 4115-21.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.059] [PMID: 23993593]
[50]
Huang T, Peng G, Kota B, et al. Anti-diabetic action of flower extract: Activation of PPAR-γ and identification of an active component. Toxicol Appl Pharmacol 2005; 207(2): 160-9.
[51]
Sanches JR, França LM, Chagas VT, et al. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium l-glutamate-induced obese rats. Front Pharmacol 2016; 7: 48.
[http://dx.doi.org/10.3389/fphar.2016.00048] [PMID: 27014062]
[52]
Thiyagarajan G, Muthukumaran P, Sarath Kumar B, Muthusamy VS, Lakshmi BS. Selective inhibition of PTP1B by vitalboside a from Syzygium cumini enhances insulin sensitivity and attenuates lipid accumulation via partial agonism to PPARγ: In vitro and in silico Investigation. Chem Biol Drug Des 2016; 88(2): 302-12.
[http://dx.doi.org/10.1111/cbdd.12757] [PMID: 26989847]
[53]
Christensen KB, Petersen RK, Kristiansen K, Christensen LP. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human Peroxisome Proliferator-Activated Receptor (PPAR)γ. Phytother Res 2010; 24(S2)(Suppl. 2): S129-32.
[http://dx.doi.org/10.1002/ptr.3005] [PMID: 20222152]
[54]
Zhang WY, Lee J-J, Kim I-S, Kim Y, Myung C-S. Stimulation of glucose uptake and improvement of insulin resistance by aromadendrin. Pharmacology 2011; 88(5-6): 266-74.
[http://dx.doi.org/10.1159/000331862] [PMID: 22056597]
[55]
Lee H, Li H, Jeong JH, Noh M, Ryu J-H. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes. Fitoterapia 2016; 112: 90-6.
[http://dx.doi.org/10.1016/j.fitote.2016.05.006] [PMID: 27223849]
[56]
Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 2010; 21(10): 941-7.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[57]
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020; 73: 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[58]
Kumar S, Sinha K, Sharma R, Purohit R, Padwad Y. Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 2019; 383(1): 111480.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.025] [PMID: 31279631]
[59]
Takahashi N, Yao R, Kang M-S, et al. Dehydroabietic acid activates peroxisome proliferator-activated receptor-γ and stimulates insulin-dependent glucose uptake into 3T3-L1 adipocytes. Biofactors 2011; 37(4): 309-14.
[http://dx.doi.org/10.1002/biof.165] [PMID: 21915937]
[60]
Gao Y, Yang MF, Su YP, et al. Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production. J Ethnopharmacol 2013; 147(2): 509-16.
[http://dx.doi.org/10.1016/j.jep.2013.03.057] [PMID: 23545455]
[61]
Takahashi N, Goto T, Taimatsu A, et al. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR gamma activation. Biochem Biophys Res Commun 2009; 390(4): 1372-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.162] [PMID: 19891958]
[62]
Shyni GL, Sasidharan K, Francis SK, Das AA, Nair MS, Raghu KG. Licarin B from Myristica fragrans improves insulin sensitivity via PPARγ and activation of GLUT4 in the IRS-1/PI3K/AKT pathway in 3T3-L1 adipocytes. RSC Advances 2016; 6(83): 79859-70.
[http://dx.doi.org/10.1039/C6RA13055K]
[63]
Kwon DY, Kim DS, Yang HJ, Park S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-γ pathways in in vitro and in vivo studies. J Ethnopharmacol 2011; 135(2): 455-62.
[http://dx.doi.org/10.1016/j.jep.2011.03.037] [PMID: 21440615]
[64]
Weidner C, de Groot JC, Prasad A, et al. Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci USA 2012; 109(19): 7257-62.
[http://dx.doi.org/10.1073/pnas.1116971109] [PMID: 22509006]
[65]
Sahin N, Orhan C, Erten F, et al. Effects of allyl isothiocyanate on insulin resistance, oxidative stress status, and transcription factors in high-fat diet/streptozotocin-induced type 2 diabetes mellitus in rats. J Biochem Mol Toxicol 2019; 33(7): e22328.
[http://dx.doi.org/10.1002/jbt.22328] [PMID: 30927557]
[66]
Hsu WH, Liao TH, Lee BH, Hsu YW, Pan TM. Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR-γ activation. J Funct Foods 2013; 5(1): 124-32.
[http://dx.doi.org/10.1016/j.jff.2012.09.003]
[67]
Dey D, Medicherla S, Neogi P, et al. A novel peroxisome proliferator-activated gamma (PPAR gamma) agonist, CLX-0921, has potent antihyperglycemic activity with low adipogenic potential. Metabolism 2003; 52(8): 1012-8.
[http://dx.doi.org/10.1016/S0026-0495(03)00152-5] [PMID: 12898466]
[68]
Zhou Y, Wu Y, Qin Y, et al. Ampelopsin improves insulin resistance by activating PPARγ and subsequently up-regulating FGF21-AMPK signaling pathway. PLoS One 2016; 11(7): e0159191.
[http://dx.doi.org/10.1371/journal.pone.0159191]
[69]
Feng X, Weng D, Zhou F, et al. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine 2016; 9: 61-76.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.017] [PMID: 27374313]
[70]
Li Q-Y, Chen L, Yan M-M, Shi X-J, Zhong M-K. Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. Pharm Biol 2015; 53(11): 1567-75.
[http://dx.doi.org/10.3109/13880209.2014.993038] [PMID: 25856699]
[71]
Rau O, Wurglics M, Paulke A, et al. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med 2006; 72(10): 881-7.
[http://dx.doi.org/10.1055/s-2006-946680] [PMID: 16858665]
[72]
Zheng W, Qiu L, Wang R, et al. Selective targeting of PPARγ by the natural product chelerythrine with a unique binding mode and improved antidiabetic potency. Sci Rep 2015; 5: 12222.
[http://dx.doi.org/10.1038/srep12222] [PMID: 26183621]
[73]
Cornick CL, Strongitharm BH, Sassano G, et al. Identification of a novel agonist of peroxisome proliferator-activated receptors α and γ that may contribute to the anti-diabetic activity of guggulipid in Lep(ob)/Lep(ob) mice. J Nutr Biochem 2009; 20(10): 806-15.
[http://dx.doi.org/10.1016/j.jnutbio.2008.07.010] [PMID: 18926687]
[74]
Subash-Babu P, Ignacimuthu S, Alshatwi AA. Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem Biol Interact 2015; 226: 72-81.
[http://dx.doi.org/10.1016/j.cbi.2014.12.011] [PMID: 25499137]
[75]
Subash-Babu P, Ignacimuthu S, Agastian P, Varghese B. Partial regeneration of beta-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg Med Chem 2009; 17(7): 2864-70.
[http://dx.doi.org/10.1016/j.bmc.2009.02.021] [PMID: 19272781]
[76]
Stalin A, Stephen Irudayaraj S, Ramesh Kumar D, et al. Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models. Med Chem Res 2016; 25(9): 1980-92.
[http://dx.doi.org/10.1007/s00044-016-1621-z]
[77]
Gandhi GR, Jothi G, Antony PJ, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol 2014; 745: 201-16.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.044] [PMID: 25445038]
[78]
Sharma S, Pathak S, Gupta G, et al. Pharmacological evaluation of aqueous extract of Syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet-Role of PPARγ and PPARα. Biomed Pharmacother 2017; 89: 447-53.
[http://dx.doi.org/10.1016/j.biopha.2017.02.048] [PMID: 28249245]
[79]
Sharma AK, Bharti S, Kumar R, et al. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J Pharmacol Sci 2012; 119(3): 205-13.
[http://dx.doi.org/10.1254/jphs.11184FP] [PMID: 22786584]
[80]
Shin D-M, Choi K-M, Lee Y-S, et al. Echinacea purpurea root extract enhances the adipocyte differentiation of 3T3-L1 cells. Arch Pharm Res 2014; 37(6): 803-12.
[http://dx.doi.org/10.1007/s12272-013-0251-y] [PMID: 24085629]
[81]
Kotowska D, El-Houri RB, Borkowski K, et al. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes. Planta Med 2014; 80(18): 1712-20.
[http://dx.doi.org/10.1055/s-0034-1383252] [PMID: 25371981]
[82]
Serisier S, Leray V, Poudroux W, Magot T, Ouguerram K, Nguyen P. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARalpha and PPARgamma and their target genes in obese dogs. Br J Nutr 2008; 99(6): 1208-16.
[http://dx.doi.org/10.1017/S0007114507862386] [PMID: 18053305]
[83]
Chen F-C, Shen K-P, Ke L-Y, Lin H-L, Wu C-C, Shaw S-Y. Flavonoids from Camellia sinensis (L.) O. Kuntze seed ameliorates TNF-α induced insulin resistance in HepG2 cells. Saudi Pharm J 2019; 27(4): 507-16.
[http://dx.doi.org/10.1016/j.jsps.2019.01.014] [PMID: 31061619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy