Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

高血压、癌症和COVID-19之间的相互作用:关于Ca2+/cAMP信号转导的观点

卷 22, 期 5, 2022

发表于: 26 April, 2022

页: [351 - 360] 页: 10

弟呕挨: 10.2174/1568009622666220215143805

价格: $65

摘要

背景: 虽然在临床上高血压会增加患癌症风险的有关假说已经被强调。然而,这种联系所涉及的工作原理仍在深入讨论之中。炎症、高血压和癌症之间的相关性可以准确描述这些疾病之间的临床联系。此外,Ca2+的平衡失调被认为与癌症和高血压以及炎症都有关系。Ca2+信号(如增强的Ca2+信号)和炎症结果之间有很强的联系。cAMP也能调节促炎症和抗炎症的结果;增加细胞内cAMP水平的药物可以减少促炎症介质的产生,增强抗炎症结果的产生。 目标: 这篇文章强调了Ca2+/cAMP信号在炎症、高血压和癌症发展风险增强的临床相关性中的参与。此外,考虑到2019冠状病毒病(COVID-19)的研究是一个快速发展的领域,本文还回顾了近期有关Ca2+通道阻滞剂在恢复COVID-19引起的Ca2+信号中断中的作用的相关报道,包括COVID-19、癌症和高血压之间的关系。 结论: 了解这些疾病之间的联系可以扩大目前的药物治疗,包括Ca2+通道阻滞剂和促进cAMP水平上升的药物。

关键词: 癌症,高血压,Ca2+/cAMP信号,COVID-19,炎症,平衡失调。

Next »
图形摘要

[1]
Stocks, T.; Van Hemelrijck, M.; Manjer, J.; Bjørge, T.; Ulmer, H.; Hallmans, G.; Lindkvist, B.; Selmer, R.; Nagel, G.; Tretli, S.; Concin, H.; Engeland, A.; Jonsson, H.; Stattin, P. Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project. Hypertension, 2012, 59(4), 802-810.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.189258] [PMID: 22353615]
[2]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[3]
De Miguel, C.; Rudemiller, N.P.; Abais, J.M.; Mattson, D.L. Inflammation and hypertension: New understandings and potential therapeutic targets. Curr. Hypertens. Rep., 2015, 17(1), 507.
[http://dx.doi.org/10.1007/s11906-014-0507-z] [PMID: 25432899]
[4]
Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[5]
Büsselberg, D.; Florea, A.M. Targeting intracellular calcium signaling ([Ca2+]i) to overcome acquired multidrug resistance of cancer cells: A mini-overview. Cancers (Basel), 2017, 9(5), E48.
[http://dx.doi.org/10.3390/cancers9050048] [PMID: 28486397]
[6]
Parkash, J.; Asotra, K. Calcium wave signaling in cancer cells. Life Sci., 2010, 87(19-22), 587-595.
[http://dx.doi.org/10.1016/j.lfs.2010.09.013] [PMID: 20875431]
[7]
Miranda-Ferreira, R.; de Pascual, R.; de Diego, A.M.; Caricati-Neto, A.; Gandía, L.; Jurkiewicz, A.; García, A.G. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats. J. Pharmacol. Exp. Ther., 2008, 324(2), 685-693.
[http://dx.doi.org/10.1124/jpet.107.128819] [PMID: 17962518]
[8]
Miranda-Ferreira, R.; de Pascual, R.; Caricati-Neto, A.; Gandía, L.; Jurkiewicz, A.; García, A.G. Role of the endoplasmic reticulum and mitochondria on quantal catecholamine release from chromaffin cells of control and hypertensive rats. J. Pharmacol. Exp. Ther., 2009, 329(1), 231-240.
[http://dx.doi.org/10.1124/jpet.108.147413] [PMID: 19131584]
[9]
Miranda-Ferreira, R.; de Pascual, R.; Smaili, S.S.; Caricati-Neto, A.; Gandía, L.; García, A.G.; Jurkiewicz, A. Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats. Eur. J. Pharmacol., 2010, 636(1-3), 126-136.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.044] [PMID: 20361955]
[10]
Bergantin, L.B.; Caricati-Neto, A. The “Calcium Paradox” and its Impact on Neurological and Psychiatric Diseases, 2nd ed; Cambridge Scholars Publishing: Newcastle upon Tyne, England, 2018.
[11]
Dalal, P.J.; Muller, W.A.; Sullivan, D.P. Endothelial cell calcium signaling during barrier function and inflammation. Am. J. Pathol., 2020, 190(3), 535-542.
[http://dx.doi.org/10.1016/j.ajpath.2019.11.004] [PMID: 31866349]
[12]
Monteith, G.R.; Davis, F.M.; Roberts-Thomson, S.J. Calcium channels and pumps in cancer: changes and consequences. J. Biol. Chem., 2012, 287(38), 31666-31673.
[http://dx.doi.org/10.1074/jbc.R112.343061] [PMID: 22822055]
[13]
Munaron, L.; Genova, T.; Avanzato, D.; Antoniotti, S.; Fiorio Pla, A. Targeting calcium channels to block tumor vascularization. Recent Patents Anticancer Drug Discov., 2013, 8(1), 27-37.
[http://dx.doi.org/10.2174/1574892811308010027] [PMID: 22530660]
[14]
Kim, K.H.; Kim, D.; Park, J.Y.; Jung, H.J.; Cho, Y.H.; Kim, H.K.; Han, J.; Choi, K.Y.; Kwon, H.J. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J. Mol. Med. (Berl.), 2015, 93(5), 499-509.
[http://dx.doi.org/10.1007/s00109-014-1235-1] [PMID: 25471482]
[15]
Yoshida, J.; Ishibashi, T.; Nishio, M. G1 cell cycle arrest by amlodipine, a dihydropyridine Ca2+ channel blocker, in human epidermoid carcinoma A431 cells. Biochem. Pharmacol., 2007, 73(7), 943-953.
[http://dx.doi.org/10.1016/j.bcp.2006.12.011] [PMID: 17217918]
[16]
Krouse, A.J.; Gray, L.; Macdonald, T.; McCray, J. Repurposing and rescuing of mibefradil, an antihypertensive, for cancer: A case study. Assay Drug Dev. Technol., 2015, 13(10), 650-653.
[http://dx.doi.org/10.1089/adt.2015.29014.ajkdrrr] [PMID: 26690767]
[17]
Bergantin, L.B. Diabetes and cancer: Debating the link through Ca2+/cAMP signalling. Cancer Lett., 2019, 448, 128-131.
[http://dx.doi.org/10.1016/j.canlet.2019.02.017] [PMID: 30771427]
[18]
Bergantin, L.B. Ca2+and cAMP: Do these intracellular messengers ‘work’ independently? of course not, and the history goes ahead..... J. Clin. Exp. Oncol., 2017, 7, 1.
[19]
Errante, P.R.; Menezes-Rodrigues, F.S.; Leite, A.A.; Caricati-Neto, A.; Bergantin, L.B. New antitumoral pharmacological strategies involving Ca2+/cAMP signaling pathways. J. Cancer Epidemiol. Prev., 2017, 2(1-3), 1-6.
[20]
Errante, P.R.; Caricati-Neto, A.; Bergantin, L.B. Insights for the inhibition of cancer progression: Revisiting Ca2+ and cAMP signalling pathways. Adv. Cancer Prev., 2017, 2(1), 1-2.
[http://dx.doi.org/10.4172/2472-0429.1000e103]
[21]
Errante, P.R.; Menezes-Rodrigues, F.S.; Caricati-Neto, A.; Bergantin, L.B. The pharmacological modulation of Ca2+/cAMP intracellular signaling pathways and traditional antitumoral pharmaceuticals: a plausible multitarget combined therapy? J. Clin. Exp. Oncol., 2017, 6(4), 1-3.
[http://dx.doi.org/10.4172/2324-9110.1000e111]
[22]
Errante, P.R.; Menezes-Rodrigues, F.S.; Leite, A.A.; Caricati-Neto, A.; Bergantin, L.B. The second messengers Ca2+ and cAMP as potential therapeutic targets for the control of cancer progression. Adv. Cancer Prev., 2017, 2(2), 1-2.
[http://dx.doi.org/10.4172/2472-0429.1000e105]
[23]
Murray, F.; Insel, P.A. Targeting cAMP in chronic lymphocytic leukemia: A pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin. Ther. Targets, 2013, 17(8), 937-949.
[http://dx.doi.org/10.1517/14728222.2013.798304] [PMID: 23647244]
[24]
Raker, V.K.; Becker, C.; Steinbrink, K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front. Immunol., 2016, 7, 123.
[http://dx.doi.org/10.3389/fimmu.2016.00123] [PMID: 27065076]
[25]
Moore, A.R.; Willoughby, D.A. The role of cAMP regulation in controlling inflammation. Clin. Exp. Immunol., 1995, 101(3), 387-389.
[http://dx.doi.org/10.1111/j.1365-2249.1995.tb03123.x] [PMID: 7664483]
[26]
Erdogan, S.; Aslantas, O.; Celik, S.; Atik, E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res. Vet. Sci., 2008, 84(1), 18-25.
[http://dx.doi.org/10.1016/j.rvsc.2007.02.003] [PMID: 17397885]
[27]
Tavares, L.P.; Negreiros-Lima, G.L.; Lima, K.M. E Silva, P.M.R.; Pinho, V.; Teixeira, M.M.; Sousa, L.P. Blame the signaling: Role of cAMP for the resolution of inflammation. Pharmacol. Res., 2020, 159, 105030.
[http://dx.doi.org/10.1016/j.phrs.2020.105030] [PMID: 32562817]
[28]
Stocks, T.; Borena, W.; Strohmaier, S.; Bjørge, T.; Manjer, J.; Engeland, A.; Johansen, D.; Selmer, R.; Hallmans, G.; Rapp, K.; Concin, H.; Jonsson, H.; Ulmer, H.; Stattin, P. Cohort profile: The metabolic syndrome and cancer project (Me-Can). Int. J. Epidemiol., 2010, 39(3), 660-667.
[http://dx.doi.org/10.1093/ije/dyp186] [PMID: 19380371]
[29]
Corrao, G.; Scotti, L.; Bagnardi, V.; Sega, R. Hypertension, antihypertensive therapy and renal-cell cancer: A meta-analysis. Curr. Drug Saf., 2007, 2(2), 125-133.
[http://dx.doi.org/10.2174/157488607780598296] [PMID: 18690958]
[30]
Andreotti, G.; Boffetta, P.; Rosenberg, P.S.; Berndt, S.I.; Karami, S.; Menashe, I.; Yeager, M.; Chanock, S.J.; Zaridze, D.; Matteev, V.; Janout, V.; Kollarova, H.; Bencko, V.; Navratilova, M.; Szeszenia-Dabrowska, N.; Mates, D.; Rothman, N.; Brennan, P.; Chow, W.H.; Moore, L.E. Variants in blood pressure genes and the risk of renal cell carcinoma. Carcinogenesis, 2010, 31(4), 614-620.
[http://dx.doi.org/10.1093/carcin/bgp321] [PMID: 20047954]
[31]
Seretis, A.; Cividini, S.; Markozannes, G.; Tseretopoulou, X.; Lopez, D.S.; Ntzani, E.E.; Tsilidis, K.K. Association between blood pressure and risk of cancer development: A systematic review and meta-analysis of observational studies. Sci. Rep., 2019, 9(1), 8565.
[http://dx.doi.org/10.1038/s41598-019-45014-4] [PMID: 31189941]
[32]
Zheng, A.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect., 2020. S0163-4453-30234-6.
[33]
Yang, G.; Tan, Z.; Zhou, L.; Yang, M.; Peng, L.; Liu, J.; Cai, J.; Yang, R.; Han, J.; Huang, Y.; He, S. Effects of angiotensin II receptor blockers and ACE (angiotensin-converting enzyme) inhibitors on virus inhection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension, 2020, 76(1), 51-58.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15143] [PMID: 32348166]
[34]
Barbaro, N.R.; Fontana, V.; Modolo, R.; De Faria, A.P.; Sabbatini, A.R.; Fonseca, F.H.; Anhê, G.F.; Moreno, H. Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press., 2015, 24(1), 7-13.
[http://dx.doi.org/10.3109/08037051.2014.940710] [PMID: 25061978]
[35]
Kow, C.S.; Ramachandram, D.S.; Hasan, S.S. Clinical outcomes of hypertensive patients with COVID-19 receiving calcium channel blockers: A systematic review and meta-analysis. Hypertens. Res., 2021, 1-4 Epub ahead of print
[http://dx.doi.org/10.1038/s41440-021-00786-z] [PMID: 34754084]
[36]
Passaro, A.; Bestvina, C.; Velez Velez, M.; Garassino, M.C.; Garon, E.; Peters, S. Severity of COVID-19 in patients with lung cancer: Evidence and challenges. J. Immunother. Cancer, 2021, 9(3), e002266.
[http://dx.doi.org/10.1136/jitc-2020-002266] [PMID: 33737345]
[37]
Saini, K.S.; Tagliamento, M.; Lambertini, M.; McNally, R.; Romano, M.; Leone, M.; Curigliano, G.; de Azambuja, E. Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies. Eur. J. Cancer, 2020, 139, 43-50.
[http://dx.doi.org/10.1016/j.ejca.2020.08.011] [PMID: 32971510]
[38]
Gomez-Ospina, N.; Tsuruta, F.; Barreto-Chang, O.; Hu, L.; Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell, 2006, 127(3), 591-606.
[http://dx.doi.org/10.1016/j.cell.2006.10.017] [PMID: 17081980]
[39]
Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Biophys. Acta, 2015, 1848(10 Pt B), 2747-2755.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.034] [PMID: 25843679]
[40]
Dziegielewska, B.; Gray, L.S.; Dziegielewski, J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch., 2014, 466(4), 801-810.
[http://dx.doi.org/10.1007/s00424-014-1444-z] [PMID: 24449277]
[41]
Gackière, F.; Bidaux, G.; Delcourt, P.; Van Coppenolle, F.; Katsogiannou, M.; Dewailly, E.; Bavencoffe, A.; Van Chuoï-Mariot, M.T.; Mauroy, B.; Prevarskaya, N.; Mariot, P. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J. Biol. Chem., 2008, 283(15), 10162-10173.
[http://dx.doi.org/10.1074/jbc.M707159200] [PMID: 18230611]
[42]
Latour, I.; Louw, D.F.; Beedle, A.M.; Hamid, J.; Sutherland, G.R.; Zamponi, G.W. Expression of T-type calcium channel splice variants in human glioma. Glia, 2004, 48(2), 112-119.
[http://dx.doi.org/10.1002/glia.20063] [PMID: 15378657]
[43]
Ohkubo, T.; Yamazaki, J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int. J. Oncol., 2012, 41(1), 267-275.
[http://dx.doi.org/10.3892/ijo.2012.1422] [PMID: 22469755]
[44]
Bergantin, L.B.; Souza, C.F.; Ferreira, R.M.; Smaili, S.S.; Jurkiewicz, N.H.; Caricati-Neto, A.; Jurkiewicz, A. Novel model for “calcium paradox” in sympathetic transmission of smooth muscles: Role of cyclic AMP pathway. Cell Calcium, 2013, 54(3), 202-212.
[http://dx.doi.org/10.1016/j.ceca.2013.06.004] [PMID: 23849429]
[45]
Bergantin, L.B.; Caricati-Neto, A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur. J. Pharmacol., 2016, 788, 255-260.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.034] [PMID: 27349146]
[46]
Bergantin, L.B. Neurodegenerative diseases: Where to go from now? Thought provoking through Ca2+/cAMP signaling interaction. Brain Disord. Ther., 2017, 6, e125.
[http://dx.doi.org/10.4172/2168-975X.1000e125]
[47]
Bergantin, L.B. Neurological disorders: Is there a horizon? Emerging ideas from the interaction between Ca2+ and camp signaling pathways. J. Neurol. Disord., 2017, 5, e124.
[http://dx.doi.org/10.4172/2329-6895.1000e124]
[48]
Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: From risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect., 2015, 3(5), e00181.
[http://dx.doi.org/10.1002/prp2.181] [PMID: 26516591]
[49]
Bergantin, L.B. Common issues among asthma, epilepsy, and schizophrenia: From inflammation to Ca2+/cAMP signalling. Antiinflamm. Antiallergy Agents Med. Chem., 2020. Epub ahead of print
[http://dx.doi.org/10.2174/1871523019999201110192029] [PMID: 33176668]
[50]
Caricati-Neto, A.; Bergantin, L.B. Pharmacological modulation of neural Ca2+/camp signaling interaction as therapeutic goal for treatment of Alzheimer’s disease. J. Syst. Integr. Neurosci., 2017, 3
[http://dx.doi.org/10.15761/JSIN.1000185]
[51]
Caricati-Neto, A.; Bergantin, L.B. The passion of a scientific discovery: The “calcium paradox” due to Ca2+/camp interaction. J. Syst. Integr. Neurosci., 2017, 3
[http://dx.doi.org/10.15761/JSIN.1000186]
[52]
Caricati-Neto, A.; Bergantin, L.B. From a “eureka insight” to a novel potential therapeutic target to treat Parkinson’s disease: The Ca2+/camp signalling interaction. J. Syst. Integr. Neurosci., 2017, 4
[http://dx.doi.org/10.15761/JSIN.1000187]
[53]
Bergantin, L.B. The interactions between Alzheimer’s disease and major depression: Role of Ca2+ channel blockers and Ca2+/cAMP signalling. Curr. Drug Res. Rev., 2020, 12(2), 97-102. Epub ahead of print
[http://dx.doi.org/10.2174/2589977512666200217093356] [PMID: 32065096]
[54]
Bergantin, L.B. The complex link between schizophrenia and dementia: Targeting Ca2+/cAMP signalling. Curr. Pharm. Des., 2020, 26(27), 3326-3331.
[http://dx.doi.org/10.2174/1381612826666200318144521] [PMID: 32186273]
[55]
Bergantin, L.B. A link between brain insulin resistance and cognitive dysfunctions: Targeting Ca2+/cAMP signalling. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(2), 103-109.
[http://dx.doi.org/10.2174/1871524920666200129121232] [PMID: 31995022]
[56]
Bergantin, L.B. A hypothesis for the relationship between depression and cancer: Role of Ca2+/cAMP signalling. Anticancer. Agents Med. Chem., 2020, 20(7), 777-782.
[http://dx.doi.org/10.2174/1871520620666200220113817] [PMID: 32077833]
[57]
Kleppe, R.; Krakstad, C.; Selheim, F.; Kopperud, R.; Døskeland, S.O. The cAMP-dependent protein kinase pathway as therapeutic target: Possibilities and pitfalls. Curr. Top. Med. Chem., 2011, 11(11), 1393-1405.
[http://dx.doi.org/10.2174/156802611795589629] [PMID: 21513494]
[58]
Naviglio, S.; Caraglia, M.; Abbruzzese, A.; Chiosi, E.; Di Gesto, D.; Marra, M.; Romano, M.; Sorrentino, A.; Sorvillo, L.; Spina, A.; Illiano, G. Protein kinase A as a biological target in cancer therapy. Expert Opin. Ther. Targets, 2009, 13(1), 83-92.
[http://dx.doi.org/10.1517/14728220802602349] [PMID: 19063708]
[59]
Fajardo, A.M.; Piazza, G.A.; Tinsley, H.N. The role of cyclic nucleotide signaling pathways in cancer: Targets for prevention and treatment. Cancers (Basel), 2014, 6(1), 436-458.
[http://dx.doi.org/10.3390/cancers6010436] [PMID: 24577242]
[60]
Lerner, A.; Epstein, P.M. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem. J., 2006, 393(Pt 1), 21-41.
[http://dx.doi.org/10.1042/BJ20051368] [PMID: 16336197]
[61]
Chawla, R.K.; Shlaer, S.M.; Lawson, D.H.; Murray, T.G.; Schmidt, F.; Shoji, M.; Nixon, D.W.; Richmond, A.; Rudman, D. Elevated plasma and urinary guanosine 3′:5′-monophosphate and increased production rate in patients with neoplastic diseases. Cancer Res., 1980, 40(11), 3915-3920.
[PMID: 6258769]
[62]
Aleksijevic, A.; Lang, J.M.; Giron, C.; Stoclet, J.C.; Mayer, S.; Oberling, F. Alterations of peripheral blood lymphocyte cyclic AMP and cyclic GMP in untreated patients with hodgkin’s disease. Clin. Immunol. Immunopathol., 1983, 26(3), 398-405.
[http://dx.doi.org/10.1016/0090-1229(83)90124-1] [PMID: 6307567]
[63]
Tortorella, C.; Piazzolla, G.; Spaccavento, F.; Antonaci, S. Effects of granulocyte-macrophage colony-stimulating factor and cyclic AMP interaction on human neutrophil apoptosis. Mediators Inflamm., 1998, 7(6), 391-396.
[http://dx.doi.org/10.1080/09629359890767] [PMID: 9927231]
[64]
García-Bermejo, L.; Pérez, C.; Vilaboa, N.E.; de Blas, E.; Aller, P. cAMP increasing agents attenuate the generation of apoptosis by etoposide in promonocytic leukemia cells. J. Cell Sci., 1998, 111(Pt 5), 637-644.
[http://dx.doi.org/10.1242/jcs.111.5.637] [PMID: 9454737]
[65]
Monahan, T.M.; Marchand, N.W.; Fritz, R.R.; Abell, C.W. Cyclic adenosine 3′:5′-monophosphate levels and activities of related enzymes in normal and leukemic lymphocytes. Cancer Res., 1975, 35(9), 2540-2547.
[PMID: 167962]
[66]
Carpentieri, U.; Monahan, T.M.; Gustavson, L.P. Observations on the level of cyclic nucleotides in three population of human lymphocytes in culture. J. Cyclic Nucleotide Res., 1980, 6(4), 253-259.
[PMID: 6259221]
[67]
Lee, R.; Wolda, S.; Moon, E.; Esselstyn, J.; Hertel, C.; Lerner, A. PDE7A is expressed in human B-lymphocytes and is up-regulated by elevation of intracellular cAMP. Cell. Signal., 2002, 14(3), 277-284.
[http://dx.doi.org/10.1016/S0898-6568(01)00250-9] [PMID: 11812656]
[68]
Hanoune, J.; Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 145-174.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.145] [PMID: 11264454]
[69]
Briggs, C.A.; McAfee, D.A.; McCaman, R.E. Long-term regulation of synaptic acetylcholine release and nicotinic transmission: The role of cyclic AMP. Br. J. Pharmacol., 1988, 93(2), 399-411.
[http://dx.doi.org/10.1111/j.1476-5381.1988.tb11447.x] [PMID: 2833971]
[70]
Kuba, K.; Kumamoto, E. Long-term potentiation of transmitter release induced by adrenaline in bull-frog sympathetic ganglia. J. Physiol., 1986, 374, 515-530.
[http://dx.doi.org/10.1113/jphysiol.1986.sp016095] [PMID: 2427705]
[71]
Braas, K.M.; Rossignol, T.M.; Girard, B.M.; May, V.; Parsons, R.L. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience, 2004, 126(2), 335-346.
[http://dx.doi.org/10.1016/j.neuroscience.2004.04.007] [PMID: 15207351]
[72]
Chern, Y.J.; Kim, K.T.; Slakey, L.L.; Westhead, E.W. Adenosine receptors activate adenylate cyclase and enhance secretion from bovine adrenal chromaffin cells in the presence of forskolin. J. Neurochem., 1988, 50(5), 1484-1493.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb03034.x] [PMID: 2834514]
[73]
Doyle, M.E.; Egan, J.M. Pharmacological agents that directly modulate insulin secretion. Pharmacol. Rev., 2003, 55(1), 105-131.
[http://dx.doi.org/10.1124/pr.55.1.7] [PMID: 12615955]
[74]
von Ruden, L.; Neher, E. Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science, 1993, 262(5136), 1061-1065.
[http://dx.doi.org/10.1126/science.8235626]
[75]
Bittner, M.A.; Holz, R.W. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem., 1992, 267(23), 16219-16225.
[http://dx.doi.org/10.1016/S0021-9258(18)41988-6] [PMID: 1644807]
[76]
Heinemann, C.; von Rüden, L.; Chow, R.H.; Neher, E. A two-step model of secretion control in neuroendocrine cells. Pflugers Arch., 1993, 424(2), 105-112.
[http://dx.doi.org/10.1007/BF00374600] [PMID: 8414901]
[77]
Prentki, M.; Matschinsky, F.M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev., 1987, 67(4), 1185-1248.
[http://dx.doi.org/10.1152/physrev.1987.67.4.1185] [PMID: 2825225]
[78]
Byrne, J.H.; Kandel, E.R. Presynaptic facilitation revisited: State and time dependence. J. Neurosci., 1996, 16(2), 425-435.
[http://dx.doi.org/10.1523/JNEUROSCI.16-02-00425.1996] [PMID: 8551327]
[79]
Kits, K.S.; Mansvelder, H.D. Regulation of exocytosis in neuroendocrine cells: Spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. Brain Res., 2000, 33(1), 78-94.
[http://dx.doi.org/10.1016/S0165-0173(00)00023-0] [PMID: 10967354]
[80]
Muto, Y.; Nagao, T.; Yamada, M.; Mikoshiba, K.; Urushidani, T. A proposed mechanism for the potentiation of cAMP-mediated acid secretion by carbachol. Am. J. Physiol. Cell Physiol., 2001, 280(1), C155-C165.
[http://dx.doi.org/10.1152/ajpcell.2001.280.1.C155] [PMID: 11121387]
[81]
Sakaba, T.; Neher, E. Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proc. Natl. Acad. Sci. USA, 2001, 98(1), 331-336.
[http://dx.doi.org/10.1073/pnas.98.1.331] [PMID: 11134533]
[82]
Sato, K.; Ohsaga, A.; Oshiro, T.; Ito, S.; Maruyama, Y. Involvement of GTP-binding protein in pancreatic cAMP-mediated exocytosis. Pflugers Arch., 2002, 443(3), 394-398.
[http://dx.doi.org/10.1007/s004240100711] [PMID: 11810208]
[83]
Trudeau, L.E.; Fang, Y.; Haydon, P.G. Modulation of an early step in the secretory machinery in hippocampal nerve terminals. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 7163-7168.
[http://dx.doi.org/10.1073/pnas.95.12.7163] [PMID: 9618556]
[84]
Trudeau, L.E.; Emery, D.G.; Haydon, P.G. Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron, 1996, 17(4), 789-797.
[http://dx.doi.org/10.1016/S0896-6273(00)80210-X] [PMID: 8893035]
[85]
Weisskopf, M.G.; Castillo, P.E.; Zalutsky, R.A.; Nicoll, R.A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science, 1994, 265(5180), 1878-1882.
[http://dx.doi.org/10.1126/science.7916482]
[86]
Chen, C.; Regehr, W.G. The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J. Neurosci., 1997, 17(22), 8687-8694.
[http://dx.doi.org/10.1523/JNEUROSCI.17-22-08687.1997] [PMID: 9348337]
[87]
Salin, P.A.; Malenka, R.C.; Nicoll, R.A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron, 1996, 16(4), 797-803.
[http://dx.doi.org/10.1016/S0896-6273(00)80099-9] [PMID: 8607997]
[88]
Zhong, N.; Zucker, R.S. Roles of Ca2+, hyperpolarization and cyclic nucleotide-activated channel activation, and actin in temporal synaptic tagging. J. Neurosci., 2004, 24(17), 4205-4212.
[http://dx.doi.org/10.1523/JNEUROSCI.0111-04.2004] [PMID: 15115816]
[89]
Shuster, M.J.; Camardo, J.S.; Siegelbaum, S.A.; Kandel, E.R. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature, 1985, 313(6001), 392-395.
[http://dx.doi.org/10.1038/313392a0] [PMID: 2578623]
[90]
Yoshihara, M.; Suzuki, K.; Kidokoro, Y. Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions. J. Neurosci., 2000, 20(22), 8315-8322.
[http://dx.doi.org/10.1523/JNEUROSCI.20-22-08315.2000] [PMID: 11069938]
[91]
Henquin, J.C. The interplay between cyclic AMP and ions in the stimulus-secretion coupling in pancreatic B-cells. Arch. Int. Physiol. Biochim., 1985, 93(1), 37-48.
[http://dx.doi.org/10.3109/13813458509104514] [PMID: 2409943]
[92]
Gromada, J.; Bokvist, K.; Ding, W.G.; Barg, S.; Buschard, K.; Renström, E.; Rorsman, P. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J. Gen. Physiol., 1997, 110(3), 217-228.
[http://dx.doi.org/10.1085/jgp.110.3.217] [PMID: 9276750]
[93]
Won, J.G.; Orth, D.N. Roles of intracellular and extracellular calcium in the kinetic profile of adrenocorticotropin secretion by perifused rat anterior pituitary cells. I. Corticotropin-releasing factor stimulation. Endocrinology, 1990, 126(2), 849-857.
[http://dx.doi.org/10.1210/endo-126-2-849] [PMID: 2153529]
[94]
Quissell, D.O.; Barzen, K.A.; Deisher, L.M. Rat submandibular and parotid protein phosphorylation and exocytosis: effect of site-selective cAMP analogs. Crit. Rev. Oral Biol. Med., 1993, 4(3-4), 443-448.
[http://dx.doi.org/10.1177/10454411930040032601] [PMID: 7690603]
[95]
Kaupp, U.B.; Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev., 2002, 82(3), 769-824.
[http://dx.doi.org/10.1152/physrev.00008.2002] [PMID: 12087135]
[96]
Biel, M.; Schneider, A.; Wahl, C. Cardiac HCN channels: Structure, function, and modulation. Trends Cardiovasc. Med., 2002, 12(5), 206-212.
[http://dx.doi.org/10.1016/S1050-1738(02)00162-7] [PMID: 12161074]
[97]
Springett, G.M.; Kawasaki, H.; Spriggs, D.R. Non-kinase second-messenger signaling: New pathways with new promise. BioEssays, 2004, 26(7), 730-738.
[http://dx.doi.org/10.1002/bies.20057] [PMID: 15221855]
[98]
Halls, M.L.; Cooper, D.M. Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004143.
[http://dx.doi.org/10.1101/cshperspect.a004143] [PMID: 21123395]
[99]
Antoni, F.A. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium, 2012, 51(3-4), 260-266.
[http://dx.doi.org/10.1016/j.ceca.2011.12.013] [PMID: 22385836]
[100]
Willoughby, D. Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem. Soc. Trans., 2012, 40(1), 246-250.
[http://dx.doi.org/10.1042/BST20110613] [PMID: 22260699]
[101]
Fagan, K.A.; Graf, R.A.; Tolman, S.; Schaack, J.; Cooper, D.M. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J. Biol. Chem., 2000, 275(51), 40187-40194.
[http://dx.doi.org/10.1074/jbc.M006606200] [PMID: 11010970]
[102]
Goraya, T.A.; Masada, N.; Ciruela, A.; Willoughby, D.; Clynes, M.A.; Cooper, D.M. Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate intracellular cAMP dynamics in response to elevation of cytosolic Ca2+. Cell. Signal., 2008, 20(2), 359-374.
[http://dx.doi.org/10.1016/j.cellsig.2007.10.024] [PMID: 18335582]
[103]
Giovannucci, D.R.; Groblewski, G.E.; Sneyd, J.; Yule, D.I. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2+ release and shapes oscillatory Ca2+ signals. J. Biol. Chem., 2000, 275(43), 33704-33711.
[http://dx.doi.org/10.1074/jbc.M004278200] [PMID: 10887192]
[104]
Fechner, L.; Baumann, O.; Walz, B. Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina. Cell Calcium, 2013, 53(2), 94-101.
[http://dx.doi.org/10.1016/j.ceca.2012.10.004] [PMID: 23131569]
[105]
Chatton, J.Y.; Cao, Y.; Liu, H.; Stucki, J.W. Permissive role of cAMP in the oscillatory Ca2+ response to inositol 1,4,5-trisphosphate in rat hepatocytes. Biochem. J., 1998, 330(Pt 3), 1411-1416.
[http://dx.doi.org/10.1042/bj3301411] [PMID: 9494114]
[106]
Lee, R.J.; Foskett, J.K. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J. Clin. Invest., 2010, 120(9), 3137-3148.
[http://dx.doi.org/10.1172/JCI42992] [PMID: 20739756]
[107]
Marks, A.R. Calcium cycling proteins and heart failure: Mechanisms and therapeutics. J. Clin. Invest., 2013, 123(1), 46-52.
[http://dx.doi.org/10.1172/JCI62834] [PMID: 23281409]
[108]
Zhang, L.K.; Sun, Y.; Zeng, H.; Wang, Q.; Jiang, X.; Shang, W.J.; Wu, Y.; Li, S.; Zhang, Y.L.; Hao, Z.N.; Chen, H.; Jin, R.; Liu, W.; Li, H.; Peng, K.; Xiao, G. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov., 2020, 6(1), 96.
[http://dx.doi.org/10.1038/s41421-020-00235-0] [PMID: 33349633]
[109]
Bergantin, L.B. Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3′-5′-cyclic adenosine monophosphate signaling. World J. Diabetes, 2021, 12(6), 767-779.
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[110]
Olivier, M. Modulation of host cell intracellular Ca2+. Parasitol. Today, 1996, 12(4), 145-150.
[http://dx.doi.org/10.1016/0169-4758(96)10006-5] [PMID: 15275223]
[111]
Scherbik, S.V.; Brinton, M.A. Virus-induced Ca2+ influx extends survival of West Nile virus-infected cells. J. Virol., 2010, 84(17), 8721-8731.
[http://dx.doi.org/10.1128/JVI.00144-10] [PMID: 20538858]
[112]
Dionicio, C.L.; Peña, F.; Constantino-Jonapa, L.A.; Vazquez, C.; Yocupicio-Monroy, M.; Rosales, R.; Zambrano, J.L.; Ruiz, M.C.; Del Angel, R.M.; Ludert, J.E. Dengue virus induced changes in Ca2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Res., 2018, 245, 17-28.
[http://dx.doi.org/10.1016/j.virusres.2017.11.029] [PMID: 29269104]
[113]
Nugent, K.M.; Shanley, J.D. Verapamil inhibits influenza A virus replication. Arch. Virol., 1984, 81(1-2), 163-170.
[http://dx.doi.org/10.1007/BF01309305] [PMID: 6743023]
[114]
Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.; Hoffstrom, B.G.; Lear-Rooney, C.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; Pierce, L.T.; Pajouhesh, H.; Lehár, J.; Hensley, L.E.; Glass, P.J.; White, J.M.; Olinger, G.G. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med., 2015, 7(290), 290ra89.
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[115]
D’Elia, J.A.; Weinrauch, L.A. Calcium ion channels: Roles in infection and sepsis mechanisms of calcium channel blocker benefits in immunocompromised patients at risk for infection. Int. J. Mol. Sci., 2018, 19(9), 19.
[http://dx.doi.org/10.3390/ijms19092465] [PMID: 30134544]
[116]
Bergantin, L.B. Cancer and hypertension: Debating the clinical link through the Ca2+/cAMP signaling. Glob. Vaccines Immunol., 2018, 3
[http://dx.doi.org/10.15761/GVI.1000131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy