Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Nanocarrier System for Increasing the Therapeutic Efficacy of Oxaliplatin

Author(s): Negin Alavi, Majid Rezaei, Parvaneh Maghami, Azar Fanipakdel and Amir Avan*

Volume 22, Issue 5, 2022

Published on: 06 April, 2022

Page: [361 - 372] Pages: 12

DOI: 10.2174/1568009622666220120115140

Price: $65

Abstract

The application of Oxaliplatin (OxPt) in different malignancies is reported to be accompanied by several side effects, including neuropathy, nausea, vomiting, diarrhea, mouth sores, low blood counts, loss of appetite, etc. The passive or active targeting of different tumors can improve OxPt delivery. Considering the demand for novel systems meant to improve the OxPt efficacy and define the shortcomings, we provided an overview of different approaches regarding the delivery of OxPt. There is an extending body of data that exhibits the value of liposomes and polymer- based drug delivery systems as the most successful systems among the OxPt drug delivery procedures. Several clinical trials have been carried out to investigate the side effects and dose-limiting toxicity of liposomal oxaliplatin, such as the assessment on Safety Study of MBP-426 (Liposomal Oxaliplatin Suspension for Injection) to Treat Advanced or Metastatic Solid Tumors. In addition, several studies indicated the biocompatibility and biodegradability of this product, as well as its option for being fictionalized to derive specialized smart nanosystems for the treatment of cancer. The better delivery of OxPt with weaker side effects could be generated by the exertion of Oxaliplatin, which involves the aggregation of new particles and multifaceted nanocarriers to compose a nanocomposite with both inorganic and organic nanoparticles.

Keywords: Drug delivery, oxaliplatin, nanotechnology, cancer, toxicity, nanocarrier.

[1]
Wild, C.; Weiderpass, E.; Stewart, B. World Cancer Report 2020; International Agency for Research on Cancer: Lyon, 2020, Vol. 199, p. 512.
[2]
Culy, C.R.; Clemett, D.; Wiseman, L.R. Oxaliplatin. A review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies. Drugs, 2000, 60(4), 895-924.
[http://dx.doi.org/10.2165/00003495-200060040-00005] [PMID: 11085200]
[3]
Lévi, F.; Metzger, G.; Massari, C.; Milano, G. Oxaliplatin: Pharmacokinetics and chronopharmacological aspects. Clin. Pharmacokinet., 2000, 38(1), 1-21.
[http://dx.doi.org/10.2165/00003088-200038010-00001] [PMID: 10668856]
[4]
Wani, W.A.; Prashar, S.; Shreaz, S.; Gomez-Ruiz, S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord. Chem. Rev., 2016, 312, 67-98.
[http://dx.doi.org/10.1016/j.ccr.2016.01.001]
[5]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[6]
Machover, D.; Diaz-Rubio, E.; de Gramont, A.; Schilf, A.; Gastiaburu, J.J.; Brienza, S.; Itzhaki, M.; Metzger, G.; N’Daw, D.; Vignoud, J.; Abad, A.; Francois, E.; Gamelin, E.; Marty, M.; Sastre, J.; Seitz, J.F.; Ychou, M. Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann. Oncol., 1996, 7(1), 95-98.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a010489] [PMID: 9081400]
[7]
de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947.
[http://dx.doi.org/10.1200/JCO.2000.18.16.2938] [PMID: 10944126]
[8]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[9]
Chaney, S.G.; Campbell, S.L.; Bassett, E.; Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol., 2005, 53(1), 3-11.
[http://dx.doi.org/10.1016/j.critrevonc.2004.08.008] [PMID: 15607931]
[10]
Ahmad, S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem. Biodivers., 2010, 7(3), 543-566.
[http://dx.doi.org/10.1002/cbdv.200800340] [PMID: 20232326]
[11]
Gamelin, E.; Gamelin, L.; Bossi, L.; Quasthoff, S. Clinical aspects and molecular basis of oxaliplatin neurotoxicity: Current management and development of preventive measures. Semin. Oncol., 2002, 29(Suppl. 15), 21-33.
[http://dx.doi.org/10.1016/S0093-7754(02)90017-5] [PMID: 12422305]
[12]
Kono, T.; Mamiya, N.; Chisato, N.; Ebisawa, Y.; Yamazaki, H.; Watari, J.; Yamamoto, Y.; Suzuki, S.; Asama, T.; Kamiya, K Efficacy of goshajinkigan for peripheral neurotoxicity of oxaliplatin in patients with advanced or recurrent colorectal cancer. Evid. Based Complement. Alternat. Med., 2011, 2011, 418481.
[http://dx.doi.org/10.1093/ecam/nep200]
[13]
Cavaletti, G.; Tredici, G.; Petruccioli, M.G.; Dondè, E.; Tredici, P.; Marmiroli, P.; Minoia, C.; Ronchi, A.; Bayssas, M.; Etienne, G.G. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur. J. Cancer, 2001, 37(18), 2457-2463.
[http://dx.doi.org/10.1016/S0959-8049(01)00300-8] [PMID: 11720843]
[14]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[15]
Pulvers, J.N.; Marx, G. Factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy: A systematic review. Asia Pac. J. Clin. Oncol., 2017, 13(6), 345-355.
[http://dx.doi.org/10.1111/ajco.12694] [PMID: 28653815]
[16]
Argyriou, A.A.; Cavaletti, G.; Antonacopoulou, A.; Genazzani, A.A.; Briani, C.; Bruna, J.; Terrazzino, S.; Velasco, R.; Alberti, P.; Campagnolo, M.; Lonardi, S.; Cortinovis, D.; Cazzaniga, M.; Santos, C.; Psaromyalou, A.; Angelopoulou, A.; Kalofonos, H.P. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: Results from a prospective multicenter study. Cancer, 2013, 119(19), 3570-3577.
[http://dx.doi.org/10.1002/cncr.28234] [PMID: 23821303]
[17]
Cavaletti, G.; Marmiroli, P. Management of oxaliplatin-induced peripheral sensory neuropathy. Cancers (Basel), 2020, 12(6), 1370.
[http://dx.doi.org/10.3390/cancers12061370] [PMID: 32471028]
[18]
Spingler, B.; Whittington, D.A.; Lippard, S.J. 2.4 Å crystal structure of an oxaliplatin 1,2-d(gpg) intrastrand cross-link in a DNA dodecamer duplex. Inorg. Chem., 2001, 40(22), 5596-5602.
[http://dx.doi.org/10.1021/ic010790t]
[19]
Martinez-Balibrea, E.; Martínez-Cardús, A.; Ginés, A.; Ruiz de Porras, V.; Moutinho, C.; Layos, L.; Manzano, J.L.; Bugés, C.; Bystrup, S.; Esteller, M.; Abad, A. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol. Cancer Ther., 2015, 14(8), 1767-1776.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0636] [PMID: 26184483]
[20]
Sprowl, J.A.; Ciarimboli, G.; Lancaster, C.S.; Giovinazzo, H.; Gibson, A.A.; Du, G.; Janke, L.J.; Cavaletti, G.; Shields, A.F.; Sparreboom, A. Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc. Natl. Acad. Sci. USA, 2013, 110(27), 11199-11204.
[http://dx.doi.org/10.1073/pnas.1305321110] [PMID: 23776246]
[21]
Cecchin, E.; D’Andrea, M.; Lonardi, S.; Zanusso, C.; Pella, N.; Errante, D.; De Mattia, E.; Polesel, J.; Innocenti, F.; Toffoli, G. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenomics J., 2013, 13(5), 403-409.
[http://dx.doi.org/10.1038/tpj.2012.31] [PMID: 22868256]
[22]
Hoff, P.M.; Saad, E.D.; Costa, F.; Coutinho, A.K.; Caponero, R.; Prolla, G.; Gansl, R.C. Literature review and practical aspects on the management of oxaliplatin-associated toxicity. Clin. Colorectal Cancer, 2012, 11(2), 93-100.
[http://dx.doi.org/10.1016/j.clcc.2011.10.004] [PMID: 22154408]
[23]
Browning, R.J.; Reardon, P.J.T.; Parhizkar, M.; Pedley, R.B.; Edirisinghe, M.; Knowles, J.C.; Stride, E. Drug delivery strategies for platinum-based chemotherapy. ACS Nano, 2017, 11(9), 8560-8578.
[http://dx.doi.org/10.1021/acsnano.7b04092] [PMID: 28829568]
[24]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[25]
Monneret, C. Platinum anticancer drugs. From serendipity to rational design. Annales Pharmaceutiques Françaises, 2011, 69(6), 286-295.
[http://dx.doi.org/10.1016/j.pharma.2011.10.001]
[26]
Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580.
[http://dx.doi.org/10.2174/092986709789760661] [PMID: 19903151]
[27]
Haxton, K.J.; Burt, H.M. Polymeric drug delivery of platinum-based anticancer agents. J. Pharm. Sci., 2009, 98(7), 2299-2316.
[http://dx.doi.org/10.1002/jps.21611]
[28]
Bryde, S.; de Kroon, A.I. Nanocapsules of platinum anticancer drugs: development towards therapeutic use. Future Med. Chem., 2009, 1(8), 1467-1480.
[http://dx.doi.org/10.4155/fmc.09.112] [PMID: 21426060]
[29]
Nishida, K. Liposomalization of oxaliplatin induces skin accumulation of it, but negligible skin toxicity. Toxicol. Appl. Pharmacol., 2017, 337, 76-84.
[http://dx.doi.org/10.1016/j.taap.2017.10.006]
[30]
Shimizu, T.; Abu Lila, A.S.; Nishio, M.; Doi, Y.; Ando, H.; Ukawa, M.; Ishima, Y.; Ishida, T. Modulation of antitumor immunity contributes to the enhanced therapeutic efficacy of liposomal oxaliplatin in mouse model. Cancer Sci., 2017, 108(9), 1864-1869.
[http://dx.doi.org/10.1111/cas.13305] [PMID: 28643902]
[31]
Doi, Y.; Shimizu, T.; Ishima, Y.; Ishida, T. Long-term storage of PEGylated liposomal oxaliplatin with improved stability and long circulation times in vivo. Int. J. Pharm., 2019, 564, 237-243.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.042]
[32]
Ando, H.; Abu Lila, A.S.; Tanaka, M.; Doi, Y.; Terada, Y.; Yagi, N.; Shimizu, T.; Okuhira, K.; Ishima, Y.; Ishida, T. Intratumoral visualization of oxaliplatin within a liposomal formulation using X-ray fluorescence spectrometry. Mol. Pharm., 2018, 15(2), 403-409.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00762] [PMID: 29287147]
[33]
Yang, C.; Liu, H-Z.; Lu, W-D.; Fu, Z-X. PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma. Oncol. Rep., 2011, 25(6), 1621-1628.
[PMID: 21455585]
[34]
Nakamura, H. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose. J. Control. Release, 2015, 220, 406-413.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.002]
[35]
Abu Lila, A. S.; Matsumoto, H.; Doi, Y.; Nakamura, H.; Ishida, T.; Kiwada, H. Tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin. Eur. J. Pharm. Biopharm., 2012, 81(3), 524-531.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.010]
[36]
Abu Lila, A. S.; Eldin, N. E.; Ichihara, M.; Ishida, T.; Kiwada, H. Multiple administration of PEG-coated liposomal oxaliplatin enhances its therapeutic efficacy: A possible mechanism and the potential for clinical application. Int. J. Pharm., 2012, 438(1), 176-183.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.030]
[37]
Yang, C.; Liu, H-Z.; Fu, Z-X. Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in colorectal cancer cells. Oncol. Rep., 2012, 28(3), 1006-1012.
[http://dx.doi.org/10.3892/or.2012.1868] [PMID: 22710431]
[38]
Yang, C.; Liu, H-Z.; Fu, Z-X. PEG-liposomal oxaliplatin induces apoptosis in human colorectal cancer cells via Fas/FasL and caspase-8. Cell Biol. Int., 2012, 36(3), 289-296.
[http://dx.doi.org/10.1042/CBI20100825] [PMID: 21888623]
[39]
Ringgaard, L.; Melander, F.; Eliasen, R.; Henriksen, J.R.; Jølck, R.I.; Engel, T.B.; Bak, M.; Fliedner, F.P.; Kristensen, K.; Elema, D.R.; Kjaer, A.; Hansen, A.E.; Andresen, T.L. Tumor repolarization by an advanced liposomal drug delivery system provides a potent new approach for chemo-immunotherapy. Sci. Adv., 2020, 6(36), eaba5628.
[http://dx.doi.org/10.1126/sciadv.aba5628] [PMID: 32917608]
[40]
Yang, C.; Fu, Z-X. PEG-liposomal oxaliplatin combined with nuclear factor-κB inhibitor (PDTC) induces apoptosis in human colorectal cancer cells. Oncol. Rep., 2014, 32(4), 1617-1621.
[http://dx.doi.org/10.3892/or.2014.3336] [PMID: 25174808]
[41]
Alaaeldin, E. Co-administration of liposomal l-OHP and PEGylated TS shRNA-lipoplex: A novel approach to enhance anti-tumor efficacy and reduce the immunogenic response to RNAi molecules. J. Control. Release, 2017, 255, 210-217.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.040]
[42]
Zalba, S. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271]
[43]
Nakamura, H.; Doi, Y.; Abu Lila, A. S.; Nagao, A.; Ishida, T.; Kiwada, H. Sequential treatment of oxaliplatin-containing PEGylated liposome together with S-1 improves intratumor distribution of subsequent doses of oxaliplatin-containing PEGylated liposome. Eur. J. Pharm. Biopharm., 2014, 87(1), 142-151.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.007]
[44]
Nagao, A.; Abu Lila, A. S.; Ishida, T.; Kiwada, H. Abrogation of the accelerated blood clearance phenomenon by SOXL regimen: Promise for clinical application. Int. J. Pharm., 2013, 441(1), 395-401.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.015]
[45]
Abu Lila, A. S.; Okada, T.; Doi, Y.; Ichihara, M.; Ishida, T.; Kiwada, H. Combination therapy with metronomic S-1 dosing and oxaliplatin-containing PEG-coated cationic liposomes in a murine colorectal tumor model: Synergy or antagonism? Int. J. Pharm., 2012, 426(1), 263-270.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.046]
[46]
Charest, G.; Sanche, L.; Fortin, D.; Mathieu, D.; Paquette, B. Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain. J. Neuro-Oncol., 2013, 115(3), 365-373.
[http://dx.doi.org/10.1007/s11060-013-1238-8]
[47]
Charest, G.; Sanche, L.; Fortin, D.; Mathieu, D.; Paquette, B. Glioblastoma treatment: Bypassing the toxicity of platinum compounds by using liposomal formulation and increasing treatment efficiency with concomitant radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2012, 84(1), 244-249.
[http://dx.doi.org/10.1016/j.ijrobp.2011.10.054]
[48]
Maeda, O.; Kajiyama, H.; Shibata, K.; Nakamura, S.; Kikkawa, F. Pegylated liposomal doxorubicin/oxaliplatin chemotherapy can overcome cisplatin resistance in spectrin αII-overexpressing ovarian carcinoma. Anticancer Res., 2020, 40(5), 2497-2507.
[http://dx.doi.org/10.21873/anticanres.14220] [PMID: 32366394]
[49]
Garcia-Pinel, B.; Jabalera, Y.; Ortiz, R.; Cabeza, L.; Jimenez-Lopez, C.; Melguizo, C.; Prados, J. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: In vitro study for potential application in colon cancer. Pharmaceutics, 2020, 12(6), 589.
[http://dx.doi.org/10.3390/pharmaceutics12060589] [PMID: 32599905]
[50]
Gogineni, V.R.; Maddirela, D.R.; Park, W.; Jagtap, J.M.; Parchur, A.K.; Sharma, G.; Ibrahim, E.S.; Joshi, A.; Larson, A.C.; Kim, D.H.; White, S.B. Localized and triggered release of oxaliplatin for the treatment of colorectal liver metastasis. J. Cancer, 2020, 11(23), 6982-6991.
[http://dx.doi.org/10.7150/jca.48528] [PMID: 33123288]
[51]
Østrem, R. G. Secretory phospholipase A2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro, but induce unforeseen severe toxicity in vivo. J. Control. Release, 2017, 262, 212-221.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.031]
[52]
Pourhassan, H. Revisiting the use of sPLA2-sensitive liposomes in cancer therapy. J. Control. Release, 2017, 261, 163-173.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.024]
[53]
Abuzar, S.M.; Park, E.J.; Seo, Y.; Lee, J.; Baik, S.H.; Hwang, S-J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment. Pharmaceutics, 2020, 12(8), 736.
[http://dx.doi.org/10.3390/pharmaceutics12080736] [PMID: 32764318]
[54]
Cevenini, A.; Celia, C.; Orrù, S.; Sarnataro, D.; Raia, M.; Mollo, V.; Locatelli, M.; Imperlini, E.; Peluso, N.; Peltrini, R.; De Rosa, E.; Parodi, A.; Del Vecchio, L.; Di Marzio, L.; Fresta, M.; Netti, P.A.; Shen, H.; Liu, X.; Tasciotti, E.; Salvatore, F. Liposome-embedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy. Pharmaceutics, 2020, 12(6), 559.
[http://dx.doi.org/10.3390/pharmaceutics12060559] [PMID: 32560359]
[55]
Faralli, A.; Melander, F.; Larsen, E.K.U.; Chernyy, S.; Andresen, T.L.; Larsen, N.B. Multiplexed dosing assays by digitally definable hydrogel volumes. Adv. Healthc. Mater., 2016, 5(2), 244-254.
[http://dx.doi.org/10.1002/adhm.201500542] [PMID: 26619161]
[56]
Feng, B. Phospholipid-mimic oxaliplatin prodrug liposome for treatment of the metastatic triple negative breast cancer. In: Biomat. Sci; , 2017; 5, pp. (8)1522-1525.
[http://dx.doi.org/10.1039/C7BM00058H]
[57]
Qiu, L. Encapsulation of oxaliplatin in nanostructured lipid carriers-preparation, physicochemical characterization and in vitro evalulation. Asian J. Pharm. Sci., 2012, 7(5), 352-358.
[58]
Rajpoot, K.; Jain, S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1236-1247.
[http://dx.doi.org/10.1080/21691401.2017.1366338] [PMID: 28849671]
[59]
Rajpoot, K.; Jain, S.K. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J. Microencapsul., 2020, 37(8), 609-623.
[http://dx.doi.org/10.1080/02652048.2020.1829141] [PMID: 32985297]
[60]
Tummala, S. Formulation and optimization of oxaliplatin immuno-nanoparticles using Box–Behnken design and cytotoxicity assessment for synergistic and receptor-mediated targeting in the treatment of colorectal cancer. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1835-1850.
[http://dx.doi.org/10.3109/21691401.2015.1111226]
[61]
Oberoi, H.S.; Nukolova, N.V.; Kabanov, A.V.; Bronich, T.K. Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1667-1685.
[http://dx.doi.org/10.1016/j.addr.2013.09.014] [PMID: 24113520]
[62]
Farooq, M.A.; Aquib, M.; Farooq, A.; Haleem Khan, D.; Joelle Maviah, M.B.; Sied Filli, M.; Kesse, S.; Boakye-Yiadom, K.O.; Mavlyanova, R.; Parveen, A.; Wang, B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: An overview. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1674-1692.
[http://dx.doi.org/10.1080/21691401.2019.1604535] [PMID: 31066300]
[63]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[64]
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci., 1975, 51(1), 135-153.
[http://dx.doi.org/10.1002/polc.5070510111]
[65]
Bonetti, A.; Leone, R.; Muggia, F.M.; Howell, S.B. Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy; Humana Press: Totowa, NJ, 2009.
[66]
Rice, J.R.; Gerberich, J.L.; Nowotnik, D.P.; Howell, S.B. Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin. Cancer Res., 2006, 12(7 Pt 1), 2248-2254.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2169] [PMID: 16609041]
[67]
Sood, P.; Thurmond, K.B., II; Jacob, J.E.; Waller, L.K.; Silva, G.O.; Stewart, D.R.; Nowotnik, D.P. Synthesis and characterization of AP5346, a novel polymer-linked diaminocyclohexyl platinum chemotherapeutic agent. Bioconjug. Chem., 2006, 17(5), 1270-1279.
[http://dx.doi.org/10.1021/bc0600517] [PMID: 16984138]
[68]
Monneret, C. Platinum anticancer drugs. From serendipity to rational design. Ann. Pharm. Fr., 2011, 69(6), 286-295.
[http://dx.doi.org/10.1016/j.pharma.2011.10.001]
[69]
Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol., 2016, 77(6), 1103-1124.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[70]
Duncan, R.; Vicent, M.J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv. Drug Deliv. Rev., 2010, 62(2), 272-282.
[http://dx.doi.org/10.1016/j.addr.2009.12.005] [PMID: 20005271]
[71]
Sohn, Y.S. Synthesis and antitumor activity of novel polyphosphazene-(diamine) platinum (II) conjugates. Int. J. Pharm., 1997, 153(1), 79-91.
[http://dx.doi.org/10.1016/S0378-5173(97)00098-7]
[72]
Jun, Y.J.; Kim, J.I.; Jun, M.J.; Sohn, Y.S. Selective tumor targeting by enhanced permeability and retention effect. Synthesis and antitumor activity of polyphosphazene-platinum (II) conjugates. J. Inorg. Biochem., 2005, 99(8), 1593-1601.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.04.019] [PMID: 15963570]
[73]
Lee, S.B.; Song, S-C.; Jin, J-I.; Sohn, Y.S. Synthesis and antitumor activity of polyphosphazene/methoxy-poly (ethylene glycol)/(diamine) platinum (II) conjugates. Polym. J., 1999, 31(12), 1247-1252.
[http://dx.doi.org/10.1295/polymj.31.1247]
[74]
Zheng, J.; Sun, J.; Chen, J.; Zhu, S.; Chen, S.; Liu, Y.; Hao, L.; Wang, Z.; Chang, S. Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. J. Control. Release, 2021, 332, 448-459.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.032] [PMID: 33662456]
[75]
Handali, S.; Moghimipour, E.; Rezaei, M.; Saremy, S.; Dorkoosh, F.A. Co-delivery of 5-fluorouracil and oxaliplatin in novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid)/poly(lactic-co-glycolic acid) nanoparticles for colon cancer therapy. Int. J. Biol. Macromol., 2019, 124, 1299-1311.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.119] [PMID: 30248424]
[76]
Jain, A.; Jain, S. K.; Ganesh, N.; Barve, J.; Beg, A. M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomed. Nanotechnol. Biol. Med., 2010, 6(1), 179-190.
[http://dx.doi.org/10.1016/j.nano.2009.03.002]
[77]
Vivek, R.; Thangam, R.; Nipunbabu, V.; Ponraj, T.; Kannan, S. Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: A “smart” drug delivery system to breast cancer cell therapy. Int. J. Biol. Macromol., 2014, 65, 289-297.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.054]
[78]
Ziaaddini, V.; Saeidifar, M.; Eslami-Moghadam, M.; Saberi, M.; Mozafari, M. Improvement of efficacy and decrement cytotoxicity of oxaliplatin anticancer drug using bovine serum albumin nanoparticles: Synthesis, characterisation and release behaviour. IET Nanobiotechnol., 2020, 14(1), 105-111.
[http://dx.doi.org/10.1049/iet-nbt.2019.0086] [PMID: 31935686]
[79]
Murakami, M. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Translat. Med., 2011, 3(64), 64ra2.
[http://dx.doi.org/10.1126/scitranslmed.3001385]
[80]
Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci., 2021, 163, 105864.
[http://dx.doi.org/10.1016/j.ejps.2021.105864]
[81]
Patil, A.S.; Gadad, A.P.; Hiremath, R.D.; Joshi, S.D. Biocompatible tumor micro-environment responsive CS-g-PNIPAAm co-polymeric nanoparticles for targeted Oxaliplatin delivery. J. Polym. Res., 2018, 25(3), 77.
[http://dx.doi.org/10.1007/s10965-018-1453-2]
[82]
Yan, G.; Chen, Q.; Xu, L.; Wei, H.; Ma, C.; Sun, Y. Preparation and evaluation of liver-targeting micelles loaded with oxaliplatin. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 491-496.
[http://dx.doi.org/10.3109/21691401.2014.962747]
[83]
Tummala, S.; Gowthamarajan, K.; Satish Kumar, M.N.; Wadhwani, A. Oxaliplatin immuno hybrid nanoparticles for active targeting: An approach for enhanced apoptotic activity and drug delivery to colorectal tumors. Drug Deliv., 2016, 23(5), 1773-1787.
[http://dx.doi.org/10.3109/10717544.2015.1084400] [PMID: 26377238]
[84]
Urbanska, A.M.; Karagiannis, E.D.; Guajardo, G.; Langer, R.S.; Anderson, D.G. Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer. Biomaterials, 2012, 33(18), 4752-4761.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.023] [PMID: 22472433]
[85]
Bansal, D.; Gulbake, A.; Tiwari, J.; Jain, S.K. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int. J. Biol. Macromol., 2016, 82, 687-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.052] [PMID: 26464131]
[86]
Shad, P.M. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol. In Vitro, 2020, 65, 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756]
[87]
Li, J.Q.; Wang, S.L.; Xu, F.; Liu, Z.Y.; Li, R. Therapeutic effectiveness of slow-release PLGA-oxaliplatin microsphere on human colorectal tumor-bearing mice. Anticancer Drugs, 2010, 21(6), 600-608.
[http://dx.doi.org/10.1097/CAD.0b013e3283393004] [PMID: 20527722]
[88]
Pereira, E.D. Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polímeros, 2016, 26, 137-143.
[http://dx.doi.org/10.1590/0104-1428.2323]
[89]
Oliveira, A.L.C.d.S.L.; Zerillo, L.; Cruz, L.J.; Schomann, T.; Chan, A.B.; de Carvalho, T.G.; de P. Souza, S.V.; Araujo, A.A.; de Geus-Oei, L-F.; de Araujo, R.F. Maximizing the potency of oxaliplatin coated nanoparticles with folic acid for modulating tumor progression in colorectal cancer. Mater. Sci. Eng. C, 2021, 120, 111678.
[http://dx.doi.org/10.1016/j.msec.2020.111678]
[90]
Abuzar, S.M.; Ahn, J-H.; Park, K.S.; Park, E.J.; Baik, S.H.; Hwang, S-J. Pharmacokinetic profile and anti-adhesive effect of oxaliplatin-PLGA microparticle-loaded hydrogels in rats for colorectal cancer treatment. Pharmaceutics, 2019, 11(8), 392.
[http://dx.doi.org/10.3390/pharmaceutics11080392] [PMID: 31387217]
[91]
C de S L Oliveira, A.L.; Araújo Júnior, R.F.; Gomes de Carvalho, T.; B Chan, A.; Schomann, T.; Tamburini, F.; de Geus-Oei, L.F.; Cruz, J.L. Effect of oxaliplatin-loaded poly (d, l-lactide-co-glycolic acid)(PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics, 2020, 12(2), 193.
[http://dx.doi.org/10.3390/pharmaceutics12020193] [PMID: 32102251]
[92]
Handali, S.; Ramezani, Z.; Moghimipour, E.; Rezaei, M.; Dorkoosh, F. A. A novel method for the simultaneous determination of 5-fluorouracil and oxaliplatin in new biodegradable PHBV/PLGA nanoparticles. J. Iranian Chem. Soc., 2019, 16(3), 609-615.
[http://dx.doi.org/10.1007/s13738-018-1538-1]
[93]
Li, X. Cocktail strategy for ‘cold’ tumors therapy via active recruitment of CD8+ T cells and enhancing their function. J. Control. Release, 2021, 334, 413-426.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.002]
[94]
Yu, Z.; Yu, M.; Zhang, Z.; Hong, G.; Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett., 2014, 9(1), 343.
[http://dx.doi.org/10.1186/1556-276X-9-343] [PMID: 25114637]
[95]
Kadina, Y.A. Poly(ethylene glycol)-b-poly(d,l-lactide) nanoparticles as potential carriers for anticancer drug oxaliplatin. Molecules, 2021, 26(3), 602.
[http://dx.doi.org/10.3390/molecules26030602]
[96]
Avaji, P.G. Synthesis and properties of a new micellar polyphosphazene–platinum(II) conjugate drug. J. Inorg. Biochem., 2014, 140, 45-52.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.06.014]
[97]
Avaji, P.G.; Park, J.H.; Lee, H.J.; Jun, Y.J.; Park, K.S.; Lee, K.E.; Choi, S.J.; Lee, H.J.; Sohn, Y.S. Design of a novel theranostic nanomedicine: synthesis and physicochemical properties of a biocompatible polyphosphazene-platinum(II) conjugate. Int. J. Nanomed., 2016, 11, 837-851.
[PMID: 27042052]
[98]
Song, R.; Joo Jun, Y.; Ik Kim, J.; Jin, C.; Sohn, Y.S. Synthesis, characterization, and tumor selectivity of a polyphosphazene-platinum(II) conjugate. J. Control. Release, 2005, 105(1-2), 142-150.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.016] [PMID: 15894394]
[99]
Campone, M.; Rademaker-Lakhai, J.M.; Bennouna, J.; Howell, S.B.; Nowotnik, D.P.; Beijnen, J.H.; Schellens, J.H. Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother. Pharmacol., 2007, 60(4), 523-533.
[http://dx.doi.org/10.1007/s00280-006-0397-0] [PMID: 17308894]
[100]
Nowotnik, D.P.; Cvitkovic, E. ProLindac (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv. Drug Deliv. Rev., 2009, 61(13), 1214-1219.
[http://dx.doi.org/10.1016/j.addr.2009.06.004] [PMID: 19671439]
[101]
Nowotnik, D.P. AP5346 (ProLindac™), A DACH platinum polymer conjugate in phase II trials against ovarian cancer. Curr. Bioact. Compd., 2011, 7(1), 21-26.
[http://dx.doi.org/10.2174/157340711795163794]
[102]
Cabral, H.; Nishiyama, N.; Okazaki, S.; Koyama, H.; Kataoka, K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J. Control. Release, 2005, 101(1), 223-232.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.022]
[103]
He, H. Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloid. Surf. B Biointerfaces, 2014, 117, 75-81.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.014]
[104]
Ramasamy, T.; Munusamy, S.; Ruttala, H. B.; Kim, J. O. Smart nanocarriers for the delivery of nucleic acid-based therapeutics: A comprehensive review. Biotechnol. J., 2021, 16(2), 1900408.
[http://dx.doi.org/10.1002/biot.201900408]
[105]
Yang, H.; Liu, Y.; Qiu, Y.; Ding, M.; Zhang, Y. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. Int. J. Pharm., 2019, 566, 585-593.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.020] [PMID: 31181310]
[106]
Tummala, S.; Kumar, M. N. S.; Pindiprolu, S. K. Improved anti-tumor activity of oxaliplatin by encapsulating in anti-DR5 targeted gold nanoparticles. Drug Delivery, 2016, 23(9), 3505-3519.
[http://dx.doi.org/10.1080/10717544.2016.1199606]
[107]
Liu, D. Target-specific delivery of oxaliplatin to HER2-positive gastric cancer cells in vivo using oxaliplatin-au-fe3o4-herceptin nanoparticles. Oncol. Lett., 2018, 15(5), 8079-8087.
[http://dx.doi.org/10.3892/ol.2018.8323]
[108]
Go, G.; Lee, C-S.; Yoon, Y.M.; Lim, J.H.; Kim, T.H.; Lee, S.H. PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int. J. Mol. Sci., 2021, 22(4), 1976.
[http://dx.doi.org/10.3390/ijms22041976]
[109]
Brown, S.D.; Nativo, P.; Smith, J-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
[http://dx.doi.org/10.1021/ja908117a]
[110]
El-Kharrag, R.; Amin, A.; Greish, Y. Synthesis and characterization of mesoporous sodium dodecyl sulfate-coated magnetite nanoparticles. J. Ceram. Sci. Technol, 2011, 2(4), 203-210.
[111]
El-kharrag, R.; Abdel Halim, S.S.; Amin, A.; Greish, Y.E. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications. Int. J. Polym. Mater. Polym. Biomater., 2019, 68(1-3), 73-82.
[http://dx.doi.org/10.1080/00914037.2018.1525725]
[112]
Nazarbek, G. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing (Rhizoma polygonati) and Goji (Lycium chinense). Nanoscale Adv., 2021, 3, 6728.
[http://dx.doi.org/10.1039/D1NA00475A]
[113]
Baig, B.; Hilal-Alnaqbi, A.; Amin, A. Cancer and biotechnology: A matchup that should never slowdown. In: Biotechnology and Production of Anti-Cancer Compounds; Malik, S., Ed.; Springer: Cham, 2017; pp. 73-97.
[114]
Stathopoulos, G.P.; Boulikas, T.; Kourvetaris, A.; Stathopoulos, J. Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res., 2006, 26(2B), 1489-1493.
[PMID: 16619562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy