Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles

Author(s): Farzaneh Aavani, Esmaeil Biazar*, Bahareh Kheilnezhad and Fatemeh Amjad

Volume 17, Issue 5, 2022

Published on: 31 March, 2022

Page: [415 - 439] Pages: 25

DOI: 10.2174/1574888X17666220204144544

Price: $65

conference banner
Abstract

For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective biomimicry of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges in skin tissue engineering.

Keywords: Skin, tissue engineering, 3D printing, bio-printing, bio-inks, skin irritation.

Graphical Abstract

[1]
Dąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol 2018; 24(2): 165-74.
[http://dx.doi.org/10.1111/srt.12424] [PMID: 29057509]
[2]
Kheilnezhad B, Hadjizadeh A. Factors affecting the penetration of niosome into the skin, their laboratory measurements and dependency to the niosome composition: A review. Curr Drug Deliv 2021; 18(5): 555-69.
[http://dx.doi.org/10.2174/1567201817999200820161438] [PMID: 32842940]
[3]
Vegeto E, Villa A, Della Torre S, et al. The role of sex and sex hormones in neurodegenerative diseases. Endocr Rev 2020; 41(2): 273-319.
[http://dx.doi.org/10.1210/endrev/bnz005] [PMID: 31544208]
[4]
Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev 2008; 14(1): 105-18.
[http://dx.doi.org/10.1089/teb.2007.0318] [PMID: 18454637]
[5]
Kheilnezhad B, Hadjizadeh A. A review: Progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9(8): 2850-73.
[http://dx.doi.org/10.1039/D0BM02023K] [PMID: 33710194]
[6]
Basu P, Kumar UN, Manjubala I. Wound healing materials–a perspective for skin tissue engineering. Curr Sci 2017; 112(12): 2392-404.
[http://dx.doi.org/10.18520/cs/v112/i12/2392-2404]
[7]
Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns 2010; 36(4): 450-60.
[http://dx.doi.org/10.1016/j.burns.2009.08.016] [PMID: 20022702]
[8]
Komal V. Advances in skin regeneration using tissue engineering. Int J Mol Sci 2017; 18(4): 789.
[9]
Bhardwaj N, Chouhan D, Mandal BB. 3D functional scaffolds for skin tissue engineering. In: Functional 3D tissue engineering scaffolds. Elsevier 2018; pp. 345-65.
[http://dx.doi.org/10.1016/B978-0-08-100979-6.00014-8]
[10]
Biazar E. Application of polymeric nanofibers in medical designs, part I: Skin and eye. Int J Polym Mater Polym Biomater 2017; 66(10): 521-31.
[http://dx.doi.org/10.1080/00914037.2016.1276062]
[11]
Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991; 113(2): 143-51.
[http://dx.doi.org/10.1115/1.2891228] [PMID: 1652042]
[12]
Jeong K-H, Park D, Lee Y-C. Polymer-based hydrogel scaffolds for skin tissue engineering applications: A mini-review. J Polym Res 2017; 24(7): 1-10.
[http://dx.doi.org/10.1007/s10965-017-1278-4]
[13]
Pereira RF, Sousa A, Barrias CC, et al. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufact Rev 2017; 2(1): 1-26.
[http://dx.doi.org/10.1007/s40898-017-0003-8]
[14]
Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 2016; 40: 103-12.
[http://dx.doi.org/10.1016/j.copbio.2016.03.014] [PMID: 27043763]
[15]
Biazar E, Najafi SM, Heidari KS, Yazdankhah M, Rafiei A, Biazar D. 3D bio-printing technology for body tissues and organs regenera-tion. J Med Eng Technol 2018; 42(3): 187-202.
[http://dx.doi.org/10.1080/03091902.2018.1457094] [PMID: 29671367]
[16]
Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 2014; 7(3): 460-72.
[http://dx.doi.org/10.1007/s12195-014-0340-0] [PMID: 25484989]
[17]
Laakso T. Different types of 3D bioprinting techniques. Bachelor Thesis, Tampere University: 2021.
[18]
Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: Production and in vivo analysis. Biofabrication 2016; 9(1): 015006.
[http://dx.doi.org/10.1088/1758-5090/9/1/015006] [PMID: 27917823]
[19]
Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 2020; 4(4): 370-80.
[http://dx.doi.org/10.1038/s41551-019-0471-7] [PMID: 31695178]
[20]
Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146: 209-39.
[http://dx.doi.org/10.1016/j.addr.2018.12.014] [PMID: 30605737]
[21]
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in healing chronic wounds: Opportunities and challenges. Mol Pharm 2021; 18(2): 550-75.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00346] [PMID: 32519875]
[22]
Aavani F, Khorshidi S, Karkhaneh A. A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol 2019; 43(1): 38-47.
[http://dx.doi.org/10.1080/03091902.2019.1606950] [PMID: 31091134]
[23]
Singh S, Young A, McNaught C-E. The physiology of wound healing. Surgery 2017; 35(9): 473-7.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.004]
[24]
Yun S-H, Sim E-H, Goh R-Y, et al. Platelet activation: The mechanisms and potential biomarkers. In: BioMed Res Int 2016; 2016: 9060143.
[http://dx.doi.org/10.1155/2016/9060143]
[25]
Lancerotto L, Stecco C, Macchi V, Porzionato A, Stecco A, De Caro R. Layers of the abdominal wall: Anatomical investigation of subcuta-neous tissue and superficial fascia. Surg Radiol Anat 2011; 33(10): 835-42.
[http://dx.doi.org/10.1007/s00276-010-0772-8] [PMID: 21212951]
[26]
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res 2017; 58(1-2): 81-94.
[http://dx.doi.org/10.1159/000454919] [PMID: 27974711]
[27]
Rezvani HR, Ali N, Serrano-Sanchez M, et al. Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci 2011; 124(Pt 24): 4172-83.
[http://dx.doi.org/10.1242/jcs.082370] [PMID: 22193962]
[28]
Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogen-esis during acute wound healing. J Dermatol Sci 2013; 72(3): 206-17.
[http://dx.doi.org/10.1016/j.jdermsci.2013.07.008] [PMID: 23958517]
[29]
Moore AL, Marshall CD, Nouta A, et al. Scarless wound healing: From experimental target to clinical reality, Principles of Regenerative Medicine. Elsevier 2019; pp. 65-92.
[30]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[31]
Nour S, Baheiraei N, Imani R, et al. A review of accelerated wound healing approaches: Biomaterial- assisted tissue remodeling. J Mater Sci Mater Med 2019; 30(10): 120.
[http://dx.doi.org/10.1007/s10856-019-6319-6] [PMID: 31630272]
[32]
Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2001; 2(5): 305-13.
[http://dx.doi.org/10.2165/00128071-200102050-00005] [PMID: 11721649]
[33]
Supp DM, Boyce ST. Engineered skin substitutes: Practices and potentials. Clin Dermatol 2005; 23(4): 403-12.
[http://dx.doi.org/10.1016/j.clindermatol.2004.07.023] [PMID: 16023936]
[34]
Keyhan SO, Hemmat S, Asayesh MA. A new horizon in facial plastic surgery: skin tissue-engineering and stem cell therapy-reality or dream? Am J Cosmet Surg 2014; 31(3): 207-24.
[http://dx.doi.org/10.5992/AJCS-D-14-00003.1]
[35]
Savoji H, Godau B, Hassani MS, Akbari M. Skin tissue substitutes and biomaterial risk assessment and testing. Front Bioeng Biotechnol 2018; 6: 86.
[http://dx.doi.org/10.3389/fbioe.2018.00086] [PMID: 30094235]
[36]
Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7(43): 229-58.
[http://dx.doi.org/10.1098/rsif.2009.0403] [PMID: 19864266]
[37]
Oostendorp C, Meyer S, Sobrio M, et al. Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis. Burns 2017; 43(3): 520-30.
[http://dx.doi.org/10.1016/j.burns.2016.10.002] [PMID: 28041746]
[38]
Dixit S, Baganizi DR, Sahu R, et al. Immunological challenges associated with artificial skin grafts: Available solutions and stem cells in future design of synthetic skin. J Biol Eng 2017; 11(1): 49.
[http://dx.doi.org/10.1186/s13036-017-0089-9] [PMID: 29255480]
[39]
Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedi-cal substitutes. J Eur Acad Dermatol Venereol 2019; 33(3): 484-96.
[http://dx.doi.org/10.1111/jdv.15391] [PMID: 30520159]
[40]
Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5(29): 29-39.
[http://dx.doi.org/10.22203/eCM.v005a03] [PMID: 14562270]
[41]
Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 2012; 3(3): 20.
[http://dx.doi.org/10.1186/scrt111] [PMID: 22668751]
[42]
Li Z, Maitz P. Cell therapy for severe burn wound healing. Burns Trauma 2018; 6: 13.
[http://dx.doi.org/10.1186/s41038-018-0117-0] [PMID: 29854856]
[43]
Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater Sci Eng C 2016; 67: 747-65.
[http://dx.doi.org/10.1016/j.msec.2016.05.074] [PMID: 27287175]
[44]
Bernal-Chávez S, Nava-Arzaluz MG, Quiroz-Segoviano RIY, Ganem-Rondero A. Nanocarrier-based systems for wound healing. Drug Dev Ind Pharm 2019; 45(9): 1389-402.
[http://dx.doi.org/10.1080/03639045.2019.1620270] [PMID: 31099263]
[45]
Bahrami H, Keshel SH, Chari AJ, Biazar E. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. Artif Cells Nanomed Biotechnol 2016; 44(6): 1556-60.
[http://dx.doi.org/10.3109/21691401.2015.1062390] [PMID: 26140614]
[46]
Biazar E, Keshel SH. Unrestricted somatic stem cells loaded in nanofibrous scaffolds as potential candidate for skin regeneration. Int J Polym Mater Polym Biomater 2014; 63(14): 741-52.
[http://dx.doi.org/10.1080/00914037.2013.879447]
[47]
Khan ZA, Jamil S, Akhtar A, et al. Chitosan based hybrid materials used for wound healing applications-A short review. Int J Polym Ma-ter Polym Biomater 2019; 69(7): 419-36.
[48]
El-Sherbiny I, Yacoub M. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013; 2013: 38.
[49]
Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014; 20(6): 473-84.
[http://dx.doi.org/10.1089/ten.tec.2013.0335] [PMID: 24188635]
[50]
Yeong WY, Chua CK. Bioprinting: Principles and applications. Singapore: World Scientific Publishing Co Inc. 2014; Vol. 1.
[51]
Thayer P, Martinez H, Gatenholm E. History and trends of 3D bioprinting. Methods Mol Biol 2020; 2140: 3-18.
[http://dx.doi.org/10.1007/978-1-0716-0520-2_1] [PMID: 32207102]
[52]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[53]
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019; 365(6452): 482-7.
[http://dx.doi.org/10.1126/science.aav9051] [PMID: 31371612]
[54]
Jose RR, Rodriguez MJ, Dixon TA, Omenetto F, Kaplan DL. Evolution of bioinks and additive manufacturing technologies for 3D bi-oprinting. ACS Biomater Sci Eng 2016; 2(10): 1662-78.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00088] [PMID: 33440468]
[55]
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.076] [PMID: 26561931]
[56]
Saygili E, Dogan-Gurbuzb A, Yesil-Celiktas O, et al. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020; 18: e00071.
[http://dx.doi.org/10.1016/j.bprint.2019.e00071]
[57]
Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A. Software for bioprinting. Int J Bioprint 2020; 6(3): 279.
[http://dx.doi.org/10.18063/ijb.v6i3.279] [PMID: 33088988]
[58]
McElheny C, Hayes D, Devireddy R. Design and fabrication of a low-cost three-dimensional bioprinter. J Med Device 2017; 11(4): 0410011-9.
[http://dx.doi.org/10.1115/1.4037259] [PMID: 29034057]
[59]
Vanaei S, Parizi MS, Vanaei S, et al. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Re-generat 2021; 2: 1-18.
[http://dx.doi.org/10.1016/j.engreg.2020.12.001]
[60]
Zidarič T, Milojević M, Gradišnik L, Stana Kleinschek K, Maver U, Maver T. Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis. Nanomaterials (Basel) 2020; 10(4): 733.
[http://dx.doi.org/10.3390/nano10040733] [PMID: 32290484]
[61]
Betz JF, Ho VB, Gaston JD. 3D bioprinting and its application to military medicine. Mil Med 2020; 185(9-10): e1510-9.
[http://dx.doi.org/10.1093/milmed/usaa121] [PMID: 32514549]
[62]
Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater 2018; 7(8): e1701161.
[http://dx.doi.org/10.1002/adhm.201701161] [PMID: 29283220]
[63]
Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 2017; 12(8): 1600671.
[http://dx.doi.org/10.1002/biot.201600671] [PMID: 28544779]
[64]
Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials 2016; 102: 20-42.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.012] [PMID: 27318933]
[65]
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): e1706759.
[http://dx.doi.org/10.1002/adma.201706759] [PMID: 29582476]
[66]
Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep 2017; 7(1): 7004.
[http://dx.doi.org/10.1038/s41598-017-06358-x] [PMID: 28765636]
[67]
Ji Y, Yang Q, Huang G, et al. Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater Sci Eng 2019; 5(8): 4112-21.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00400] [PMID: 33448812]
[68]
Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010; 31(28): 7250-6.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.055] [PMID: 20580082]
[69]
Catros S, Fricain JC, Guillotin B, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011; 3(2): 025001.
[http://dx.doi.org/10.1088/1758-5082/3/2/025001] [PMID: 21527813]
[70]
Ringeisen BR, Kim H, Barron JA, et al. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 2004; 10(3-4): 483-91.
[http://dx.doi.org/10.1089/107632704323061843] [PMID: 15165465]
[71]
Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regen-eration applications. Sci Rep 2017; 7(1): 1778.
[http://dx.doi.org/10.1038/s41598-017-01914-x] [PMID: 28496103]
[72]
Antoshin A, Churbanova SN, Minaev NV, et al. LIFT-bioprinting, is it worth it? Bioprinting 2019; 15: e00052.
[http://dx.doi.org/10.1016/j.bprint.2019.e00052]
[73]
Parak A, Pradeep P, du Toit LC, Kumar P, Choonara YE, Pillay V. Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today 2019; 24(1): 198-205.
[http://dx.doi.org/10.1016/j.drudis.2018.09.012] [PMID: 30244080]
[74]
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: An overview. Biomater Sci 2018; 6(5): 915-46.
[http://dx.doi.org/10.1039/C7BM00765E] [PMID: 29492503]
[75]
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater 2017; 6(1): 1601118.
[http://dx.doi.org/10.1002/adhm.201601118] [PMID: 27995751]
[76]
Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh) 2019; 6(11): 1900344.
[http://dx.doi.org/10.1002/advs.201900344] [PMID: 31179230]
[77]
Senior JJ, Cooke ME, Grover LM, Smith AM. Fabrication of complex hydrogel structures using suspended layer additive manufacturing (SLAM). Adv Funct Mater 2019; 29(49): 1904845.
[http://dx.doi.org/10.1002/adfm.201904845]
[78]
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35(2): 217-39.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.006] [PMID: 28057483]
[79]
Acosta-Vélez GF, Zhu TZ, Linsley CS, Wu BM. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. Int J Pharm 2018; 546(1-2): 145-53.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.056] [PMID: 29705105]
[80]
Tonda-Turo C, Carmagnola I, Chiappone A, et al. Photocurable chitosan as bioink for cellularized therapies towards personalized scaffold architecture. Bioprinting 2020; 18: e00082.
[http://dx.doi.org/10.1016/j.bprint.2020.e00082]
[81]
Lee JS, Parka SH, Jung H, et al. 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Addit Manuf 2020; 33: 101136.
[http://dx.doi.org/10.1016/j.addma.2020.101136]
[82]
Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017; 112: 264-74.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.026] [PMID: 27770630]
[83]
Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: Prospects for the future. Methods 2020; 171: 108-18.
[http://dx.doi.org/10.1016/j.ymeth.2019.04.019] [PMID: 31051254]
[84]
Kim BS, Kim H, Gao G, Jang J, Cho DW. Decellularized extracellular matrix: A step towards the next generation source for bioink manu-facturing. Biofabrication 2017; 9(3): 034104.
[http://dx.doi.org/10.1088/1758-5090/aa7e98] [PMID: 28691696]
[85]
Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting 2020; e00095.
[http://dx.doi.org/10.1016/j.bprint.2020.e00095]
[86]
Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvi-ronments. Chem Rev 2020; 120(19): 10608-61.
[http://dx.doi.org/10.1021/acs.chemrev.9b00808] [PMID: 32786425]
[87]
Dubbin K, Hori Y, Lewis KK, Heilshorn SC. Dual-stage crosslinking of a gel-phase bioink improves cell viability and homogeneity for 3D bioprinting. Adv Healthc Mater 2016; 5(19): 2488-92.
[http://dx.doi.org/10.1002/adhm.201600636] [PMID: 27581767]
[88]
Maitra J, Shukla VK. Cross-linking in hydrogels-a review. Am J Pol Sci 2014; 4(2): 25-31.
[89]
Branco da Cunha C, Klumpers DD, Li WA, et al. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating net-works on fibroblast biology. Biomaterials 2014; 35(32): 8927-36.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.047] [PMID: 25047628]
[90]
Derby B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 2010; 40: 395-414.
[http://dx.doi.org/10.1146/annurev-matsci-070909-104502]
[91]
Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014; 6(4): 045001.
[http://dx.doi.org/10.1088/1758-5082/6/4/045001] [PMID: 25215452]
[92]
Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods 2016; 13(5): 405-14.
[http://dx.doi.org/10.1038/nmeth.3839] [PMID: 27123816]
[93]
Yang J-A, Yeoma J, Hwanga BW, et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014; 39(12): 1973-86.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[94]
Fonseca KB, Granja PL, Barrias CC. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci 2014; 39(12): 2010-29.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.003]
[95]
Li J, Wu C, Chu PK, Gelinskya M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater Sci Eng Rep 2020; 140: 100543.
[http://dx.doi.org/10.1016/j.mser.2020.100543]
[96]
Kim BS, Kwon YW, Kong JS, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018; 168: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.040] [PMID: 29614431]
[97]
Won J-Y, Lee MH, Kim MJ, et al. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink. Artif Cells Nanomed Biotechnol 2019; 47(1): 644-9.
[http://dx.doi.org/10.1080/21691401.2019.1575842] [PMID: 30873886]
[98]
Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: The future of burn wound reconstruction? Burns Trauma 2019; 7: 4.
[http://dx.doi.org/10.1186/s41038-019-0142-7] [PMID: 30805375]
[99]
King A, Balaji S, Keswani SG, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care (New Rochelle) 2014; 3(10): 614-25.
[http://dx.doi.org/10.1089/wound.2013.0497] [PMID: 25300298]
[100]
Ng WL, Qi JTZ, Yeong WY, Naing MW. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 2018; 10(2): 025005.
[http://dx.doi.org/10.1088/1758-5090/aa9e1e] [PMID: 29360631]
[101]
Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: Will technology bring us flow? Dev Dyn 2015; 244(5): 629-40.
[http://dx.doi.org/10.1002/dvdy.24254] [PMID: 25613150]
[102]
Climov M, Medeiros E, Farkash EA, et al. Bioengineered self-assembled skin as an alternative to skin grafts. Plast Reconstr Surg Glob Open 2016; 4(6): e731.
[http://dx.doi.org/10.1097/GOX.0000000000000723] [PMID: 27482479]
[103]
Varkey M, Atala A. Organ bioprinting: A closer look at ethics and policies. Wake Forest J Law Policy 2015; 5: 275.
[104]
Tan YJ, Leong KF, Chian KS, et al. Fabrication and in vitro analysis of tubular scaffolds by melt-drawing for esophageal tissue engineer-ing. Mater Lett 2015; 159: 424-7.
[http://dx.doi.org/10.1016/j.matlet.2015.07.061]
[105]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[106]
Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006; 3(10): 589-601.
[http://dx.doi.org/10.1098/rsif.2006.0124] [PMID: 16971328]
[107]
Shie M-Y, Lee JJ, Ho CC, Yen SY, Ng HY, Chen YW. Effects of gelatin methacrylate bio-ink concentration on mechano-physical proper-ties and human dermal fibroblast behavior. Polymers (Basel) 2020; 12(9): 1930.
[http://dx.doi.org/10.3390/polym12091930] [PMID: 32859028]
[108]
Hakam MS, Imani R, Abolfathi N, Fakhrzadeh H, Sharifi AM. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study. Biomed Mater Eng 2016; 27(6): 669-82.
[http://dx.doi.org/10.3233/BME-161617] [PMID: 28234249]
[109]
Si H, Xing T, Ding Y, Zhang H, Yin R, Zhang W. 3D bioprinting of the sustained drug release wound dressing with double-crosslinked hyaluronic-acid-based hydrogels. Polymers (Basel) 2019; 11(10): 1584.
[http://dx.doi.org/10.3390/polym11101584] [PMID: 31569810]
[110]
Masri S, Fauzi MB. Current insight of printability quality improvement strategies in natural-based bioinks for skin regeneration and wound healing. Polymers (Basel) 2021; 13(7): 1011.
[http://dx.doi.org/10.3390/polym13071011] [PMID: 33805995]
[111]
Yao B, Hu T, Cui X, Song W, Fu X, Huang S. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Biofabrication 2019; 11(4): 045020.
[http://dx.doi.org/10.1088/1758-5090/ab38ef] [PMID: 31387086]
[112]
Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 2016; 6(1): 24474.
[http://dx.doi.org/10.1038/srep24474] [PMID: 27091175]
[113]
Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater 2017; 29(29): 1701089.
[http://dx.doi.org/10.1002/adma.201701089] [PMID: 28585319]
[114]
Ke D, Murphy SV. Current challenges of bioprinted tissues toward clinical translation. Tissue Eng Part B Rev 2019; 25(1): 1-13.
[http://dx.doi.org/10.1089/ten.teb.2018.0132] [PMID: 30129878]
[115]
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014; 26(19): 3124-30.
[http://dx.doi.org/10.1002/adma.201305506] [PMID: 24550124]
[116]
Zhu D, Tong X, Trinh P, Yang F. Mimicking cartilage tissue zonal organization by engineering tissue-scale gradient hydrogels as 3D cell niche. Tissue Eng Part A 2018; 24(1-2): 1-10.
[http://dx.doi.org/10.1089/ten.tea.2016.0453] [PMID: 28385124]
[117]
Brown DA, MacLellan WR, Laks H, Dunn JC, Wu BM, Beygui RE. Analysis of oxygen transport in a diffusion-limited model of engi-neered heart tissue. Biotechnol Bioeng 2007; 97(4): 962-75.
[http://dx.doi.org/10.1002/bit.21295] [PMID: 17195988]
[118]
Gholipourmalekabadi M, Zhao S, Harrison BS, Mozafari M, Seifalian AM. Oxygen-generating biomaterials: A new, viable paradigm for tissue engineering? Trends Biotechnol 2016; 34(12): 1010-21.
[http://dx.doi.org/10.1016/j.tibtech.2016.05.012] [PMID: 27325423]
[119]
Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 2009; 15(3): 353-70.
[http://dx.doi.org/10.1089/ten.teb.2009.0085] [PMID: 19496677]
[120]
Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016; 106: 58-68.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.038] [PMID: 27552316]
[121]
Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 2015; 112(5): 1047-55.
[http://dx.doi.org/10.1002/bit.25501] [PMID: 25421556]
[122]
Kérourédan O, Bourget JM, Rémy M, et al. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J Mater Sci Mater Med 2019; 30(2): 28.
[http://dx.doi.org/10.1007/s10856-019-6230-1] [PMID: 30747358]
[123]
Millik SC, Dostie AM, Karis DG, et al. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothe-lium. Biofabrication 2019; 11(4): 045009.
[http://dx.doi.org/10.1088/1758-5090/ab2b4d] [PMID: 31220824]
[124]
Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018; 93: 45-111.
[http://dx.doi.org/10.1016/j.pmatsci.2017.08.003] [PMID: 31406390]
[125]
Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials (Basel) 2016; 9(10): 802.
[http://dx.doi.org/10.3390/ma9100802] [PMID: 28773924]
[126]
Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009; 30(31): 6221-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.056] [PMID: 19695697]
[127]
Wong L, Pegan JD, Gabela-Zuniga B, Khine M, McCloskey KE. Leaf-inspired microcontact printing vascular patterns. Biofabrication 2017; 9(2): 021001.
[http://dx.doi.org/10.1088/1758-5090/aa721d] [PMID: 28488588]
[128]
Poldervaart MT, Gremmels H, van Deventer K, et al. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release 2014; 184: 58-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.007] [PMID: 24727077]
[129]
Ueda A, Koga M, Ikeda M, Kudo S, Tanishita K. Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Physiol Heart Circ Physiol 2004; 287(3): H994-H1002.
[http://dx.doi.org/10.1152/ajpheart.00400.2003] [PMID: 15130887]
[130]
Bourland J. Skin tissue models. Elsevier 2018.
[131]
Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 2015; 21(1-2): 224-33.
[http://dx.doi.org/10.1089/ten.tea.2013.0561] [PMID: 25051339]
[132]
Abaci HE, Guo Z, Coffman A, et al. Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothe-lial cells. Adv Healthc Mater 2016; 5(14): 1800-7.
[http://dx.doi.org/10.1002/adhm.201500936] [PMID: 27333469]
[133]
Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012; 11(9): 768-74.
[http://dx.doi.org/10.1038/nmat3357] [PMID: 22751181]
[134]
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016; 113(12): 3179-84.
[http://dx.doi.org/10.1073/pnas.1521342113] [PMID: 26951646]
[135]
Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014; 6(2): 024105.
[http://dx.doi.org/10.1088/1758-5082/6/2/024105] [PMID: 24695367]
[136]
Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering con-structs. Lab Chip 2014; 14(13): 2202-11.
[http://dx.doi.org/10.1039/C4LC00030G] [PMID: 24860845]
[137]
Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater 2016; 32: 170-7.
[http://dx.doi.org/10.1016/j.actbio.2015.12.039] [PMID: 26747979]
[138]
Jafarkhani M, Salehi Z, Aidun A, Shokrgozar MA. Bioprinting in vascularization strategies. Iran Biomed J 2019; 23(1): 9-20.
[http://dx.doi.org/10.29252/ibj.23.1.9] [PMID: 30458600]
[139]
Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Adv Mater Technol 2020; 5(8): 1901044.
[http://dx.doi.org/10.1002/admt.201901044] [PMID: 33072855]
[140]
Kazemzadeh-Narbat M, Rouwkema J, Annabi N, et al. Engineering photocrosslinkable bicomponent hydrogel constructs for creating 3D vascularized bone. Adv Healthc Mater 2017; 6(10): 1601122.
[http://dx.doi.org/10.1002/adhm.201601122] [PMID: 28240417]
[141]
Hasan A, Paul A, Vrana NE, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 2014; 35(26): 7308-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.091] [PMID: 24906345]
[142]
Richard C, Neild A, Cadarso VJ. The emerging role of microfluidics in multi-material 3D bioprinting. Lab Chip 2020; 20(12): 2044-56.
[http://dx.doi.org/10.1039/C9LC01184F] [PMID: 32459222]
[143]
Nejad HR, Malekabadi ZG, Narbat MK, et al. Laterally confined microfluidic patterning of cells for engineering spatially defined vascular-ization. Small 2016; 12(37): 5132-9.
[http://dx.doi.org/10.1002/smll.201601391] [PMID: 27510763]
[144]
Leng L, McAllister A, Zhang B, Radisic M, Günther A. Mosaic hydrogels: One-step formation of multiscale soft materials. Adv Mater 2012; 24(27): 3650-8.
[http://dx.doi.org/10.1002/adma.201201442] [PMID: 22714644]
[145]
Gao G, Lee JH, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: A novel therapy for ischemic disease. Adv Funct Mater 2017; 27(33): 1700798.
[http://dx.doi.org/10.1002/adfm.201700798]
[146]
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D bioprinting of functional skin substitutes: From current achievements to future goals. Pharmaceuticals (Basel) 2021; 14(4): 362.
[http://dx.doi.org/10.3390/ph14040362] [PMID: 33919848]
[147]
Sun AM, O’shea GM, Goosen MF. Injectable microencapsulated islet cells as a bioartificial pancreas. In: Microencapsulation and Artificial Cells. Springer 1984; pp. 87-99.
[148]
Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med 1973; 138(4): 745-53.
[http://dx.doi.org/10.1084/jem.138.4.745] [PMID: 4744009]
[149]
Frueh FS, Menger MD, Lindenblatt N, et al. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol 2017; 37(5): 613-25.
[PMID: 27439727]
[150]
Perng CK, Kao CL, Yang YP, et al. Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration. J Biomed Mater Res A 2008; 84(3): 622-30.
[http://dx.doi.org/10.1002/jbm.a.31291] [PMID: 17635011]
[151]
Jabbari E. Challenges for natural hydrogels in tissue engineering. Gels 2019; 5(2): 30.
[http://dx.doi.org/10.3390/gels5020030] [PMID: 31146448]
[152]
Demetriou AA, Whiting JF, Feldman D, et al. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 1986; 233(4769): 1190-2.
[http://dx.doi.org/10.1126/science.2426782] [PMID: 2426782]
[153]
Aebischer P, Winn SR, Tresco PA, Jaeger CB, Greene LA. Transplantation of polymer encapsulated neurotransmitter secreting cells: Effect of the encapsulation technique. J Biomech Eng 1991; 113(2): 178-83.
[http://dx.doi.org/10.1115/1.2891231] [PMID: 1875690]
[154]
Liu H, et al. Organ regeneration: Integration application of cell encapsulation and 3D bioprinting. Virtual Phys Prototyp 2017; 12(4): 279-89.
[http://dx.doi.org/10.1080/17452759.2017.1338065]
[155]
Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 2010; 32(6): 733-42.
[http://dx.doi.org/10.1007/s10529-010-0221-0] [PMID: 20155383]
[156]
Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1(1): 71-81.
[http://dx.doi.org/10.1007/BF03403533] [PMID: 8790603]
[157]
Augustine R. Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater 2018; 7(2): 77-92.
[http://dx.doi.org/10.1007/s40204-018-0087-0] [PMID: 29754201]
[158]
Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15(5): 8407-27.
[http://dx.doi.org/10.3390/ijms15058407] [PMID: 24828202]
[159]
Fortunel NO, Vaigot P, Cadio E, Martin MT. Functional investigations of keratinocyte stem cells and progenitors at a single-cell level using multiparallel clonal microcultures. In: Epidermal Cells. Springer 2010; pp. 13-23.
[160]
Dabiri G, Heiner D, Falanga V. The emerging use of bone marrow-derived mesenchymal stem cells in the treatment of human chronic wounds. Expert Opin Emerg Drugs 2013; 18(4): 405-19.
[http://dx.doi.org/10.1517/14728214.2013.833184] [PMID: 24004161]
[161]
Li A, Pouliot N, Redvers R, Kaur P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 2004; 113(3): 390-400.
[http://dx.doi.org/10.1172/JCI200419140] [PMID: 14755336]
[162]
Jara CP, Catarino CM, Lei Y, et al. Demonstration of re-epithelialization in a bioprinted human skin equivalent wound model. Bioprinting 2020; 2020: e00102.
[163]
Jackson WM, Nesti LJ, Tuan RS. Concise review: Clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 2012; 1(1): 44-50.
[http://dx.doi.org/10.5966/sctm.2011-0024] [PMID: 23197639]
[164]
Ohyama M, Okano H. Promise of human induced pluripotent stem cells in skin regeneration and investigation. J Invest Dermatol 2014; 134(3): 605-9.
[http://dx.doi.org/10.1038/jid.2013.376] [PMID: 24132166]
[165]
Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26(11): 1276-84.
[http://dx.doi.org/10.1038/nbt.1503] [PMID: 18931654]
[166]
Smith AS, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35(1): 77-94.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.002] [PMID: 28007615]
[167]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49.
[http://dx.doi.org/10.1186/s12967-015-0417-0] [PMID: 25638205]
[168]
Clayton ZE, Tan RP, Miravet MM, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci Rep 2018; 38(4): BSR20180563.
[http://dx.doi.org/10.1042/BSR20180563] [PMID: 29976773]
[169]
Kobayashi H, Ebisawa K, Kambe M, et al. Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing. Nagoya J Med Sci 2018; 80(2): 141-53.
[PMID: 29915432]
[170]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10(1): 87.
[http://dx.doi.org/10.1186/s13287-019-1185-1] [PMID: 30867069]
[171]
Hu K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev 2014; 23(12): 1301-15.
[http://dx.doi.org/10.1089/scd.2013.0621] [PMID: 24625220]
[172]
Renault M-A, Roncalli J, Tongers J, et al. The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res 2009; 105(8): 818-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.206706] [PMID: 19729595]
[173]
Kim CH, Lee JH, Won JH, Cho MK. Mesenchymal stem cells improve wound healing in vivovia early activation of matrix metalloprotein-ase-9 and vascular endothelial growth factor. J Korean Med Sci 2011; 26(6): 726-33.
[http://dx.doi.org/10.3346/jkms.2011.26.6.726] [PMID: 21655056]
[174]
Kim JW, Lee JH, Lyoo YS, Jung DI, Park HM. The effects of topical mesenchymal stem cell transplantation in canine experimental cuta-neous wounds. Vet Dermatol 2013; 24(2): 242-e53.
[http://dx.doi.org/10.1111/vde.12011] [PMID: 23432413]
[175]
Satoh H, Kishi K, Tanaka T, et al. Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant 2004; 13(4): 405-12.
[http://dx.doi.org/10.3727/000000004783983765] [PMID: 15468682]
[176]
Chen S, Shi J, Zhang M, et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 2015; 5(1): 18104.
[http://dx.doi.org/10.1038/srep18104] [PMID: 26643550]
[177]
Das S, Pati F, Choi YJ, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 2015; 11: 233-46.
[http://dx.doi.org/10.1016/j.actbio.2014.09.023] [PMID: 25242654]
[178]
Gholizadeh-Ghaleh Aziz S, Fathi E, Rahmati-Yamchi M, Akbarzadeh A, Fardyazar Z, Pashaiasl M. An update clinical application of amni-otic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif Cells Nanomed Biotechnol 2017; 45(4): 765-74.
[http://dx.doi.org/10.1080/21691401.2016.1216857] [PMID: 27684534]
[179]
Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 2012; 1(11): 792-802.
[http://dx.doi.org/10.5966/sctm.2012-0088] [PMID: 23197691]
[180]
Wang X, Liu C. 3D bioprinting of adipose-derived stem cells for organ manufacturing. Adv Exp Med Biol 2018; 1078: 3-14.
[http://dx.doi.org/10.1007/978-981-13-0950-2_1]
[181]
Moon KM, Park YH, Lee JS, et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci 2012; 13(1): 1239-57.
[http://dx.doi.org/10.3390/ijms13011239] [PMID: 22312315]
[182]
Yuan F, Lei YH, Fu XB, Sheng ZY, Cai S, Sun TZ. Promotive effect of adipose-derived stem cells on the wound model of human epider-mal keratinocytes in vitro. Zhonghua Wai Ke Za Zhi 2008; 46(20): 1575-8.
[PMID: 19094656]
[183]
Baregamian N, Song J, Jeschke MG, Evers BM, Chung DH. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apopto-sis. J Surg Res 2006; 136(1): 31-7.
[http://dx.doi.org/10.1016/j.jss.2006.04.028] [PMID: 16999977]
[184]
Yu J, Wang MY, Tai HC, Cheng NC. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater 2018; 77: 191-200.
[http://dx.doi.org/10.1016/j.actbio.2018.07.022] [PMID: 30017923]
[185]
Zhou X, Ning K, Ling B, et al. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev 2019; 28(21): 1463-72.
[http://dx.doi.org/10.1089/scd.2019.0113] [PMID: 31530229]
[186]
Doornaert M, Depypere B, Creytens D, et al. Human decellularized dermal matrix seeded with adipose-derived stem cells enhances wound healing in a murine model: Experimental study. Ann Med Surg (Lond) 2019; 46: 4-11.
[http://dx.doi.org/10.1016/j.amsu.2019.07.033] [PMID: 31463049]
[187]
Chang Y-W, Wu YC, Huang SH, Wang HD, Kuo YR, Lee SS. Autologous and not allogeneic adipose-derived stem cells improve acute burn wound healing. PLoS One 2018; 13(5): e0197744.
[http://dx.doi.org/10.1371/journal.pone.0197744] [PMID: 29787581]
[188]
Battiston KG, Cheung JW, Jain D, Santerre JP. Biomaterials in co-culture systems: Towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014; 35(15): 4465-76.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.023] [PMID: 24602569]
[189]
Yustisia Y. The role of cell adhesion to biomaterial. Stomatognatic. Jur Kedokteran Gigi 2015; 8(2): 86-9.
[190]
Donnelly T, Decker D, Stemp M, Rheins L, Logemann P. A three-dimensional in vitro model for the study of ocular cytotoxicity and irri-tancy. Toxicol In Vitro 1994; 8(4): 631-3.
[http://dx.doi.org/10.1016/0887-2333(94)90032-9] [PMID: 20692976]
[191]
Li L, Zhang Y, Li Y, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int 2008; 21(12): 1181-9.
[http://dx.doi.org/10.1111/j.1432-2277.2008.00742.x] [PMID: 18783386]
[192]
Hafezi F, Shorter S, Tabriz AG, et al. Bioprinting and preliminary testing of highly reproducible novel bioink for potential skin regenera-tion. Pharmaceutics 2020; 12(6): 550.
[http://dx.doi.org/10.3390/pharmaceutics12060550] [PMID: 32545741]
[193]
Hill DS, Robinson ND, Caley MP, et al. A novel fully humanized 3D skin equivalent to model early melanoma invasion. Mol Cancer Ther 2015; 14(11): 2665-73.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0394] [PMID: 26330548]
[194]
Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN. An in vitro model of angiogenesis: Basic features. Angiogenesis 1999; 3(4): 335-44.
[http://dx.doi.org/10.1023/A:1026546219962] [PMID: 14517413]
[195]
Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Colloids Surf B Biointerfaces 2019; 181: 1026-34.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.069] [PMID: 31382330]
[196]
Seo BF, Kim KJ, Kim MK, Rhie JW. The effects of human keratinocyte coculture on human adipose-derived stem cells. Int Wound J 2016; 13(5): 630-5.
[http://dx.doi.org/10.1111/iwj.12335] [PMID: 25091634]
[197]
Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratino-cytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A 2020; 26(5-6): 227-38.
[http://dx.doi.org/10.1089/ten.tea.2019.0201] [PMID: 31672103]
[198]
Contard P, Bartel RL, Jacobs LII, et al. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differen-tiation and formation of a basal lamina-anchoring zone. J Invest Dermatol 1993; 100(1): 35-9.
[http://dx.doi.org/10.1111/1523-1747.ep12349952] [PMID: 8423391]
[199]
Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 2013; 15: 177-200.
[http://dx.doi.org/10.1146/annurev-bioeng-071812-152428] [PMID: 23642245]
[200]
Laschke MW, Vollmar B, Menger MD. Inosculation: Connecting the life-sustaining pipelines. Tissue Eng Part B Rev 2009; 15(4): 455-65.
[http://dx.doi.org/10.1089/ten.teb.2009.0252] [PMID: 19552605]
[201]
Hunsberger J, Harrysson O, Shirwaiker R, et al. Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med 2015; 4(2): 130-5.
[http://dx.doi.org/10.5966/sctm.2014-0254] [PMID: 25575525]
[202]
Smandri A, Nordin A, Hwei NM, Chin KY, Abd Aziz I, Fauzi MB. Natural 3D-printed bioinks for skin regeneration and wound healing: A systematic review. Polymers (Basel) 2020; 12(8): 1782.
[http://dx.doi.org/10.3390/polym12081782] [PMID: 32784960]
[203]
Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharmaceut Sci 2020; 15(5): 529-57.
[http://dx.doi.org/10.1016/j.ajps.2019.11.003] [PMID: 33193859]
[204]
Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomater 2020; 101: 14-25.
[http://dx.doi.org/10.1016/j.actbio.2019.08.045] [PMID: 31476384]
[205]
Adhikari J, Roy A, Das A, et al. Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks. Macromol Biosci 2021; 21(1): e2000179.
[http://dx.doi.org/10.1002/mabi.202000179] [PMID: 33017096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy