Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Hematopoietic Stem Cells Characteristics: From Isolation to Transplantation

Author(s): Ezzatollah Fathi, Ali Ehsani, Zohreh Sanaat, Somayeh Vandghanooni, Raheleh Farahzadi* and Soheila Montazersaheb*

Volume 17, Issue 5, 2022

Published on: 12 May, 2022

Page: [407 - 414] Pages: 8

DOI: 10.2174/1574888X17666220211160954

Price: $65

Abstract

Hematopoietic stem cells (HSCs) have self-renewal as well as pluripotency properties and are responsible for producing all types of blood cells. These cells are generated during embryonic development and transit through various anatomical niches (bone marrow microenvironment). Today, they are easily enriched from some sources, including peripheral blood, bone marrow, and umbilical cord blood (UCB). HSCs have been used for many years to treat a variety of cancers and blood disorders such as various types of leukemia, lymphoma, myelodysplastic, myeloproliferative syndromes, etc. Although almost 50 years have passed since the discovery of stem cells and numerous investigations on cell therapy and regenerative medicine have been made, further studies need to be conducted in this regard. This manuscript review the history, location, evolution, isolation, and therapeutic approaches of HSCs.

Keywords: Hematopoietic stem cells, isolation, transplantation, therapeutic approaches, regenerative medicine, pluripotency, homogeneity.

Graphical Abstract

[1]
Ng AP, Alexander WS. Haematopoietic stem cells: Past, present and future. Cell Death Discov 2017; 3: 17002.
[http://dx.doi.org/10.1038/cddiscovery.2017.2] [PMID: 28180000]
[2]
Montazersaheb S, Fathi E, Farahzadi R. Cytokines and signaling pathways involved in differentiation potential of hematopoietic stem cells towards natural killer cells. Tissue Cell 2021; 70101501
[http://dx.doi.org/10.1016/j.tice.2021.101501] [PMID: 33578272]
[3]
Park B, Yoo KH, Kim C. Hematopoietic stem cell expansion and generation: The ways to make a breakthrough. Blood Res 2015; 50(4): 194-203.
[http://dx.doi.org/10.5045/br.2015.50.4.194] [PMID: 26770947]
[4]
Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 1963; 62: 327-36.
[http://dx.doi.org/10.1002/jcp.1030620313] [PMID: 14086156]
[5]
Snippert HJ, Clevers H. Tracking adult stem cells. EMBO Rep 2011; 12(2): 113-22.
[http://dx.doi.org/10.1038/embor.2010.216] [PMID: 21252944]
[6]
Wilson A, Laurenti E, Trumpp A. Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 2009; 19(5): 461-8.
[http://dx.doi.org/10.1016/j.gde.2009.08.005] [PMID: 19811902]
[7]
Fathi E, Farahzadi R, Valipour B. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit+ hematopoietic stem cells. Int J Biol Macromol 2021; 177: 317-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.131] [PMID: 33621568]
[8]
Miller CL, Rebel VI, Lemieux ME, Helgason CD, Lansdorp PM, Eaves CJ. Studies of W mutant mice provide evidence for alternate mech-anisms capable of activating hematopoietic stem cells. Exp Hematol 1996; 24(2): 185-94.
[PMID: 8641340]
[9]
Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 2007; 318(5854): 1296-9.
[http://dx.doi.org/10.1126/science.1149726] [PMID: 18033883]
[10]
Bosbach B, Deshpande S, Rossi F, et al. Imatinib resistance and microcytic erythrocytosis in a KitV558Δ;T669I/+ gatekeeper-mutant mouse model of gastrointestinal stromal tumor. Proc Natl Acad Sci USA 2012; 109(34): E2276-83.
[http://dx.doi.org/10.1073/pnas.1115240109] [PMID: 22652566]
[11]
Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 2010; 207(6): 1173-82.
[http://dx.doi.org/10.1084/jem.20091318] [PMID: 20421392]
[12]
Mazzarello P. A unifying concept: The history of cell theory. Nat Cell Biol 1999; 1(1): E13-5.
[http://dx.doi.org/10.1038/8964] [PMID: 10559875]
[13]
Zech NH, Shkumatov A, Koestenbauer S. The magic behind stem cells. J Assist Reprod Genet 2007; 24(6): 208-14.
[http://dx.doi.org/10.1007/s10815-007-9123-z] [PMID: 17385026]
[14]
Boisset JC, Robin C. On the origin of hematopoietic stem cells: progress and controversy. Stem Cell Res (Amst) 2012; 8(1): 1-13.
[http://dx.doi.org/10.1016/j.scr.2011.07.002] [PMID: 22099016]
[15]
Maximow A. Untersuchungen über Blut und Bindegewebe. I. Die frühesten Entwicklungstadien der Blut?und Bindegewebezellen beim Säugetier Embryo, bis zum Aufgang der Blutbildung in der Leber. Arch f mikr Anat, Bd 1908; 73.
[16]
Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell 2007; 1(1): 35-8.
[http://dx.doi.org/10.1016/j.stem.2007.05.013] [PMID: 18371332]
[17]
Till JE, Mcculloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213-22.
[http://dx.doi.org/10.2307/3570892] [PMID: 13776896]
[18]
Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257(11): 491-6.
[http://dx.doi.org/10.1056/NEJM195709122571102] [PMID: 13464965]
[19]
Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M. Haematopoietic chimera in man after allogenic (homologous) bone-marrow transplantation. (control of the secondary syndrome. specific tolerance due to the chimerism). BMJ 1963; 2(5373): 1633-5.
[http://dx.doi.org/10.1136/bmj.2.5373.1633] [PMID: 14066188]
[20]
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54(3): 165-74.
[http://dx.doi.org/10.5045/br.2019.54.3.165] [PMID: 31730689]
[21]
Ferkowicz MJ, Yoder MC. Blood island formation: Longstanding observations and modern interpretations. Exp Hematol 2005; 33(9): 1041-7.
[http://dx.doi.org/10.1016/j.exphem.2005.06.006] [PMID: 16140152]
[22]
Xu MJ, Matsuoka S, Yang FC, et al. Evidence for the presence of murine primitive megakaryocytopoiesis in the early yolk sac. Blood 2001; 97(7): 2016-22.
[http://dx.doi.org/10.1182/blood.V97.7.2016] [PMID: 11264166]
[23]
Taoudi S, Morrison AM, Inoue H, Gribi R, Ure J, Medvinsky A. Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver. Development 2005; 132(18): 4179-91.
[http://dx.doi.org/10.1242/dev.01974] [PMID: 16107475]
[24]
Robin C, Ottersbach K, Boisset JC, Oziemlak A, Dzierzak E. CD41 is developmentally regulated and differentially expressed on mouse hematopoietic stem cells. Blood 2011; 117(19): 5088-91.
[http://dx.doi.org/10.1182/blood-2011-01-329516] [PMID: 21415271]
[25]
McKinney-Freeman SL, Naveiras O, Yates F, et al. Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood 2009; 114(2): 268-78.
[http://dx.doi.org/10.1182/blood-2008-12-193888] [PMID: 19420357]
[26]
Kim I, He S, Yilmaz OH, Kiel MJ, Morrison SJ. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family recep-tors. Blood 2006; 108(2): 737-44.
[http://dx.doi.org/10.1182/blood-2005-10-4135] [PMID: 16569764]
[27]
Garcia-Porrero JA, Manaia A, Jimeno J, Lasky LL, Dieterlen-Lièvre F, Godin IE. Antigenic profiles of endothelial and hemopoietic line-ages in murine intraembryonic hemogenic sites. Dev Comp Immunol 1998; 22(3): 303-19.
[http://dx.doi.org/10.1016/S0145-305X(98)00006-8] [PMID: 9700460]
[28]
Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86(6): 897-906.
[http://dx.doi.org/10.1016/S0092-8674(00)80165-8] [PMID: 8808625]
[29]
Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell 2005; 8(3): 365-75.
[http://dx.doi.org/10.1016/j.devcel.2004.12.016] [PMID: 15737932]
[30]
Christensen JL, Wright DE, Wagers AJ, Weissman IL. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2004; 2(3)E75
[http://dx.doi.org/10.1371/journal.pbio.0020075] [PMID: 15024423]
[31]
Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 2006; 116(10): 2808-16.
[http://dx.doi.org/10.1172/JCI28310] [PMID: 17016561]
[32]
Rossi L, Challen GA, Sirin O, Lin KK, Goodell MA. Hematopoietic stem cell characterization and isolation. Methods Mol Biol 2011; 750: 47-59.
[http://dx.doi.org/10.1007/978-1-61779-145-1_3] [PMID: 21618082]
[33]
Dykstra B, Kent D, Bowie M, et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2007; 1(2): 218-29.
[http://dx.doi.org/10.1016/j.stem.2007.05.015] [PMID: 18371352]
[34]
Domaratskaya E, Payushina O. Origin of hematopoietic stem cells in embryonic development. Biol Bull Rev 2019; 9(3): 191-202.
[http://dx.doi.org/10.1134/S2079086419030034]
[35]
Hoang T, Lambert JA, Martin R. SCL/TAL1 in hematopoiesis and cellular reprogramming. Curr Top Dev Biol 2016; 118: 163-204.
[http://dx.doi.org/10.1016/bs.ctdb.2016.01.004] [PMID: 27137657]
[36]
Stanulovic VS, Cauchy P, Assi SA, Hoogenkamp M. LMO2 is required for TAL1 DNA binding activity and initiation of definitive haema-topoiesis at the haemangioblast stage. Nucleic Acids Res 2017; 45(17): 9874-88.
[http://dx.doi.org/10.1093/nar/gkx573] [PMID: 28973433]
[37]
de Pater E, Kaimakis P, Vink CS, et al. Gata2 is required for HSC generation and survival. J Exp Med 2013; 210(13): 2843-50.
[http://dx.doi.org/10.1084/jem.20130751] [PMID: 24297996]
[38]
Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 2005; 132(5): 1117-26.
[http://dx.doi.org/10.1242/dev.01660] [PMID: 15689374]
[39]
Lim KC, Hosoya T, Brandt W, et al. Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Invest 2012; 122(10): 3705-17.
[http://dx.doi.org/10.1172/JCI61619] [PMID: 22996665]
[40]
van Riel B, Pakozdi T, Brouwer R, et al. A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol Cell Biol 2012; 32(19): 3814-22.
[http://dx.doi.org/10.1128/MCB.05938-11] [PMID: 22801375]
[41]
Cai X, Gaudet JJ, Mangan JK, et al. Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One 2011; 6(12)e28430
[http://dx.doi.org/10.1371/journal.pone.0028430] [PMID: 22145044]
[42]
Iacovino M, Hernandez C, Xu Z, Bajwa G, Prather M, Kyba M. A conserved role for Hox paralog group 4 in regulation of hematopoietic progenitors. Stem Cells Dev 2009; 18(5): 783-92.
[http://dx.doi.org/10.1089/scd.2008.0227] [PMID: 18808325]
[43]
Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9(11): 1428-32.
[http://dx.doi.org/10.1038/nm951] [PMID: 14578881]
[44]
Qian P, De Kumar B, He XC, et al. Retinoid-sensitive epigenetic regulation of the hoxb cluster maintains normal hematopoiesis and inhib-its leukemogenesis. Cell Stem Cell 2018; 22(5): 740-754.e7.
[http://dx.doi.org/10.1016/j.stem.2018.04.012] [PMID: 29727682]
[45]
Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002; 109(1): 29-37.
[http://dx.doi.org/10.1016/S0092-8674(02)00680-3] [PMID: 11955444]
[46]
Satoh Y, Matsumura I, Tanaka H, et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem 2004; 279(24): 24986-93.
[http://dx.doi.org/10.1074/jbc.M400407200] [PMID: 15067010]
[47]
Will E, Speidel D, Wang Z, et al. HOXB4 inhibits cell growth in a dose-dependent manner and sensitizes cells towards extrinsic cues. Cell Cycle 2006; 5(1): 14-22.
[http://dx.doi.org/10.4161/cc.5.1.2304] [PMID: 16357528]
[48]
Li Z, He XC, Li L. Hematopoietic stem cells: self-renewal and expansion. Curr Opin Hematol 2019; 26(4): 258-65.
[http://dx.doi.org/10.1097/MOH.0000000000000506] [PMID: 31170110]
[49]
Gholizadeh-Ghaleh Aziz S, Fathi E, Rahmati-Yamchi M, Akbarzadeh A, Fardyazar Z, Pashaiasl M. An update clinical application of amni-otic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif Cells Nanomed Biotechnol 2017; 45(4): 765-74.
[http://dx.doi.org/10.1080/21691401.2016.1216857] [PMID: 27684534]
[50]
Redi CA. Stem cells and aging-methods and protocols. Eur J Histochem 2013; •••: br14.
[http://dx.doi.org/10.4081/ejh.2013.br14]
[51]
Rector K, Liu Y, Van Zant G. Comprehensive hematopoietic stem cell isolation methods. Methods Mol Biol 2013; 976: 1-15.
[http://dx.doi.org/10.1007/978-1-62703-317-6_1] [PMID: 23400430]
[52]
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine extends the telomere length of the cardiac differentiated CD117+- expressing stem cells. Tissue Cell 2020; 67101429
[http://dx.doi.org/10.1016/j.tice.2020.101429] [PMID: 32861877]
[53]
Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241(4861): 58-62.
[http://dx.doi.org/10.1126/science.2898810] [PMID: 2898810]
[54]
Ogawa M, Matsuzaki Y, Nishikawa S, et al. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 1991; 174(1): 63-71.
[http://dx.doi.org/10.1084/jem.174.1.63] [PMID: 1711568]
[55]
Foudi A, Hochedlinger K, Van Buren D, et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 2009; 27(1): 84-90.
[http://dx.doi.org/10.1038/nbt.1517] [PMID: 19060879]
[56]
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797-806.
[http://dx.doi.org/10.1084/jem.183.4.1797] [PMID: 8666936]
[57]
Fathi E, Farahzadi R, Sheervalilou R, Sanaat Z, Vietor I. A general view of CD33+ leukemic stem cells and CAR-T cells as interesting tar-gets in acute myeloblatsic leukemia therapy. Blood Res 2020; 55(1): 10-6.
[http://dx.doi.org/10.5045/br.2020.55.1.10] [PMID: 32269970]
[58]
Busch K, Rodewald HR. Unperturbed vs. post-transplantation hematopoiesis: Both in vivo but different. Curr Opin Hematol 2016; 23(4): 295-303.
[http://dx.doi.org/10.1097/MOH.0000000000000250] [PMID: 27213498]
[59]
Ratajczak MZ, Adamiak M, Bujko K, et al. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal 2020; 16(2): 153-66.
[http://dx.doi.org/10.1007/s11302-020-09698-y] [PMID: 32415576]
[60]
Sun Z, Li X, Zheng X, Cao P, Yu B, Wang W. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation. J Int Med Res 2019; 47(11): 5426-40.
[http://dx.doi.org/10.1177/0300060519876138] [PMID: 31581874]
[61]
Hatzimichael E, Tuthill M. Hematopoietic stem cell transplantation. Stem Cells Cloning 2010; 3: 105-17.
[PMID: 24198516]
[62]
Anasetti C, Hansen JA. Effect of HLA incompatibility in marrow transplantation from unrelated and HLA-mismatched related donors. Transfus Sci 1994; 15(3): 221-30.
[http://dx.doi.org/10.1016/0955-3886(94)90134-1] [PMID: 10155543]
[63]
Braine HG, Sensenbrenner LL, Wright SK, Tutschka PJ, Saral R, Santos GW. Bone marrow transplantation with major ABO blood group incompatibility using erythrocyte depletion of marrow prior to infusion. Blood 1982; 60(2): 420-5.
[http://dx.doi.org/10.1182/blood.V60.2.420.420] [PMID: 7046847]
[64]
Fathi E, Farahzadi R, Vietor I, Javanmardi S. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF- β as clinical agents in cardiac regeneration. J Biosci 2020; 45(1): 1-11.
[http://dx.doi.org/10.1007/s12038-020-00063-0] [PMID: 32713855]
[65]
Wang JC, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mo-bilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89(11): 3919-24.
[http://dx.doi.org/10.1182/blood.V89.11.3919] [PMID: 9166828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy