Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Review Article

Metal-Organic Frameworks (MOFs): A Promising Photocatalytic Material

Author(s): Jianqiang Liu* and Abhinav Kumar*

Volume 2, Issue 2, 2022

Published on: 28 March, 2022

Article ID: e280122200643 Pages: 10

DOI: 10.2174/2666001602666220128112624

Price: $65

Abstract

Background and Methods: Metal-organic frameworks (MOFs) regarded as threedimensional analogues of coordination polymers (CPs) find utility in varied applications viz. sensing of ions and molecules, gas/small molecule absorption/separation, catalysis, gas storage, membranes and drug delivery system. In recent years, their applications as photocatalyst for the photodegradation of aromatic dyes have been explored. In addition, computational studies have been employed to complement the experiments, which provided new insight on MOFs/CPs to understand mechanistic pathways of photocatalysis.

Results and Discussion: This perspective presents the designing strategies and structures of photoactive MOFs and plausible mechanistic pathways using photocatalysed degradation of organic dyes, a lethal component present in wastewater discharge from industries.

Conclusion: The presentation study suggested that using appropriate rigid, semi-rigid and flexible organic ligands with appropriate antennae and suitable co-ligand on coordination to the main group, transition and inner transition metal centers could engender targeted MOFs that can display superior photocatalytic properties.

Keywords: Metal organic frameworks, coordination polymers, photocatalysis, dyes, computational studies, photocatalytic materials.

Graphical Abstract

[1]
Li, X.; Wang, B.; Cao, Y.; Zhao, S.; Wang, H.; Feng, X.; Zhou, J.; Ma, X. Water contaminant elimination based on metal–organic frameworks and perspective on their industrial applications. ACS Sustain. Chem. Eng., 2019, 7, 4548-4563.
[http://dx.doi.org/10.1021/acssuschemeng.8b05751]
[2]
Zeng, T.; Wang, L.; Feng, L.; Xu, H.; Cheng, Q.; Pan, Z. Two novel organic phosphorous-based MOFs: synthesis, characterization and photocatalytic properties. Dalton Trans., 2019, 48(2), 523-534.
[http://dx.doi.org/10.1039/C8DT04106G] [PMID: 30523351]
[3]
Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Meng, X.; Liu, H.; Ye, J. An amine-functionalized iron(III) metal–organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. (Weinh.), 2015, 2(3), 1500006.
[http://dx.doi.org/10.1002/advs.201500006] [PMID: 27980927]
[4]
Abdollahi, N.; Akbar Razavi, S.A.; Morsali, A.; Hu, M.L. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J. Hazard. Mater., 2020, 387, 121667.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121667] [PMID: 31791860]
[5]
Hu, M.L.; Joharian, M.; Razavi, S.A.A.; Morsali, A.; Wu, D.Z.; Azhdari Tehrani, A.; Wang, J.; Junk, P.C.; Guo, Z.F. Phenolic nitroaromatics detection by fluorinated metal-organic frameworks: Barrier elimination for selective sensing of specific group of nitroaromatics. J. Hazard. Mater., 2021, 406, 124501.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124501] [PMID: 33321315]
[6]
Suffet, I.H.; Malaiyandi, M. Organic Pollutants in Water; American Chemical SocietyWashington: DC, 1986, p. 214.
[7]
Shaheen, S.M.; Kwon, E.E.; Biswas, J.K.; Tack, F.M.G.; Ok, Y.S.; Rinklebe, J. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 2017, 180, 553-563.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.054] [PMID: 28432892]
[8]
Garvasis, J.; Prasad, A.R.; Shamsheera, K.O.; Jaseela, P.K.; Joseph, A. Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant. Mater. Chem. Phys., 2020, 251, 123040.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123040]
[9]
Mohan, S.V.; Babu, V.L.; Sarma, P.N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme Microb. Technol., 2007, 41, 506-515.
[http://dx.doi.org/10.1016/j.enzmictec.2007.04.007]
[10]
Wang, G-L.; Wang, J.; Zhou, L.; Zhou, M.; Wang, X.; Zhou, S-H.; Lu, L.; Trivedi, M.; Kumar, A. Structural diversity in four Zn(II)/Cd(II) coordination polymers tuned by flexible pentacarboxylate and N-donor coligands: Photocatalysts for enhanced degradation of dyes. Dyes Pigments, 2021, 195, 109695.
[http://dx.doi.org/10.1016/j.dyepig.2021.109695]
[11]
Wang, J.; Zhou, S.; Chen, C.; Lu, L.; Li, B.; Hu, W.; Kumar, A.; Muddassir, M. Two new uncommon 3D cobalt-based metal organic frameworks: Temperature induced syntheses and enhanced photocatalytic properties against aromatic dyes. Dyes and Pigm., 2021, 187, 109068.
[http://dx.doi.org/10.1016/j.dyepig.2020.109068]
[12]
Kung, M.C.; Ye, J.; Kung, H.H. 110th Anniversary: A perspective on catalytic oxidative processes for sustainable water remediation. Ind. Eng. Chem. Res., 2019, 58, 17325-17337.
[http://dx.doi.org/10.1021/acs.iecr.9b04581]
[13]
Xie, X.; Huang, X.; Lin, W.; Chen, Y.; Lang, X.; Wang, Y.; Gao, L.; Zhu, H.; Chen, J. Selective adsorption of cationic dyes for stable metal–organic framework ZJU-48. ACS Omega, 2020, 5(23), 13595-13600.
[http://dx.doi.org/10.1021/acsomega.0c00385] [PMID: 32566824]
[14]
Gupta, V.K.; Ali, I.; Saleh, T.A.; Nayak, A.; Agarwal, S. Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2012, 2, 6380-6388.
[http://dx.doi.org/10.1039/c2ra20340e]
[15]
Dutta, A.; Pan, Y.; Liu, J.Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord. Chem. Rev., 2021, 445, 214074.
[http://dx.doi.org/10.1016/j.ccr.2021.214074]
[16]
International Union of Pure and Applied Chemistry. Compendium of Chemical Terminology, Gold Book., 2012. Available from: https://goldbook.iupac.org/
[17]
Liu, R.; Sun, Z.; Song, X.; Zhang, Y.; Xu, L.; Xi, L. Toward non-precious nanocomposite photocatalyst: An efficient ternary photoanode TiO2 nanotube/Co9S8/polyoxometalate for photoelectrochemical water splitting. Appl. Catal. A, 2017, 544, 137-144.
[http://dx.doi.org/10.1016/j.apcata.2017.07.020]
[18]
Al-Meer, S.; Ghouri, Z.K.; Elsaid, K.; Easa, A.; Al-Qahtani, M.T.; Akhtar, M.S. Engineering of magnetically separable ZnFe2O4@TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water. J. Alloys Compd., 2017, 723, 477-483.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.211]
[19]
Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett., 2014, 5(12), 2101-2107.
[http://dx.doi.org/10.1021/jz500546b] [PMID: 26270499]
[20]
Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L.; Jiang, J.; Zhu, J.; Xiong, Y. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc., 2017, 139(12), 4486-4492.
[http://dx.doi.org/10.1021/jacs.7b00452] [PMID: 28276680]
[21]
Singh, A.; Singh, A.K.; Liu, J.Q.; Kumar, A. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): A catalyzed photo-degradation approach towards organic dyes. Catal. Sci. Technol., 2021, 11, 3946-3989.
[http://dx.doi.org/10.1039/D0CY02275F]
[22]
Wang, J.; Zhou, L.Y.; Rao, C.Y.; Wang, G.L.; Jiang, F.; Singh, A.; Kumar, A.; Liu, J.Q. Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye. Dyes and Pigm., 2021, 190, 109285.
[http://dx.doi.org/10.1016/j.dyepig.2021.109285]
[23]
Hu, M-L.; Safarifard, V.; Doustkhah, E.; Rostamnia, S.; Morsali, A.; Nouruzi, N.; Beheshti, S.; Akhbari, K. Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Micropor. Mespor. Mat., 2018, 256, 111-127.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.057]
[24]
Liu, K-G.; Rouhani, F.; Gao, X-M.; Abbasi-Azad, M.; Li, J-Z.; Hu, X-D.; Wang, W.; Hu, M-L.; Morsali, A. Bilateral photocatalytic mechanism of dye degradation by a designed ferrocene-functionalized cluster under natural sunlight. Catal. Sci. Technol., 2020, 10, 757-767.
[http://dx.doi.org/10.1039/C9CY02003A]
[25]
Liu, J.; Yang, G.P.; Jin, J.; Wu, D.; Ma, L.F.; Wang, Y.Y. A first new porous d-p HMOF material with multiple active sites for excellent CO2 capture and catalysis. Chem. Commun. (Camb.), 2020, 56(16), 2395-2398.
[http://dx.doi.org/10.1039/C9CC09664G] [PMID: 32009135]
[26]
Li, Z-Q.; Qiu, L-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z-Y.; Jiang, X. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett., 2009, 63, 78-80.
[http://dx.doi.org/10.1016/j.matlet.2008.09.010]
[27]
Subudhi, S.; Tripathy, S.P.; Parida, K.M. Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. Catal. Sci. Technol., 2021, 11, 392-415.
[http://dx.doi.org/10.1039/D0CY02034F]
[28]
Subudhi, S.; Rath, D.; Parida, K.M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol., 2018, 8, 679-696.
[http://dx.doi.org/10.1039/C7CY02094E]
[29]
Bag, P.P.; Sahoo, P. Designing metal-organic frameworks based photocatalyst for specific photocatalytic reactions: A crystal engineering approach In: Green photocatalysts for energy and environmental process, environmental chemistry for a sustainable world; Rajendran, S.; Naushad, M.; Ponce, L.C.; Lichtfouse, E., Eds.; Springer Nature: Switzerland AG, 2020; 36, pp. 141-186.
[http://dx.doi.org/10.1007/978-3-030-17638-9_6]
[30]
Hendon, C.H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D’arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc., 2013, 135(30), 10942-10945.
[http://dx.doi.org/10.1021/ja405350u] [PMID: 23841821]
[31]
Wang, J.; Rao, C.Y.; Lu, L.; Zhang, S.L.; Muddassir, M.; Liu, J.Q. Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm, 2021, 23, 741-747.
[http://dx.doi.org/10.1039/D0CE01632B]
[32]
Hu, W.; Liu, D.; Singh, A.; Gosavi, S.W.; Chahuan, R.; Sakiyama, H.; Muddassir, M. A new 3D supramolecular 2-fold interpenetrating Ag(I)-based coordination polymer as photocatalyst for aromatic dye degradation. J. Mol. Struct., 2022, 1248, 131510.
[http://dx.doi.org/10.1016/j.molstruc.2021.131510]
[33]
Du, L.; Lu, L.; Shi, C. Wang, H-Y.; Wang, J.; Singh, J.; Kumar, A. New Cd(ii) coordination polymers bearing Y-shaped tricarboxylate ligands as photocatalysts for dye degradation. CrystEngComm, 2021, 23, 6400-6408.
[http://dx.doi.org/10.1039/D1CE00640A]
[34]
Liu, J.; Liu, G.; Gu, C.; Liu, W.; Xu, J.; Li, B.; Wang, W. Rational synthesis of a novel 3,3,5-c polyhedral metal–organic framework with high thermal stability and hydrogen storage capability. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 11630-11634.
[http://dx.doi.org/10.1039/C6TA03675A]
[35]
Zhong, Y.; Li, X.; Chen, J.; Wang, X.; Wei, L.; Fang, L.; Kumar, A.; Zhuang, S.; Liu, J. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Trans., 2020, 49(32), 11045-11058.
[http://dx.doi.org/10.1039/D0DT01882A] [PMID: 32756684]
[36]
Xiao, J-D.; Jiang, H-L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res., 2019, 52(2), 356-366.
[http://dx.doi.org/10.1021/acs.accounts.8b00521] [PMID: 30571078]
[37]
Kinik, F.P.; Ortega-Guerrero, A.; Ongari, D.; Ireland, C.P.; Smit, B. Pyrene-based metal organic frameworks: From synthesis to applications. Chem. Soc. Rev., 2021, 50(5), 3143-3177.
[http://dx.doi.org/10.1039/D0CS00424C] [PMID: 33475661]
[38]
Deria, P.; Mondloch, J.E.; Karagiaridi, O.; Bury, W.; Hupp, J.T.; Farha, O.K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev., 2014, 43(16), 5896-5912.
[http://dx.doi.org/10.1039/C4CS00067F] [PMID: 24723093]
[39]
Yin, H-Q.; Wang, X-Y.; Yin, X-B. Rotation restricted emission and antenna effect in single metal-organic frameworks. J. Am. Chem. Soc., 2019, 141(38), 15166-15173.
[http://dx.doi.org/10.1021/jacs.9b06755] [PMID: 31492054]
[40]
Zhao, Y.; Li, D. Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8, 12739-12754.
[http://dx.doi.org/10.1039/D0TC03430D]
[41]
Akimov, A.V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O.V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc., 2015, 137(35), 11517-11525.
[http://dx.doi.org/10.1021/jacs.5b07454] [PMID: 26287500]
[42]
Abrahamsson, M.; Johansson, P.G.; Ardo, S.; Kopecky, A.; Galoppini, E.; Meyer, G.J. Decreased interfacial charge recombination rate constants with N3-type sensitizers. J. Phys. Chem. Lett., 2010, 1, 1725-1728.
[http://dx.doi.org/10.1021/jz100546y]
[43]
Karnahl, M.; Kuhnt, C.; Ma, F.; Yartsev, A.; Schmitt, M.; Dietzek, B.; Rau, S.; Popp, J. Tuning of photocatalytic hydrogen production and photoinduced intramolecular electron transfer rates by regioselective bridging ligand substitution. ChemPhysChem, 2011, 12(11), 2101-2109.
[http://dx.doi.org/10.1002/cphc.201100245] [PMID: 21681884]
[44]
Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev., 2017, 46(10), 2799-2823.
[http://dx.doi.org/10.1039/C6CS00727A] [PMID: 28368055]
[45]
Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts, 2019, 9, 52.
[http://dx.doi.org/10.3390/catal9010052]
[46]
Klinowski, J.; Paz, F.A.A.; Silva, P.; Rocha, J. Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans., 2011, 40(2), 321-330.
[http://dx.doi.org/10.1039/C0DT00708K] [PMID: 20963251]
[47]
Son, W-J.; Kim, J.; Kim, J.; Ahn, W-S. Sonochemical synthesis of MOF-5. Chem. Commun. (Camb.), 2008, (47), 6336-6338.
[http://dx.doi.org/10.1039/b814740j] [PMID: 19048147]
[48]
Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem., 2019, 52, 106-119.
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.004] [PMID: 30477790]
[49]
Joaristi, A.M.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des., 2012, 12, 3489-3498.
[http://dx.doi.org/10.1021/cg300552w]
[50]
AlKutubi, H.; Gascon, J.; Sudhölter, E.J.R.; Rassaei, L. Electrosynthesis of metal–organic frameworks: Challenges and opportunities. ChemElectroChem, 2015, 2, 462-474.
[http://dx.doi.org/10.1002/celc.201402429]
[51]
Klimakow, M.; Klobes, P.; Thünemann, A.F.; Rademann, K.; Emmerling, F. Mechanochemical synthesis of metal−organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater., 2010, 22, 5216-5221.
[http://dx.doi.org/10.1021/cm1012119]
[52]
Stolar, T.; Užarević, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm, 2020, 22, 4511-4525.
[http://dx.doi.org/10.1039/D0CE00091D]
[53]
Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz., 2020, 7, 1457-1473.
[http://dx.doi.org/10.1039/D0MH00081G]
[54]
Chen, D.; Zhao, J.; Zhang, P.; Dai, S. Mechanochemical synthesis of metal–organic frameworks. Polyhedron, 2019, 162, 59-64.
[http://dx.doi.org/10.1016/j.poly.2019.01.024]
[55]
Bian, Y.; Xiong, N.; Zhu, G. Technology for the remediation of water pollution: A review on the fabrication of metal organic frameworks. Processes (Basel), 2018, 6, 122.
[http://dx.doi.org/10.3390/pr6080122]
[56]
Parnham, E.R.; Morris, R.E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res., 2007, 40(10), 1005-1013.
[http://dx.doi.org/10.1021/ar700025k] [PMID: 17580979]
[57]
Garzón-Tovar, L.; Cano-Sarabia, M.; Carné-Sánchez, A.; Carbonell, C.; Imaz, I.; Maspoch, D. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React. Chem. Eng., 2016, 1, 533-539.
[http://dx.doi.org/10.1039/C6RE00065G]
[58]
Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev., 2017, 46(11), 3453-3480.
[http://dx.doi.org/10.1039/C7CS00109F] [PMID: 28530737]
[59]
Lin, C.L.; Chen, Y.F.; Qiu, L.J.; Zhu, B.L.; Wang, X.; Luo, S.P.; Shi, W.Y.; Yang, T.H. Synthesis, structure and photocatalytic properties of coordination polymers based on pyrazole carboxylic acid ligands. CrystEngComm, 2020, 22, 6847-6855.
[http://dx.doi.org/10.1039/D0CE01054E]
[60]
Liu, X-W.; Sun, T-J.; Hu, J-L.; Wang, S-D. Composites of metal–organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 3584-3616.
[http://dx.doi.org/10.1039/C5TA09924B]
[61]
Wu, Y.P.; Tian, J.W.; Liu, S.; Li, B.; Zhao, J.; Ma, L.F.; Li, D.S.; Lan, Y.Q.; Bu, X. Bi-microporous metal–organic frameworks with cubane [M4(OH)4] (M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. Engl., 2019, 58(35), 12185-12189.
[http://dx.doi.org/10.1002/anie.201907136] [PMID: 31286629]
[62]
Cheng, Y.J.; Wang, R.; Wang, S.; Xi, X.J.; Ma, L.F.; Zang, S.Q. Encapsulating [Mo3S13]2- clusters in cationic covalent organic frameworks: Enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun. (Camb.), 2018, 54(96), 13563-13566.
[http://dx.doi.org/10.1039/C8CC07784C] [PMID: 30444238]
[63]
Zhai, Z.M.; Yang, X.G.; Yang, Z.T.; Lu, X.M.; Ma, L.F. Trinuclear Ni(ii) oriented highly dense packing and π -conjugation degree of metal–organic frameworks for efficient water oxidation. CrystEngComm, 2019, 21, 5862-5866.
[http://dx.doi.org/10.1039/C9CE00944B]
[64]
Liu, Y.; Liu, Z.F.; Huang, D.L.; Cheng, M.; Zeng, G.M.; Lai, C.; Zhang, C.; Zhou, C.Y.; Wang, W.J.; Jiang, D.N. Wang, Han, Shao, B. B., Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev., 2019, 388, 63-78.
[http://dx.doi.org/10.1016/j.ccr.2019.02.031]
[65]
Wu, Z.B.; Yuan, X.Z.; Zhang, J.; Wang, H.M.; Jiang, L.B.; Zeng, G.M. Photocatalytic decontamination of wastewater containing organic dyes by metal–organic frameworks and their derivatives. ChemCatChem, 2017, 9, 41-64.
[http://dx.doi.org/10.1002/cctc.201600808]
[66]
Pan, Y.; Ding, Q.; Xu, H.; Shi, C.; Singh, A.; Kumar, A.; Liu, J. A new Zn(II)-based 3D metal-organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.
[http://dx.doi.org/10.1039/C9CE00759H]
[67]
Ding, Q.; Pan, Y.; Luo, Y.; Zhou, M.; Guan, Y.; Li, B.; Trivedi, M.; Kumar, A.; Liu, J. Photocatalytic and ferric ion sensing properties of a new three-dimensional metal–organic framework based on cuboctahedral secondary building units. ACS Omega, 2019, 4(6), 10775-10783.
[http://dx.doi.org/10.1021/acsomega.9b01008] [PMID: 31460175]
[68]
Ma, A.; Wu, J.; Han, Y.; Chen, F.; Li, B.; Cai, S.; Huang, H.; Singh, A.; Kumar, A.; Liu, J. Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(ii) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Trans., 2018, 47(29), 9627-9633.
[http://dx.doi.org/10.1039/C8DT01923A] [PMID: 29969125]
[69]
Wang, Q.; Gao, Q.Y.; Al-Enizi, A.M.; Nafady, A.; Ma, S.Q. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front., 2020, 7, 300-339.
[http://dx.doi.org/10.1039/C9QI01120J]
[70]
Wang, C.C.; Li, J.R.; Lv, X.L.; Zhang, Y.Q.; Guo, G.S. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 2014, 7, 2831-2867.
[http://dx.doi.org/10.1039/C4EE01299B]
[71]
Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal-organic frameworks for photocatalysis. Phys. Chem. Chem. Phys., 2016, 18(11), 7563-7572.
[http://dx.doi.org/10.1039/C5CP05885F] [PMID: 26535907]
[72]
Shayegan, H.; Ali, G.A.M.; Safarifard, V. Recent progress in the removal of heavy metal ions from water using metal-organic frameworks. Chem. Select, 2020, 5(1), 124-146.
[http://dx.doi.org/10.1002/slct.201904107]
[73]
Chakraborty, P.; Nag, A.; Chakraborty, A.; Pradeep, T. Approaching materials with atomic precision using supramolecular cluster assemblies. Acc. Chem. Res., 2019, 52(1), 2-11.
[http://dx.doi.org/10.1021/acs.accounts.8b00369] [PMID: 30507167]
[74]
Shayegan, H.; Ali, G.A.M.; Safarifard, V. Amide-functionalized metal–organic framework for high efficiency and fast removal of pb(ii) from aqueous solution. J. Inorg. Orgmetal. Poly. Mater, 2020, 30, 3170-3178.
[http://dx.doi.org/10.1007/s10904-020-01474-0]
[75]
Younis, S.A.; Kwon, E.E.; Qasim, M.; Kim, K.H.; Kim, T.; Kukkar, D.; Dou, X.M.; Ali, I. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Pror. Energy Combust. Sci., 2020, 81, 100870.
[http://dx.doi.org/10.1016/j.pecs.2020.100870]
[76]
Rozveh, Z.S.; Kazemi, S.; Karimi, M.; Ali, G.A.M.; Safarifard, V. Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron, 2020, 183, 114514-114514.
[http://dx.doi.org/10.1016/j.poly.2020.114514]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy