Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Influence of Chaperones on Amyloid Formation of Аβ Peptide

Author(s): O.V. Galzitskaya*, O.M. Selivanova, U.F. Dzhus, V.V. Marchenkov, M. Yu. Suvorina and A.K. Surin

Volume 23, Issue 1, 2022

Published on: 27 January, 2022

Page: [44 - 51] Pages: 8

DOI: 10.2174/1389203723666220127152545

Price: $65

Abstract

Background: An extensive study of the folding and stability of proteins and their complexes has revealed a number of problems and questions that need to be answered. One of them is the effect of chaperones on the process of fibrillation of various proteins and peptides.

Methods: We studied the effect of molecular chaperones, such as GroEL and α-crystallin, on the fibrillogenesis of the Aβ(1-42) peptide using electron microscopy and surface plasmon resonance.

Results: Recombinant GroEL and Aβ(1-42) were isolated and purified. It was shown that the assembly of GroEL occurs without the addition of magnesium and potassium ions, as is commonly believed. According to the electron microscopy results, GroEL insignificantly affects the fibrillogenesis of the Aβ(1-42) peptide, while α-crystallin prevents the elongation of the Aβ(1-42) peptide fibrils. We have demonstrated that GroEL interacts nonspecifically with Aβ(1-42), while α-crystallin does not interact with Aβ(1-42) at all using surface plasmon resonance.

Conclusion: The data obtained will help us understand the process of amyloid formation and the effect of various components on it.

Keywords: Aggregation, fibrils, chaperones, electron microscopy, mass spectrometry, nucleus.

Graphical Abstract

[1]
Prusiner, S.B.; Scott, M.R.; DeArmond, S.J.; Cohen, F.E. Prion protein biology. Cell, 1998, 93(3), 337-348.
[http://dx.doi.org/10.1016/S0092-8674(00)81163-0] [PMID: 9590169]
[2]
Aguzzi, A.; Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron, 2009, 64(6), 783-790.
[http://dx.doi.org/10.1016/j.neuron.2009.12.016] [PMID: 20064386]
[3]
Surin, A.K.; Grigorashvili, E.I.; Suvorina, M.Y.; Selivanova, O.M.; Galzitskaya, O.V. Determination of regions involved in amyloid fibril formation for Aβ(1-40) peptide. Biochemistry (Mosc.), 2016, 81(7), 762-769.
[http://dx.doi.org/10.1134/S0006297916070130] [PMID: 27449623]
[4]
Selivanova, O.M.; Surin, A.K.; Marchenkov, V.V.; Dzhus, U.F.; Grigorashvili, E.I.; Suvorina, M.Y.; Glyakina, A.V.; Dovidchenko, N.V.; Galzitskaya, O.V. The mechanism underlying amyloid polymorphism is opened for Alzheimer’s Disease amyloid-β peptide. J. Alzheimers Dis., 2016, 54(2), 821-830.
[http://dx.doi.org/10.3233/JAD-160405] [PMID: 27567850]
[5]
Galzitskaya, O.V. Oligomers are promising targets for drug development in the treatment of proteinopathies. Front. Mol. Neurosci., 2020, 12, 319.
[http://dx.doi.org/10.3389/fnmol.2019.00319] [PMID: 32076398]
[6]
Cataldi, R.; Chia, S.; Pisani, K.; Ruggeri, F.S.; Xu, C.K.; Šneideris, T.; Perni, M.; Sarwat, S.; Joshi, P.; Kumita, J.R.; Linse, S.; Habchi, J.; Knowles, T.P.J.; Mannini, B.; Dobson, C.M.; Vendruscolo, M. A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Commun. Biol., 2021, 4(1), 19.
[http://dx.doi.org/10.1038/s42003-020-01490-3] [PMID: 33398040]
[7]
Heller, G.T.; Aprile, F.A.; Michaels, T.C.T.; Limbocker, R.; Perni, M.; Ruggeri, F.S.; Mannini, B.; Löhr, T.; Bonomi, M.; Camilloni, C.; De Simone, A.; Felli, I.C.; Pierattelli, R.; Knowles, T.P.J.; Dobson, C.M.; Vendruscolo, M. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv., 2020, 6(45)eabb5924
[http://dx.doi.org/10.1126/sciadv.abb5924] [PMID: 33148639]
[8]
Nasica-Labouze, J.; Nguyen, P.H.; Sterpone, F.; Berthoumieu, O.; Buchete, N-V.; Coté, S.; De Simone, A.; Doig, A.J.; Faller, P.; Garcia, A.; Laio, A.; Li, M.S.; Melchionna, S.; Mousseau, N.; Mu, Y.; Paravastu, A.; Pasquali, S.; Rosenman, D.J.; Strodel, B.; Tarus, B.; Viles, J.H.; Zhang, T.; Wang, C.; Derreumaux, P. Amyloid β protein and Alzheimer’s Disease: When computer simulations complement experimental studies. Chem. Rev., 2015, 115(9), 3518-3563.
[http://dx.doi.org/10.1021/cr500638n] [PMID: 25789869]
[9]
Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.E.; Dokholyan, N.V.; De Simone, A.; Ma, B.; Nussinov, R.; Najafi, S.; Ngo, S.T.; Loquet, A.; Chiricotto, M.; Ganguly, P.; McCarty, J.; Li, M.S.; Hall, C.; Wang, Y.; Miller, Y.; Melchionna, S.; Habenstein, B.; Timr, S.; Chen, J.; Hnath, B.; Strodel, B.; Kayed, R.; Lesné, S.; Wei, G.; Sterpone, F.; Doig, A.J.; Derreumaux, P. Amyloid Oligomers: A joint experimental/computational perspective on Alzheimer’s Disease, parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev., 2021, 121(4), 2545-2647.
[http://dx.doi.org/10.1021/acs.chemrev.0c01122] [PMID: 33543942]
[10]
Maltsev, A.V.; Bystryak, S.; Galzitskaya, O.V. The role of β-amyloid peptide in neurodegenerative diseases. Ageing Res. Rev., 2011, 10(4), 440-452.
[http://dx.doi.org/10.1016/j.arr.2011.03.002] [PMID: 21406255]
[11]
Dovidchenko, N.V.; Glyakina, A.V.; Selivanova, O.M.; Grigorashvili, E.I.; Suvorina, M.Y.; Dzhus, U.F.; Mikhailina, A.O.; Shiliaev, N.G.; Marchenkov, V.V.; Surin, A.K.; Galzitskaya, O.V. One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42. J. Struct. Biol., 2016, 194(3), 404-414.
[http://dx.doi.org/10.1016/j.jsb.2016.03.020] [PMID: 27016282]
[12]
Dovidchenko, N.V.; Finkelstein, A.V.; Galzitskaya, O.V. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation. J. Phys. Chem. B, 2014, 118(5), 1189-1197.
[http://dx.doi.org/10.1021/jp4083294] [PMID: 24404849]
[13]
Galzitskaya, O.V.; Selivanova, O.M. Rosetta stone for amyloid fibrils: The key role of ring-like oligomers in amyloidogenesis. J. Alzheimers Dis., 2017, 59(3), 785-795.
[http://dx.doi.org/10.3233/JAD-170230] [PMID: 28671122]
[14]
Wälti, M.A.; Steiner, J.; Meng, F.; Chung, H.S.; Louis, J.M.; Ghirlando, R.; Tugarinov, V.; Nath, A.; Clore, G.M. Probing the mechanism of inhibition of amyloid-β(1-42)-induced neurotoxicity by the chaperonin GroEL. Proc. Natl. Acad. Sci. USA, 2018, 115(51), E11924-E11932.
[http://dx.doi.org/10.1073/pnas.1817477115] [PMID: 30509980]
[15]
Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet., 1988, 22, 631-677.
[http://dx.doi.org/10.1146/annurev.ge.22.120188.003215] [PMID: 2853609]
[16]
Horwich, A.L. Protein folding in the cell: an inside story. Nat. Med., 2011, 17(10), 1211-1216.
[http://dx.doi.org/10.1038/nm.2468] [PMID: 21989012]
[17]
Marchenkov, V.V.; Sokolovskiĭ, I.V.; Kotova, N.V.; Galzitskaya, O.V.; Bochkareva, E.S.; Girshovich, A.S.; Semisotnov, G.V. The interaction of the GroEL chaperone with early kinetic intermediates of renaturing proteins inhibits the formation of their native structure. Biofizika, 2004, 49(6), 987-994.
[PMID: 15612537]
[18]
Yagi-Utsumi, M.; Kunihara, T.; Nakamura, T.; Uekusa, Y.; Makabe, K.; Kuwajima, K.; Kato, K. NMR characterization of the interaction of GroEL with amyloid β as a model ligand. FEBS Lett., 2013, 587(11), 1605-1609.
[http://dx.doi.org/10.1016/j.febslet.2013.04.007] [PMID: 23603391]
[19]
Fukui, N.; Araki, K.; Hongo, K.; Mizobata, T.; Kawata, Y. Modulating the effects of the bacterial chaperonin groel on fibrillogenic polypeptides through modification of domain hinge architecture. J. Biol. Chem., 2016, 291(48), 25217-25226.
[http://dx.doi.org/10.1074/jbc.M116.751925] [PMID: 27742838]
[20]
Haslbeck, M.; Peschek, J.; Buchner, J.; Weinkauf, S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim. Biophys. Acta, 2016, 1860(1 Pt B), 149-166.
[http://dx.doi.org/10.1016/j.bbagen.2015.06.008] [PMID: 26116912]
[21]
Shinohara, H.; Inaguma, Y.; Goto, S.; Inagaki, T.; Kato, K. Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J. Neurol. Sci., 1993, 119(2), 203-208.
[http://dx.doi.org/10.1016/0022-510X(93)90135-L] [PMID: 8277336]
[22]
Shammas, S.L.; Waudby, C.A.; Wang, S.; Buell, A.K.; Knowles, T.P.J.; Ecroyd, H.; Welland, M.E.; Carver, J.A.; Dobson, C.M.; Meehan, S. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys. J., 2011, 101(7), 1681-1689.
[http://dx.doi.org/10.1016/j.bpj.2011.07.056] [PMID: 21961594]
[23]
Dehle, F.C.; Ecroyd, H.; Musgrave, I.F.; Carver, J.A. αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress Chaperones, 2010, 15(6), 1013-1026.
[http://dx.doi.org/10.1007/s12192-010-0212-z] [PMID: 20632140]
[24]
Lissin, N.M. Venyaminov SYu; Girshovich, A.S. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature, 1990, 348(6299), 339-342.
[http://dx.doi.org/10.1038/348339a0] [PMID: 1979147]
[25]
Ryabova, N.; Marchenkov, V.; Kotova, N.; Semisotnov, G. Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomolecules, 2014, 4(2), 458-473.
[http://dx.doi.org/10.3390/biom4020458] [PMID: 24970225]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy