Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Chemometric Study of the Relative Aggregation Propensity of Position 19 Mutants of Aβ(1-42)

Author(s): Nathaniel J. Zbacnik, Mark Cornell Manning* and Charles S. Henry

Volume 23, Issue 1, 2022

Published on: 15 February, 2022

Page: [52 - 60] Pages: 9

DOI: 10.2174/1389203723666220128105334

Price: $65

Abstract

Background: The importance of aromaticity vs. hydrophobicity of the central hydrophobic core (CHC, residues 17-20) in governing fibril formation in Aβ(1-42) has been the focus of an ongoing debate in the literature.

Introduction: Mutations in the CHC (especially at Phe19 and Phe20) have been used to examine the relative impact of hydrophobicity and aromaticity on the degree of aggregation of Aβ(1-42). However, the results have not been conclusive.

Methods: Partial least squares (PLS) modeling of aggregation rates, using reduced properties of a series of position 19 mutants, was employed to identify the physicochemical properties that had the greatest impact on the extent of aggregation.

Results: The PLS models indicate that hydrophobicity at position 19 of Aβ(1-42) appears to be the primary and dominant factor in controlling Aβ(1-42) aggregation, with aromaticity having little effect.

Conclusion: This study illustrates the value of using reduced properties of amino acids in conjunction with PLS modeling to investigate mutational effects in peptides and proteins, as the reduced properties can capture in a quantitative manner the different physicochemical properties of the amino acid side chains. In this particular study, hydrophobicity at position 19 was determined to be the dominant property controlling aggregation, while size, charge, and aromaticity had little impact.

Keywords: Chemometric study, aggregation propensity, Aβ(1-42), mutations, Partial Least Squares (PLS), hydrophobicity.

« Previous
Graphical Abstract

[1]
Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M.Y. Is it possible to predict amyloidogenic regions from sequence alone? J. Bioinform. Comput. Biol., 2006, 4(2), 373-388.
[http://dx.doi.org/10.1142/S0219720006002004] [PMID: 16819789]
[2]
Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M.Y. Prediction of amyloidogenic and disordered regions in protein chains. PLOS Comput. Biol., 2006, 2(12)e177
[http://dx.doi.org/10.1371/journal.pcbi.0020177] [PMID: 17196033]
[3]
Bemporad, F.; Calloni, G.; Campioni, S.; Plakoutsi, G.; Taddei, N.; Chiti, F. Sequence and structural determinants of amyloid fibril formation. Acc. Chem. Res., 2006, 39(9), 620-627.
[http://dx.doi.org/10.1021/ar050067x] [PMID: 16981678]
[4]
Pawar, A.P.; Dubay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol., 2005, 350(2), 379-392.
[http://dx.doi.org/10.1016/j.jmb.2005.04.016] [PMID: 15925383]
[5]
Caflisch, A. Computational models for the prediction of polypeptide aggregation propensity. Curr. Opin. Chem. Biol., 2006, 10(5), 437-444.
[http://dx.doi.org/10.1016/j.cbpa.2006.07.009] [PMID: 16880001]
[6]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[7]
Belli, M.; Ramazzotti, M.; Chiti, F. Prediction of amyloid aggregation in vivo. EMBO Rep., 2011, 12(7), 657-663.
[http://dx.doi.org/10.1038/embor.2011.116] [PMID: 21681200]
[8]
Yang, W.; Tan, P.; Fu, X.; Hong, L. Prediction of amyloid aggregation rates by machine learning and feature selection. J. Chem. Phys., 2019, 151(8)084106
[http://dx.doi.org/10.1063/1.5113848] [PMID: 31470712]
[9]
Huang, L-T.; Saraboji, K.; Ho, S-Y.; Hwang, S-F.; Ponnuswamy, M.N.; Gromiha, M.M. Prediction of protein mutant stability using classification and regression tool. Biophys. Chem., 2007, 125(2-3), 462-470.
[http://dx.doi.org/10.1016/j.bpc.2006.10.009] [PMID: 17113702]
[10]
Caballero, J.; Fernández, L.; Abreu, J.I.; Fernández, M. Amino acid sequence autocorrelation vectors and ensembles of bayesian-regularized genetic neural networks for prediction of conformational stability of human lysozyme mutants. J. Chem. Inf. Model., 2006, 46(3), 1255-1268.
[http://dx.doi.org/10.1021/ci050507z] [PMID: 16711745]
[11]
Kawashima, S.; Kanehisa, M. AAindex: Amino acid index database. Nucleic Acids Res., 2000, 28(1), 374-374.
[http://dx.doi.org/10.1093/nar/28.1.374] [PMID: 10592278]
[12]
Li, Y.W.; Li, B.; He, J.G.; Qian, P. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors. J. Mol. Struct., 2011, 998, 53-61. [13] 25 Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem., 1998, 41(14), 2481-2491.
[http://dx.doi.org/10.1021/jm9700575] [PMID: 9651153]
[13]
25 Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem., 1998, 4114, 281-291.
[http://dx.doi.org/10.1021/jm9700575] [PMID: 9651153]
[14]
26 Hellberg, S.; Sjöström, M.; Skagerberg, B.; Wold, S. Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem., 1987, 30(7), 1126-1135.
[http://dx.doi.org/10.1021/jm00390a003] [PMID: 3599020]
[15]
27 Cruciani, G.; Baroni, M.; Carosati, E.; Clementi, M.; Valigi, R.; Clementi, S. Peptide studies by means of principal properties of amino acids derived from MIF descriptors. J. Chemometr., 2004, 18, 146-155.
[http://dx.doi.org/10.1002/cem.856]
[16]
Kosky, A.A.; Dharmavaram, V.; Ratnaswamy, G.; Manning, M.C. Multivariate analysis of the sequence dependence of asparagine deamidation rates in peptides. Pharm. Res., 2009, 26(11), 2417-2428.
[http://dx.doi.org/10.1007/s11095-009-9953-8] [PMID: 19756976]
[17]
Zbacnik, N.J.; Henry, C.S.; Manning, M.C. A chemometric approach toward preducting the relative aggregation propensity: Ab(1-42). J. Pharm. Sci., 2020, 109(1), 624-632.
[http://dx.doi.org/10.1016/j.xphs.2019.10.014] [PMID: 31606543]
[18]
Armstrong, A.H.; Chen, J.; McKoy, A.F.; Hecht, M.H. Mutations that replace aromatic side chains promote aggregation of the Alzheimer’s Aβ peptide. Biochemistry, 2011, 50(19), 4058-4067.
[http://dx.doi.org/10.1021/bi200268w] [PMID: 21513285]
[19]
de Groot, N.S.; Aviles, F.X.; Vendrell, J.; Ventura, S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J., 2006, 273(3), 658-668.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05102.x] [PMID: 16420488]
[20]
Cukalevski, R.; Boland, B.; Frohm, B.; Thulin, E.; Walsh, D.; Linse, S. Role of aromatic side chains in amyloid β-protein aggregation. ACS Chem. Neurosci., 2012, 3(12), 1008-1016.
[http://dx.doi.org/10.1021/cn300073s] [PMID: 23259036]
[21]
Genji, M.; Yano, Y.; Hoshino, M.; Matsuzaki, K. Aromaticity of ohenylalanine residues is essential for amyloid formation by Alzheimer’s amyloid beta-peptide. Chem. Pharm. Bull. (Tokyo), 2017, 65(7), 668-673.
[http://dx.doi.org/10.1248/cpb.c17-00203] [PMID: 28674340]
[22]
Gazit, E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J., 2002, 16(1), 77-83.
[http://dx.doi.org/10.1096/fj.01-0442hyp] [PMID: 11772939]
[23]
Lakshmanan, A.; Cheong, D.W.; Accardo, A.; Di Fabrizio, E.; Riekel, C.; Hauser, C.A.E. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis. Proc. Natl. Acad. Sci. USA, 2013, 110(2), 519-524.
[http://dx.doi.org/10.1073/pnas.1217742110] [PMID: 23267112]
[24]
Kim, W.; Hecht, M.H. Sequence determinants of enhanced amyloidogenicity of Alzheimer Abeta42 peptide relative to Abeta40. J. Biol. Chem., 2005, 280(41), 35069-35076.
[http://dx.doi.org/10.1074/jbc.M505763200] [PMID: 16079141]
[25]
Wurth, C.; Guimard, N.K.; Hecht, M.H. Mutations that reduce aggregation of the Alzheimer’s Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. J. Mol. Biol., 2002, 319(5), 1279-1290.
[http://dx.doi.org/10.1016/S0022-2836(02)00399-6] [PMID: 12079364]
[26]
Kim, W.; Hecht, M.H. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer’s Abeta42 peptide. Proc. Natl. Acad. Sci. USA, 2006, 103(43), 15824-15829.
[27]
Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58, 109-130.
[http://dx.doi.org/10.1016/S0169-7439(01)00155-1]
[28]
Wold, S.; Ebensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst., 1987, 2, 37-52.
[http://dx.doi.org/10.1016/0169-7439(87)80084-9]
[29]
Ståhle, L.; Wold, S. Multivariate data analysis and experimental design in biomedical research. Prog. Med. Chem., 1988, 25, 291-338.
[http://dx.doi.org/10.1016/S0079-6468(08)70281-9] [PMID: 3076969]
[30]
Martens, H.; Martens, M. Modified jack-knife estimation of parameter uncertainty in bilinear modeling by partial least squares regression (PLSR). Food Qual. Prefer., 2000, 11, 5-16.
[http://dx.doi.org/10.1016/S0950-3293(99)00039-7]
[31]
Martens, H.; Naes, T. Multivariate Calibration; Wiley: New York, NY, 1989.
[32]
Bett, C.K.; Ngunjiri, J.N.; Serem, W.K.; Fontenot, K.R.; Hammer, R.P.; McCarley, R.L.; Garno, J.C. Structure-activity relationships in peptide modulators of β-amyloid protein aggregation: variation in α,α-disubstitution results in altered aggregate size and morphology. ACS Chem. Neurosci., 2010, 1(9), 608-626.
[http://dx.doi.org/10.1021/cn100045q] [PMID: 22778850]
[33]
Bera, S.; Arad, E.; Schnaider, L.; Shaham-Niv, S.; Castelletto, V.; Peretz, Y.; Zaguri, D.; Jelinek, R.; Gazit, E.; Hamley, I.W. Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chem. Commun. (Camb.), 2019, 55(59), 8595-8598.
[http://dx.doi.org/10.1039/C9CC03654G] [PMID: 31276123]
[34]
Tartaglia, G.G.; Cavalli, A.; Pellarin, R.; Caflisch, A. The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci., 2004, 13(7), 1939-1941.
[http://dx.doi.org/10.1110/ps.04663504] [PMID: 15169952]
[35]
Senguen, F.T.; Lee, N.R.; Gu, X.; Ryan, D.M.; Doran, T.M.; Anderson, E.A.; Nilsson, B.L. Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide. Mol. Biosyst., 2011, 7(2), 486-496.
[http://dx.doi.org/10.1039/C0MB00080A] [PMID: 21060949]
[36]
Senguen, F.T.; Doran, T.M.; Anderson, E.A.; Nilsson, B.L. Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16-22 self-assembly. Mol. Biosyst., 2011, 7(2), 497-510.
[http://dx.doi.org/10.1039/C0MB00210K] [PMID: 21135968]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy