Abstract
Background: COVID-19 is a global threat as a result of the incessant spread of SARS-CoV- 2, necessitating the rapid availability of effective antiviral medications to protect our society. For SARSCoV- 2, a group of peptides has already been indicated, although their effectiveness has yet to be shown. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins.
Methods: Here, we have compiled a list of amphiphilic peptides that have been published, as well as their in-silico docking studies with the SARS-CoV-2 spike glycoprotein.
Results: The findings demonstrated that spike protein and amphiphilic peptides with increased binding affinity create a complex. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL), and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy of more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2.
Conclusion: In light of these findings, it is crucial to compare the in-vitro to in-vivo efficacy of amphiphilic peptides in order to produce an efficient anti-SARS-CoV-2 peptide therapy that might assist control the present pandemic scenario.
Keywords: Amphiphilic peptides, SARS-CoV-2, COVID-19, spike protein, in-silico analysis, micelle peptides.
Graphical Abstract
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[http://dx.doi.org/10.1186/s41231-020-00073-y] [PMID: 33169107]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106218] [PMID: 33166692]
[http://dx.doi.org/10.1016/j.nmni.2021.100837] [PMID: 33425362]
[PMID: 33226581]
[PMID: 32718300]
[http://dx.doi.org/10.2174/1389203721666200908164641] [PMID: 32901582]
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[http://dx.doi.org/10.1002/bip.20648] [PMID: 17154288]
[PMID: 24855352]
[http://dx.doi.org/10.3389/fchem.2020.598160] [PMID: 33195107]
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[http://dx.doi.org/10.1039/C9TB02485A] [PMID: 32124885]
[http://dx.doi.org/10.1016/j.bbamem.2014.04.015] [PMID: 24780375]
[http://dx.doi.org/10.3390/molecules16010221] [PMID: 21193846]
[http://dx.doi.org/10.1021/acs.biochem.5b00061] [PMID: 25785896]
[http://dx.doi.org/10.1039/C8CS00022K] [PMID: 29645040]
[http://dx.doi.org/10.1155/2011/414729] [PMID: 21687343]
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[PMID: 32748035]
[http://dx.doi.org/10.3390/nano10030560] [PMID: 32244858]
[http://dx.doi.org/10.1021/bi011549t] [PMID: 11841217]
[http://dx.doi.org/10.1007/978-981-13-0532-0_6]
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[http://dx.doi.org/10.1186/1472-6750-13-51] [PMID: 23777281]
[http://dx.doi.org/10.1371/journal.pntd.0000721] [PMID: 20582308]
[http://dx.doi.org/10.1186/1742-4690-6-50] [PMID: 19467159]
[http://dx.doi.org/10.1128/JVI.00684-18] [PMID: 30068652]
[http://dx.doi.org/10.1021/cb800193n] [PMID: 19053244]
[http://dx.doi.org/10.1128/JVI.78.10.5147-5156.2004] [PMID: 15113897]
[http://dx.doi.org/10.1016/j.bmc.2005.05.051] [PMID: 15993611]
[http://dx.doi.org/10.1016/j.antiviral.2014.01.015] [PMID: 24486207]
[http://dx.doi.org/10.1186/1743-422X-6-74] [PMID: 19497129]
[http://dx.doi.org/10.1016/j.peptides.2011.05.015] [PMID: 21620914]
[http://dx.doi.org/10.7150/ijms.5037] [PMID: 23630436]
[http://dx.doi.org/10.3389/fmicb.2020.01063] [PMID: 32523582]
[http://dx.doi.org/10.1038/s41565-020-0732-3] [PMID: 32661375]
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[http://dx.doi.org/10.1016/j.bbamem.2017.10.015] [PMID: 29038024]
[http://dx.doi.org/10.1016/j.jsb.2009.12.026] [PMID: 20045466]