Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Identification of Novel Inhibitors of SARS-CoV-2 Mpro from NCI Database by a Drug Repurposing Approach

Author(s): Afzal Hussain* and Ashfaq hussain

Volume 2, Issue 2, 2022

Published on: 30 March, 2022

Article ID: e270122200571 Pages: 10

DOI: 10.2174/2666001602666220127102907

Price: $65

Abstract

Background: The global spread of SARS-CoV-2 and the mortality it has caused have prompted research organizations to develop novel medications to fight against COVID-19. The main protease (Mpro) of SARS-CoV-2 is crucial to the virus’s replication and propagation in host cells. Therefore, it is a promising therapeutic target.

Objectives: There are officially no certified specific drugs or available interventions for COVID-19 infection. Repurposing standard pharmaceutical drugs for COVID-19 is a promising strategy to identify potent therapeutic candidates quickly.

Methods: The NCI (National Cancer Institute) database compounds, COVID-19 Mpro, and the reference ligand were prepared, and the docking, ADMET, and MMGBSA analyses were carried out using Maestro (Schrödinger Suite).

Results: The study shows the results after screening NCI molecules (265,242) against COVID-19 Mpro. Compounds NCI19775, NCI226834, NCI115535, NCI270893, NCI89644, NCI332542, NCI617217, NCI43927, NCI67474, NCI250293, and NCI59266 fit in the active site of the COVID- 19 Mpro, showing a tighter interaction than the reference ligand X77. The docking score of these NCI compounds is also higher than X77. As a result, these compounds could be promising anti-COVID Mpro agents. NCI19775 (6,6-bis (benzylthio) hexane-1,2,3,4,5-pentaol)was shown to be a more potent inhibitor of COVID-19 main protease, and the outcomes also exhibit the potential for NCI compounds to interact with COVID Mpro.

Conclusion: Our computational strategy identified promising and efficacious SARS-CoV-2 inhibitors that could be investigated further in clinical trials.

Keywords: NCI compounds, COVID-19, main protease, drug-repurposing, SARS-CoV-2, molecular docking.

Graphical Abstract

[1]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2019, 21, 141-154.
[PMID: 33024307]
[2]
Liu, Y-C.; Kuo, R-L.; Shih, S-R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J., 2020, 43(4), 328-333.
[http://dx.doi.org/10.1016/j.bj.2020.04.007] [PMID: 32387617]
[3]
Organization, W.H. Organization, W.H. WHO Coronavirus (COVID-19) Dashboard. 2021. Available from: https://covid19.who.int/ (Accessed August 5, 2021).
[4]
Soufi, G.J.; Hekmatnia, A.; Nasrollahzadeh, M.; Shafiei, N.; Sajjadi, M.; Iravani, P.; Fallah, S.; Iravani, S.; Varma, R.S. SARS-CoV-2 (COVID-19): New discoveries and current challenges. Appl. Sci. (Basel), 2020, 10(10), 3641.
[http://dx.doi.org/10.3390/app10103641]
[5]
Marois, G.; Muttarak, R.; Scherbov, S. Assessing the potential impact of COVID-19 on life expectancy. PLoS One, 2020, 15(9), e0238678.
[http://dx.doi.org/10.1371/journal.pone.0238678] [PMID: 32941467]
[6]
Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol., 2021, 433(2), 166725.
[http://dx.doi.org/10.1016/j.jmb.2020.11.024] [PMID: 33245961]
[7]
Gioia, M.; Ciaccio, C.; Calligari, P.; De Simone, G.; Sbardella, D.; Tundo, G.; Fasciglione, G.F.; Di Masi, A.; Di Pierro, D.; Bocedi, A.; Ascenzi, P.; Coletta, M. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem. Pharmacol., 2020, 182, 114225.
[http://dx.doi.org/10.1016/j.bcp.2020.114225] [PMID: 32956643]
[8]
Sohag, A.A.M.; Hannan, M.A.; Rahman, S.; Hossain, M.; Hasan, M.; Khan, M.K.; Khatun, A.; Dash, R.; Uddin, M.J. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev. Res., 2020, 81(8), 919-941.
[http://dx.doi.org/10.1002/ddr.21709] [PMID: 32632960]
[9]
Shih, H-I.; Wu, C-J.; Tu, Y-F.; Chi, C-Y. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed. J., 2020, 43(4), 341-354.
[http://dx.doi.org/10.1016/j.bj.2020.05.021] [PMID: 32532623]
[10]
Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics, 2020, 10(17), 7821-7835.
[http://dx.doi.org/10.7150/thno.47987] [PMID: 32685022]
[11]
Mesecar, A. A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19); Be Publ, 2020.
[12]
Yu, L.M.; Bafadhel, M.; Dorward, J.; Hayward, G.; Saville, B.R.; Gbinigie, O.; Van Hecke, O.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Patel, M.G.; Richards, D.; Berry, N.; Detry, M.A.; Saunders, C.; Fitzgerald, M.; Harris, V.; Shanyinde, M.; de Lusignan, S.; Andersson, M.I.; Barnes, P.J.; Russell, R.E.K.; Nicolau, D.V., Jr; Ramakrishnan, S.; Hobbs, F.D.R.; Butler, C.C. PRINCIPLE Trial Collaborative Group. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet, 2021, 398(10303), 843-855.
[http://dx.doi.org/10.1016/S0140-6736(21)01744-X] [PMID: 34388395]
[13]
Jean, S-S.; Lee, P-I.; Hsueh, P-R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[14]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34, 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[15]
Verdugo-Paiva, F.; Izcovich, A.; Ragusa, M.; Rada, G. Lopinavir-ritonavir for COVID-19: A living systematic review. Medwave, 2020, 20(6), e7967.
[http://dx.doi.org/10.5867/medwave.2020.06.7966] [PMID: 32678815]
[16]
Vitiello, A.; Ferrara, F. Remdesivir versus ritonavir/lopinavir in COVID-19 patients. Ir. J. Med. Sci., 2020, (1971), 1-2.
[17]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[18]
Gaudêncio, S.P.; Pereira, F. A computer-aided drug design approach to predict marine drug-like leads for SARS-CoV-2 main protease inhibition. Mar. Drugs, 2020, 18(12), 633.
[http://dx.doi.org/10.3390/md18120633] [PMID: 33322052]
[19]
Ferraz, W.R.; Gomes, R.A.; S Novaes, A.L.; Goulart Trossini, G.H. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med. Chem., 2020, 12(20), 1815-1828.
[http://dx.doi.org/10.4155/fmc-2020-0165] [PMID: 32787684]
[20]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[21]
Schrödinger, L. Preparation Wizard, Lig prep version 2.6, Glide version 5.8. 2012.
[22]
Hussain, A.; Verma, C.K. Molecular docking and in silico ADMET study reveals 3-(5- {[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase. Biomed. Res., 2017, 28(13), 5805-5815.
[23]
Hussain, A.; Verma, C.K. Ligand- and structure-based pharmacophore modeling, docking study reveals 2-[[4-[6-(isopropylamino) pyrimidin-4-yl]-1H-pyrrolo[2,3-b] pyridin-6-yl] amino] ethanol as a potential anticancer agent of CDK9/cyclin T1 kinase. J. Cancer Res. Ther., 2019, 15(5), 1131-1140.
[http://dx.doi.org/10.4103/jcrt.JCRT_47_18] [PMID: 31603123]
[24]
QikProp. version 3.3; Schrödinger, LLC: New York, NY, 2010.
[25]
Hussain, A.; Verma, C.K.; Chouhan, U. Identification of novel inhibitors against cyclin dependent kinase 9/Cyclin T1 complex as: Anti cancer agent. Saudi J. Biol. Sci., 2017, 24(6), 1229-1242.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.003] [PMID: 28855816]
[26]
Hussain, A.; Verma, C.K. A combination of pharmacophore modeling, molecular docking and virtual screening study reveals 3, 5, 7-trihydroxy-2-(3, 4, 5- trihydroxyphenyl)-4h-chromen-4-one as a potential anti-cancer agent of COT Kinase. Indian J. Pharm. Educ. Res., 2018, 52(4), 699-706.
[http://dx.doi.org/10.5530/ijper.52.4.81]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy