Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave-assisted Synthesis of Novel Triazolyl Pyrazolyl Pyrazoline Substituted Coumarins and Their Antimicrobial Activity

Author(s): Kaushik N. Kundaliya, Niraj H. Patel and Dinker I. Brahmbhatt*

Volume 9, Issue 1, 2022

Published on: 18 March, 2022

Page: [47 - 59] Pages: 13

DOI: 10.2174/2213335609666220118102344

Price: $65

Abstract

Background: The 1,2,3-triazole, pyrazole, and coumarin-based derivatives have received much attention due to their wide coverage of biological properties. The present work describes the microwave synthesis of novel triazolyl pyrazolyl pyrazoline substituted coumarins. The structures of all the newly synthesized compounds are characterized by spectral analysis and screened for their in vitro antimicrobial activity by the Broth dilution method.

Methods: Using the synthetic method, the targets were prepared by reacting various 3-{3-[3-(5- methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]acryloyl} coumarins (coumarin chalcones) (3a-d) with hydrazine hydrate or aryl hydrazine (5a-c) in the presence of acetic/propionic acid under microwave irradiation.

Results: The structures of all the synthesized compounds were established by IR, 1H-NMR, 13CAPT, and selected mass spectral data. The target compounds were also screened for their in vitro antimicrobial efficiency against a representative panel of pathogenic strains, specifically Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Salmonella typhi), and Fungi (Candida albicans, Aspergillusniger).

Conclusion: In conclusion, the target compounds were obtained by Microwave Irradiation (MWI) technique in good yield with a short reaction time. Among all the synthesized compounds, 4c, 4h, 6a, 6h, and 6l were found to have significant activity against bacterial and fungal strains.

Keywords: Coumarins, pyrazoline, triazole, pyrazole, chalcones, microwave irradiation, antimicrobial screening, Broth dilution method.

Graphical Abstract

[1]
Murray, R.D.; Mendez, J.; Brown, S.A. The natural coumarins: occurrence, chemistry and biochemistry; John Wiley: New York, 1982.
[2]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[3]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, applications and mode of action; Wiley: Chichester, 1997, p. 348.
[4]
Manvar, A.; Malde, A.; Verma, J.; Virsodia, V.; Mishra, A.; Upadhyay, K.; Acharya, H.; Coutinho, E.; Shah, A. Synthesis, anti-tubercular activity and 3D-QSAR study of coumarin-4-acetic acid benzylidene hydrazides. Eur. J. Med. Chem., 2008, 43(11), 2395-2403.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.016] [PMID: 18328603]
[5]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[http://dx.doi.org/10.1021/jm0580149] [PMID: 16190766]
[6]
Kamal, A.; Adil, S.F.; Tamboli, J.R.; Siddardha, B. Synthesis of coumarin linked naphthalimide conjugates as potential anticancer and antimicrobial agents. Lett. Drug Des. Discov., 2009, 6(3), 201-209.
[http://dx.doi.org/10.2174/157018009787847855]
[7]
Kaye, P.T.; Musa, M.A.; Nichinda, A.T.; Nocanda, X.W. Novel heterocyclic analogues of the HIV-1 protease inhibitor, ritonavir. Synth. Commun., 2004, 34(14), 2575-2589.
[http://dx.doi.org/10.1081/SCC-200025617]
[8]
Suzuki, M.; Nakagawa-Goto, K.; Nakamura, S.; Tokuda, H; Morris-Natschke, S.L.; Kozuka, M.; Nishino, H. Cancerpreventive agents.. Part 5. Anti-tumor-promoting effects of coumarins and related compounds on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Pharm. Biol.,, 2006, 44(3), 178-182.
[http://dx.doi.org/10.1080/13880200600686491]
[9]
Garazd, Y.L.; Kornienko, E.M.; Maloshtan, L.N.; Garazd, M.M.; Khilya, V.P. Modified coumarins. synthesis and anticoagulant activity of 3,4-cycloannelated coumarin D- glycopyranosides. Chem Nat Prod, 2005, 41, 508-512.
[http://dx.doi.org/10.1007/s10600-005-0194-8]
[10]
Aggarwal, R.; Kumar, S.; Kaushik, P.; Kaushik, D.; Gupta, G.K. Synthesis and pharmacological evaluation of some novel 2-(5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-yl)-4-(coumarin-3-yl)thiazoles. Eur. J. Med. Chem., 2013, 62, 508-514.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.046] [PMID: 23416192]
[11]
Lunkad, A.S.; Sawant, R.L. Conventional and microwave assisted synthesis of some new derivatives of coumarin containing pyrazoline and investigation of their antibacterial and antifungal activities. IJPSR, 2018, 9(7), 2852-2858.
[http://dx.doi.org/10.13040/IJPSR.0975-8232]
[12]
Akhter, W.; Marella, A.; Shaquiquzzaman, M.; Akhter, M.; Mumtaz Alam, M. Microwave assissted synthesis of pyrazolinecoumarin hybrids and their in-vitro antimalarial evaluation. J. Pharm. Res., 2015, 9(5), 318-322.
[13]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[14]
Kumar, N.; Bhatnagar, A.; Dudhe, R. Synthesis of 3-(4,5-dihydro- 1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl)-2H-chromen-2-one derivatives and evaluation of their anticancer activity. Arab. J. Chem., 2017, 10(2), S2443-S2452.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.008]
[15]
Salem, M.A.I.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules, 2016, 21(2), 249.
[http://dx.doi.org/10.3390/molecules21020249] [PMID: 26907244]
[16]
Chen, X.M.; Li, Z.J.; Ren, Z.X.; Huang, Z.T. Synthesis of glucosylated 1,2,3-triazole derivatives. Carbohydr. Res., 1999, 315(3-4), 262-267.
[http://dx.doi.org/10.1016/S0008-6215(99)00020-8] [PMID: 10399299]
[17]
Brockunier, L.L.; Parmee, E.R.; Ok, H.O.; Candelore, M.R.; Cascieri, M.A.; Colwell, L.F.Jr.; Deng, L.; Feeney, W.P.; Forrest, M.J.; Hom, G.J.; MacIntyre, D.E.; Tota, L.; Wyvratt, M.J.; Fisher, M.H.; Weber, A.E. Human β3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides. Bioorg. Med. Chem. Lett., 2000, 10(18), 2111-2114.
[http://dx.doi.org/10.1016/S0960-894X(00)00422-4] [PMID: 10999482]
[18]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970.
[http://dx.doi.org/10.1021/jm990373e] [PMID: 10715160]
[19]
Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; De Clercq, E.; Perno, C.F.; Karlsson, A.; Balzarini, J.; Camarasa, M.J. 1,2,3-triazole-[2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D- ribofuranosyl]-3′-spiro-5"-(4"-amino-1",2"-oxathiole 2",2"-dioxide) (TSAO) analogues: Synthesis and anti-HIV-1 activity. J. Med. Chem., 1994, 37(24), 4185-4194.
[http://dx.doi.org/10.1021/jm00050a015] [PMID: 7527463]
[20]
Velázquez, S.; Alvarez, R.; Pérez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M.J. Regiospecific synthesis and anti-human immunodeficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N,N-dialkylcarbamoyl 1,2,3-triazole-TSAO analogues. Antivir. Chem. Chemother., 1998, 9(6), 481-489.
[http://dx.doi.org/10.1177/095632029800900604] [PMID: 9865386]
[21]
Kadaba, P.K. Triazolines. 14. 1,2,3-triazolines and triazoles, a new class of anticonvulsants. Drug design and structure-activity relationships. J. Med. Chem., 1988, 31(1), 196-203.
[http://dx.doi.org/10.1021/jm00396a032] [PMID: 3336019]
[22]
Buckle, D.R.; Rockell, C.J.M.; Smith, H.; Spicer, B.A. Studies on 1,2,3-triazoles. 13. (Piperazinylalkoxy) [1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. J. Med. Chem., 1986, 29(11), 2262-2267.
[http://dx.doi.org/10.1021/jm00161a022] [PMID: 2431143]
[23]
Haider, S.; Alam, M.S.; Hamid, H.; Shafi, S.; Nargotra, A.; Mahajan, P.; Nazreen, S.; Kalle, A.M.; Kharbanda, C.; Ali, Y.; Alam, A.; Panda, A.K. Synthesis of novel 1,2,3-triazole based benzoxazolinones: Their TNF-α based molecular docking with in-vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation. Eur. J. Med. Chem., 2013, 70, 579-588.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.032] [PMID: 24211633]
[24]
Duan, Y.C.; Ma, Y.C.; Zhang, E.; Shi, X.J.; Wang, M.M.; Ye, X.W.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[25]
Yempala, T.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 71, 160-167.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.082] [PMID: 24292337]
[26]
Kohn E. C., Liotta L. A., U.S. Patent 637145. Chem. Abstr., 115, 248099. 1991.
[27]
Dong, H.S.; Wei, K.; Wang, Q.l.; Quan, B. Synthesis of 3-[5-methyl-1-(4-methylphenyl)-1,2,3-triazol-4-yl]-6-substituted-s-triazolo [3,4-b]-1,3,4-thiadiazoles. J. Chin. Chem. Soc. (Taipei), 2000, 47(2), 343-346.
[http://dx.doi.org/10.1002/jccs.200000044]
[28]
Wamhoff, H.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry; Elsevier Science: Oxford, 1996, p. 4.
[29]
Parmar, V.S.; Kumar, A.; Prasad, A.K.; Singh, S.K.; Kumar, N.; Mukherjee, S.; Raj, H.G.; Goel, S.; Errington, W.; Puar, M.S. Synthesis of E- and Z-pyrazolylacrylonitriles and their evaluation as novel antioxidants. Bioorg. Med. Chem., 1999, 7(7), 1425-1436.
[http://dx.doi.org/10.1016/S0968-0896(99)00056-5] [PMID: 10465416]
[30]
Parmar, V.S.; Bracke, M.E.; Philippe, J.; Wengel, J.; Jain, S.C.; Olsen, C.E.; Bisht, K.S.; Sharma, N.K.; Courtens, A.; Sharma, S.K.; Vennekens, K.; Van Marck, V.; Singh, S.K.; Kumar, N.; Kumar, A.; Malhotra, S.; Kumar, R.; Rajwanshi, V.K.; Jain, R.; Mareel, M.M. Anti-invasive activity of alkaloids and polyphenolics in vitro. Bioorg. Med. Chem., 1997, 5(8), 1609-1619.
[http://dx.doi.org/10.1016/S0968-0896(97)00091-6] [PMID: 9313866]
[31]
Ouyang, G.; Cai, X.J.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J. Agric. Food Chem., 2008, 56(21), 10160-10167.
[http://dx.doi.org/10.1021/jf802489e] [PMID: 18939848]
[32]
Rovnyak, G.C.; Millonig, R.C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogues. J. Med. Chem., 1982, 25(12), 1482-1488.
[http://dx.doi.org/10.1021/jm00354a018] [PMID: 6218302]
[33]
Magedov, I.V.; Manpadi, M.; Van slambrouck, W.F.A.; Steelant, E.; Rozhkova, E.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-iInducing properties of new heterocyclic podophyllo- toxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50, 5183-5192.
[http://dx.doi.org/10.1021/jm070528f] [PMID: 17894480]
[34]
Londershausen, M. Approaches to new parasiticides. Pestic. Sci., 1996, 48, 269-292.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199612)48:4<269::AID-PS478>3.0.CO;2-B]
[35]
Fahmy, B.S.M.; Badran, A.H.; Elnageli, M.H. Synthesis of some new azopyrazole dyes. J. Chem. Tech B: Technol, 1980, 30(1), 390-395.
[http://dx.doi.org/10.1002/jctb.503300147]
[36]
Joule, J.A.; Mills, K. Heterocyclic Chemistry, 4th ed; Blackwess Science: Japan, 2000, p. 431.
[37]
Lad, H.B.; Giri, R.R.; Patel, C.V.; Bhila, V.G. Microwave assisted preparation of new dicoumarinyl pyrazoline derivatives as antimicrobials. Curr. Microw. Chem., 2014, 1(1), 64-74.
[http://dx.doi.org/10.2174/221333560101140519152017]
[38]
Bhila, V.G.; Patel, C.V.; Patel, N.H.; Brahmbhatt, D.I. One pot synthesis of some novel coumarins containing 5-(substituted-2-hydroxybenzoyl)pyridine as a new class of antimicrobial and antituberculosis agents. Med. Chem. Res., 2013, 22, 4338-4346.
[http://dx.doi.org/10.1007/s00044-012-0437-8]
[39]
Gohil, N.N.; Brahmbhatt, D.I. An efficient microwave-assisted synthesis of some new pyridyl pyrazoline substituted coumarins and its biological evaluation. Curr. Microw. Chem., 2018, 59(2), 128-138.
[http://dx.doi.org/10.2174/2213335605666180906114400]
[40]
Ley, S.V.; Baxendale, I.R. New tools and concepts for modern organic synthesis. Nat. Rev. Drug Discov., 2002, 1(8), 573-586.
[http://dx.doi.org/10.1038/nrd871] [PMID: 12402498]
[41]
Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem., 2002, 4(2), 95-105.
[http://dx.doi.org/10.1021/cc010048o] [PMID: 11886281]
[42]
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis –A review. Tetrahedron, 2001, 57, 9225.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[43]
National Committee for Clinical Laboratory Standards (NCCLS). 2002.
[44]
Dean, F.M.; Robertson, A.; Walley, W.B. The chemistry of fungi.Part IX. 3: 4-Dihydrocoumarins. J. Chem. Soc., 1950, 182, 895-902.
[http://dx.doi.org/10.1039/jr9500000895]
[45]
Kamalraj, V.R.; Senthil, S.; Kannan, P. One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J. Mol. Struct., 2008, 892(1-3), 210-215.
[http://dx.doi.org/10.1016/j.molstruc.2008.05.028]
[46]
Cao, Z.P.; Dong, W.J.; Dong, H.S. One pot synthesis of some novel 2,4-diaryl-6-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)pyridine derivatives. Indian J. Chem., 2009, 48B, 873.
[http://dx.doi.org/10.1002/chin.200942148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy