Review Article

褪黑激素对椎间盘的抗退变作用:对炎症、氧化应激、凋亡和自噬的保护作用

卷 23, 期 7, 2022

发表于: 21 February, 2022

页: [711 - 718] 页: 8

弟呕挨: 10.2174/1389450123666220114151654

价格: $65

摘要

椎间盘(IVD)退化是下腰痛的主要原因。虽然IVD退化 (IVDD)的病因尚不清楚,但过度的氧化应激、炎症和凋亡以及自噬破坏在IVDD的发病机制中发挥着重要作用。因此,找到缓解这些过程的解决方案可以停止或减少IVDD的发展。褪黑素是一种强大的抗氧化剂,在调节软骨组织止血方面起着重要作用。褪黑激素抑制椎间盘细胞外基质(ECM)的破坏。褪黑激素通过抑制基质降解酶(如MMP-13)来保存ECM含量,包括sox-9、aggrecan和collagen II。这些保护作用可能是通过抑制IVD细胞的氧化应激、炎症和凋亡以及调节细胞自噬来实现的。

关键词: 褪黑素,椎间盘退变,氧化应激,炎症,凋亡,自噬。

图形摘要

[1]
Andersson GB. Epidemiological features of chronic low-back pain. Lancet 1999; 354(9178): 581-5.
[http://dx.doi.org/10.1016/S0140-6736(99)01312-4] [PMID: 10470716]
[2]
Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine 1995; 20(17): 1878-83.
[http://dx.doi.org/10.1097/00007632-199509000-00007] [PMID: 8560335]
[3]
Denozière G, Ku DN. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech 2006; 39(4): 766-75.
[http://dx.doi.org/10.1016/j.jbiomech.2004.07.039] [PMID: 16439247]
[4]
Hughes SP, Freemont AJ, Hukins DW, McGregor AH, Roberts S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J Bone Joint Surg Br 2012; 94(10): 1298-304.
[http://dx.doi.org/10.1302/0301-620X.94B10.28986] [PMID: 23015552]
[5]
Videman T, Nurminen M, Troup JD. 1990 Volvo Award in clinical sciences. Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation, and physical loading. Spine 1990; 15(8): 728-40.
[http://dx.doi.org/10.1097/00007632-199008010-00002] [PMID: 2146754]
[6]
Eisenstein S, Roberts S. The physiology of the disc and its clinical relevance. J Bone Joint Surg Br 2003; 85(5): 633-6.
[http://dx.doi.org/10.1302/0301-620X.85B5.14403] [PMID: 12892180]
[7]
Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 2004; 25(3-4): 177-95.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[8]
Dehdashtian E, Hosseinzadeh A, Hemati K, Karimi MY, Fatemi I, Mehrzadi S. Anti-convulsive effect of thiamine and melatonin combination in mice: involvement of oxidative stress. Cent Nerv Syst Agents Med Chem 2021; 21(2): 125-9.
[http://dx.doi.org/10.2174/1871524921666210623161212] [PMID: 34165417]
[9]
Skwarlo-Sonta K. Melatonin in immunity: comparative aspects. Neuroendocrinol Lett 2002; 23(1): 61-6.
[PMID: 12019354]
[10]
Iman F, Ehsan D, Mohammad Hossein P, Saeed M, Azam H. Therapeutic application of melatonin in the treatment of melanoma: a review. Curr Cancer Ther Rev 2021; 17: 1-9.
[11]
Pourhanifeh MH, Kamali M, Mehrzadi S, Hosseinzadeh A. Melatonin and neuroblastoma: a novel therapeutic approach. Mol Biol Rep 2021; 48(5): 4659-65.
[http://dx.doi.org/10.1007/s11033-021-06439-1] [PMID: 34061325]
[12]
Hangai M, Kaneoka K, Hinotsu S, et al. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med 2009; 37(1): 149-55.
[http://dx.doi.org/10.1177/0363546508323252] [PMID: 18799691]
[13]
Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017; 129: 54-67.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.013] [PMID: 28324865]
[14]
Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006; 31(18): 2151-61.
[http://dx.doi.org/10.1097/01.brs.0000231761.73859.2c] [PMID: 16915105]
[15]
Livshits G, Popham M, Malkin I, et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann Rheum Dis 2011; 70(10): 1740-5.
[http://dx.doi.org/10.1136/ard.2010.137836] [PMID: 21646416]
[16]
Eser B, Cora T, Eser O, et al. Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Genet Test Mol Biomarkers 2010; 14(3): 313-7.
[http://dx.doi.org/10.1089/gtmb.2009.0202] [PMID: 20367178]
[17]
Williams FM, Popham M, Hart DJ, et al. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum 2011; 63(3): 708-12.
[http://dx.doi.org/10.1002/art.30169] [PMID: 21360499]
[18]
Wei Q, Zhang X, Zhou C, Ren Q, Zhang Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect Tissue Res 2019; 60(3): 209-18.
[http://dx.doi.org/10.1080/03008207.2018.1499731] [PMID: 29992840]
[19]
Malandrino A, Lacroix D, Hellmich C, Ito K, Ferguson SJ, Noailly J. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc. Osteoarthritis Cartilage 2014; 22(7): 1053-60.
[http://dx.doi.org/10.1016/j.joca.2014.05.005] [PMID: 24857972]
[20]
Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2002; 27(23): 2631-44.
[http://dx.doi.org/10.1097/00007632-200212010-00002] [PMID: 12461389]
[21]
Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 1998; 330(Pt 1): 345-51.
[http://dx.doi.org/10.1042/bj3300345] [PMID: 9461529]
[22]
DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum 1999; 42(5): 1003-9.
[http://dx.doi.org/10.1002/1529-0131(199905)42:5<1003::AID-ANR20>3.0.CO;2-K] [PMID: 10323457]
[23]
Gao G, Ding H, Zhuang C, Fan W. Effects of hesperidin on H2O2;-treated chondrocytes and cartilage in a rat osteoarthritis model. Med Sci Monit 2018; 24: 9177-86.
[http://dx.doi.org/10.12659/MSM.913726] [PMID: 30557884]
[24]
Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J 2013; 13(3): 318-30.
[http://dx.doi.org/10.1016/j.spinee.2012.12.003] [PMID: 23537454]
[25]
Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15(8): 978-90.
[http://dx.doi.org/10.1038/ncb2784] [PMID: 23770676]
[26]
Kohyama K, Saura R, Doita M, Mizuno K. Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci 2000; 46(6): 283-95.
[PMID: 11501016]
[27]
Urban J, Roberts S. Cells of the intervertebral disc: making the best of a bad environment. Biochemist (Lond) 2003; 25(5): 15-7.
[http://dx.doi.org/10.1042/BIO02505015]
[28]
Ogawa T, Matsuzaki H, Uei H, Nakajima S, Tokuhashi Y, Esumi M. Alteration of gene expression in intervertebral disc degeneration of passive cigarette- smoking rats: separate quantitation in separated nucleus pulposus and annulus fibrosus. Pathobiology 2005; 72(3): 146-51.
[http://dx.doi.org/10.1159/000084118] [PMID: 15860932]
[29]
Wang D, Nasto LA, Roughley P, et al. Spine degeneration in a murine model of chronic human tobacco smokers. Osteoarthritis Cartilage 2012; 20(8): 896-905.
[http://dx.doi.org/10.1016/j.joca.2012.04.010] [PMID: 22531458]
[30]
Gao B, Gao W, Wu Z, et al. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2018; 9(1): 162.
[http://dx.doi.org/10.1186/s13287-018-0892-3] [PMID: 29898779]
[31]
Steinert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 2012; 1(3): 237-47.
[http://dx.doi.org/10.5966/sctm.2011-0036] [PMID: 23197783]
[32]
Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994; 56(3): 283-94.
[http://dx.doi.org/10.1002/jcb.240560303] [PMID: 7876320]
[33]
Gao W, Lin M, Liang A, et al. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res 2014; 56(1): 62-70.
[http://dx.doi.org/10.1111/jpi.12098] [PMID: 24117903]
[34]
Li Z, Li X, Chen C, Chan MTV, Wu WKK, Shen J. Melatonin inhibits nucleus pulposus (NP) cell proliferation and extracellular matrix (ECM) remodeling via the melatonin membrane receptors mediated PI3K-Akt pathway. J Pineal Res 2017; 63(3): e12435.
[http://dx.doi.org/10.1111/jpi.12435] [PMID: 28719035]
[35]
Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet 2008; 371(9623): 1527-37.
[http://dx.doi.org/10.1016/S0140-6736(08)60658-3] [PMID: 18456103]
[36]
Azeddine B, Letellier K, Wang S, Moldovan F, Moreau A. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res 2007; 462(462): 45-52.
[http://dx.doi.org/10.1097/BLO.0b013e31811f39fa] [PMID: 17563702]
[37]
Wang WW, Man GC, Wong JH, et al. Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis. Int J Mol Sci 2014; 15(9): 17100-14.
[http://dx.doi.org/10.3390/ijms150917100] [PMID: 25257530]
[38]
Chen C, Xu C, Zhou T, et al. Abnormal osteogenic and chondrogenic differentiation of human mesenchymal stem cells from patients with adolescent idiopathic scoliosis in response to melatonin. Mol Med Rep 2016; 14(2): 1201-9.
[http://dx.doi.org/10.3892/mmr.2016.5384] [PMID: 27314307]
[39]
Zhong ZM, Li T, Xu ZX, et al. Effect of melatonin on the proliferation and differentiation of chondrocytes from rat vertebral body growth plate in vitro. Int J Med Sci 2013; 10(10): 1392-8.
[http://dx.doi.org/10.7150/ijms.5645] [PMID: 23983601]
[40]
Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet 2015; 386(9991): 376-87.
[http://dx.doi.org/10.1016/S0140-6736(14)60802-3] [PMID: 25748615]
[41]
Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008; 118(11): 3537-45.
[http://dx.doi.org/10.1172/JCI36389] [PMID: 18982160]
[42]
Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 2006; 54(5): 1357-60.
[http://dx.doi.org/10.1002/art.21813] [PMID: 16645963]
[43]
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2017; 13(5): 302-11.
[http://dx.doi.org/10.1038/nrrheum.2017.50] [PMID: 28381830]
[44]
Liu X, Xu Y, Chen S, et al. Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases. Free Radic Biol Med 2014; 68: 234-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.12.012] [PMID: 24374373]
[45]
Pei M, He F, Wei L, Rawson A. Melatonin enhances cartilage matrix synthesis by porcine articular chondrocytes. J Pineal Res 2009; 46(2): 181-7.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00646.x] [PMID: 19054299]
[46]
Verdier MP, Seité S, Guntzer K, Pujol JP, Boumédiène K. Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int 2005; 25(2): 118-24.
[http://dx.doi.org/10.1007/s00296-003-0409-x] [PMID: 14618374]
[47]
Hong Y, Kim H, Lee Y, et al. Salutary effects of melatonin combined with treadmill exercise on cartilage damage. J Pineal Res 2014; 57(1): 53-66.
[http://dx.doi.org/10.1111/jpi.12143] [PMID: 24816289]
[48]
Zhang L, Guo H-L, Zhang H-Q, et al. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: role of oxidative stress and balance between GABA ergic and glutamatergic transmission. Am J Transl Res 2017; 9(5): 2231-42.
[PMID: 28559974]
[49]
Guo JY, Li F, Wen YB, et al. Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis. Oncotarget 2017; 8(34): 55967-83.
[http://dx.doi.org/10.18632/oncotarget.18356] [PMID: 28915567]
[50]
Lim HD, Kim YS, Ko SH, et al. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res 2012; 53(3): 225-37.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00991.x] [PMID: 22507555]
[51]
Huang CC, Chiou CH, Liu SC, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res 2019; 66(3): e12560.
[http://dx.doi.org/10.1111/jpi.12560] [PMID: 30648758]
[52]
Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.015] [PMID: 26384579]
[53]
Huang C, Liu J, Xia C, Hu Y. [Effects of melatonin on expression of bone morphogenetic protein 2 and interleukin 1beta in articular cartilage of rat with osteoarthritis]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2010; 24(9): 1082-7.
[PMID: 20939479]
[54]
Høegh-Andersen P, Tankó LB, Andersen TL, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 2004; 6(2): R169-80.
[http://dx.doi.org/10.1186/ar1152] [PMID: 15059281]
[55]
Schicht M, Ernst J, Nielitz A, et al. Articular cartilage chondrocytes express aromatase and use enzymes involved in estrogen metabolism. Arthritis Res Ther 2014; 16(2): R93.
[http://dx.doi.org/10.1186/ar4539] [PMID: 24725461]
[56]
Hanna FS, Teichtahl AJ, Wluka AE, et al. Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause 2009; 16(4): 666-70.
[http://dx.doi.org/10.1097/gme.0b013e318198e30e] [PMID: 19598333]
[57]
Oktem G, Uslu S, Vatansever SH, Aktug H, Yurtseven ME, Uysal A. Evaluation of the relationship between inducible nitric oxide synthase (iNOS) activity and effects of melatonin in experimental osteoporosis in the rat. Surg Radiol Anat 2006; 28(2): 157-62.
[http://dx.doi.org/10.1007/s00276-005-0065-9] [PMID: 16362227]
[58]
Yang W, Kang X, Qin N, et al. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1. Steroids 2017; 126: 24-9.
[http://dx.doi.org/10.1016/j.steroids.2017.08.005] [PMID: 28803211]
[59]
Turgut M, Başaloğlu HK, Yenisey C, Ozsunar Y. Surgical pinealectomy accelerates intervertebral disc degeneration process in chicken. Eur Spine J 2006; 15(5): 605-12.
[http://dx.doi.org/10.1007/s00586-005-0972-9] [PMID: 16151710]
[60]
Zhao CQ, Wang LM, Jiang LS, Dai LY. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 2007; 6(3): 247-61.
[http://dx.doi.org/10.1016/j.arr.2007.08.001] [PMID: 17870673]
[61]
Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006; 88(2): 10-4.
[PMID: 16595436]
[62]
Sudo H, Minami A. Regulation of apoptosis in nucleus pulposus cells by optimized exogenous Bcl-2 overexpression. J Orthop Res 2010; 28(12): 1608-13.
[http://dx.doi.org/10.1002/jor.21185] [PMID: 20589931]
[63]
Yang SD, Ma L, Yang DL, Ding WY. Combined effect of 17β-estradiol and resveratrol against apoptosis induced by interleukin-1β in rat nucleus pulposus cells via PI3K/Akt/caspase-3 pathway. PeerJ 2016; 4: e1640.
[http://dx.doi.org/10.7717/peerj.1640] [PMID: 26824000]
[64]
Liu S, Yang SD, Huo XW, Yang DL, Ma L, Ding WY. 17β-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model. Artif Cells Nanomed Biotechnol 2018; 46(2): 182-91.
[http://dx.doi.org/10.1080/21691401.2018.1453826] [PMID: 30056756]
[65]
Zhang Z, Lin J, Tian N, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med 2019; 23(1): 177-93.
[http://dx.doi.org/10.1111/jcmm.13903] [PMID: 30353656]
[66]
He R, Cui M, Lin H, et al. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells. Life Sci 2018; 199: 122-30.
[http://dx.doi.org/10.1016/j.lfs.2018.03.020] [PMID: 29526797]
[67]
Ge J, Zhou Q, Niu J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the ERK1/2 signaling pathway. Oxid Med Cell Longev 2019; 2019: 5120275.
[http://dx.doi.org/10.1155/2019/5120275] [PMID: 31885798]
[68]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[69]
Ito M, Yurube T, Kakutani K, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis Cartilage 2017; 25(12): 2134-46.
[http://dx.doi.org/10.1016/j.joca.2017.08.019] [PMID: 28888905]
[70]
Jiang L, Zhang X, Zheng X, et al. Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: Implications for diabetic intervertebral disc degeneration. J Orthop Res 2013; 31(5): 692-702.
[http://dx.doi.org/10.1002/jor.22289] [PMID: 23238821]
[71]
Gruber HE, Hoelscher GL, Ingram JA, Bethea S, Hanley EN Jr. Autophagy in the degenerating human intervertebral disc: in vivo molecular and morphological evidence, and induction of autophagy in cultured annulus cells exposed to proinflammatory cytokines-implications for disc degeneration. Spine 2015; 40(11): 773-82.
[http://dx.doi.org/10.1097/BRS.0000000000000865] [PMID: 26091153]
[72]
Ye W, Xu K, Huang D, et al. Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res 2011; 52(6): 472-8.
[http://dx.doi.org/10.3109/03008207.2011.564336] [PMID: 21591930]
[73]
Alini M, Eisenstein SM, Ito K, et al. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 2008; 17(1): 2-19.
[http://dx.doi.org/10.1007/s00586-007-0414-y] [PMID: 17632738]
[74]
Hunter CJ, Matyas JR, Duncan NA. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 2003; 9(4): 667-77.
[http://dx.doi.org/10.1089/107632703768247368] [PMID: 13678445]
[75]
Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 2011; 30(22): 4642-51.
[http://dx.doi.org/10.1038/emboj.2011.322] [PMID: 21897364]
[76]
Chen F, Liu H, Wang X, et al. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage 2020; 28(8): 1121-32.
[http://dx.doi.org/10.1016/j.joca.2020.05.011] [PMID: 32470597]
[77]
Huang Y, Peng Y, Sun J, et al. Nicotinamide Phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin. Inflammation 2020; 43(3): 796-809.
[http://dx.doi.org/10.1007/s10753-019-01166-z] [PMID: 31900828]
[78]
Hai B, Ma Y, Pan X, et al. Melatonin benefits to the growth of human annulus fibrosus cells through inhibiting miR-106a-5p/ATG7 signaling pathway. Clin Interv Aging 2019; 14: 621-30.
[http://dx.doi.org/10.2147/CIA.S193765] [PMID: 30992660]
[79]
Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition. J Cell Mol Med 2019; 23(3): 2136-48.
[http://dx.doi.org/10.1111/jcmm.14125] [PMID: 30609271]
[80]
Zhang F, Zhao X, Shen H, Zhang C. Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int J Mol Med 2016; 37(6): 1439-48.
[http://dx.doi.org/10.3892/ijmm.2016.2573] [PMID: 27121482]
[81]
Yang W, Yu XH, Wang C, et al. Interleukin-1β in intervertebral disk degeneration. Clin Chim Acta 2015; 450: 262-72.
[http://dx.doi.org/10.1016/j.cca.2015.08.029] [PMID: 26341894]
[82]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2014; 10(1): 44-56.
[http://dx.doi.org/10.1038/nrrheum.2013.160] [PMID: 24166242]
[83]
Shamji MF, Setton LA, Jarvis W, et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 2010; 62(7): 1974-82.
[PMID: 20222111]
[84]
Zhang Y, He F, Chen Z, et al. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY) 2019; 11(22): 10499-512.
[http://dx.doi.org/10.18632/aging.102472] [PMID: 31772145]
[85]
Chen F, Jiang G, Liu H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 2020; 8: 10.
[http://dx.doi.org/10.1038/s41413-020-0087-2] [PMID: 32133213]
[86]
Lee S, Moon CS, Sul D, et al. Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus. Clin Biochem 2009; 42(15): 1504-11.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.06.017] [PMID: 19563795]
[87]
Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O’Brien J, Jayson MI. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997; 350(9072): 178-81.
[http://dx.doi.org/10.1016/S0140-6736(97)02135-1] [PMID: 9250186]
[88]
Kwon WK, Moon HJ, Kwon TH, Park YK, Kim JH. Influence of rabbit notochordal cells on symptomatic intervertebral disc degeneration: anti-angiogenic capacity on human endothelial cell proliferation under hypoxia. Osteoarthritis Cartilage 2017; 25(10): 1738-46.
[http://dx.doi.org/10.1016/j.joca.2017.06.003] [PMID: 28647468]
[89]
Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S. Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 2002; 46(10): 2658-64.
[http://dx.doi.org/10.1002/art.10585] [PMID: 12384924]
[90]
He M, Pang J, Sun H, Zheng G, Lin Y, Ge W. Overexpression of TIMP3 inhibits discogenic pain by suppressing angiogenesis and the expression of substance P in nucleus pulposus. Mol Med Rep 2020; 21(3): 1163-71.
[http://dx.doi.org/10.3892/mmr.2020.10922] [PMID: 31922222]
[91]
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24(4): 359-78.
[http://dx.doi.org/10.1080/14728222.2020.1737015] [PMID: 32116056]
[92]
Cheng J, Yang HL, Gu CJ, et al. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 2019; 43(2): 945-55.
[PMID: 30569127]
[93]
Turgut M, Öktem G, Uslu S, Yurtseven ME, Aktuğ H, Uysal A. The effect of exogenous melatonin administration on trabecular width, ligament thickness and TGF-β(1) expression in degenerated intervertebral disk tissue in the rat. J Clin Neurosci 2006; 13(3): 357-63.
[http://dx.doi.org/10.1016/j.jocn.2005.03.037] [PMID: 16546388]
[94]
Shen C, Li Y, Chen Y, Huang L, Zhang F, Wu W. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells. Exp Ther Med 2020; 20(5): 106.
[http://dx.doi.org/10.3892/etm.2020.9227] [PMID: 32989385]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy