Review Article

CPP-Based Bioactive Drug Delivery to Penetrate the Blood-Brain Barrier: A Potential Therapy for Glioblastoma Multiforme

Author(s): Golnaz Mehdipour, Milint Neleptchenko Wintrasiri and Sorayya Ghasemi*

Volume 23, Issue 7, 2022

Published on: 10 March, 2022

Page: [719 - 728] Pages: 10

DOI: 10.2174/1389450123666220207143750

Price: $65

Abstract

Background: A large number of studies have been conducted on the treatment of glioblastoma multiforme (GBM). Chemotherapeutic drugs cannot penetrate deeply into the brain parenchyma due to the presence of the blood-brain barrier (BBB). Hence, crossing BBB is a significant obstacle in developing new therapeutic methods for GBM.

Objective: Cell-penetrating peptides (CPPs) have emerged as new tools that can efficiently deliver various substances across BBB. CPPs beneficial properties, such as BBB penetration capacity, low toxicity, and the ability to achieve active targeting and controllable drug release, have made them worthy candidates for GBM treatment. However, their application is limited by several drawbacks, including lack of selectivity, insufficient transport efficacy, and low stability. In order to overcome the selectivity issue, tumor targeting peptides and sequences that can be activated at the target site have been embedded into the structure of CPPs. To overcome their insufficient transport efficacy into the cells, which is mostly due to endosomal entrapment, various endosomolytic moieties have been incorporated into CPPs. Finally, their instability in blood circulation can be solved through different modifications to their structures. As this field is moving beyond preclinical studies, the discovery of new and more efficient CPPs for GBM treatment has become crucial. Thus, by using display techniques, such as phage display, this encouraging treatment strategy can be developed further.

Conclusion: Consequently, despite several challenges in CPPs application, recent progress in studies has shown their potential for the development of the next generation GBM therapeutics

Keywords: Cell-penetrating peptides, drug carriers, drug delivery system, glioblastoma multiforme, brain tumor, blood-brain barrier

[1]
Wirsching H-G, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol 2016; 134: 381-97.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00023-2] [PMID: 26948367]
[2]
Silantyev AS, Falzone L, Libra M, et al. Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 2019; 8(8): 863.
[http://dx.doi.org/10.3390/cells8080863] [PMID: 31405017]
[3]
Alavian F, Ghasemi S. The effectiveness of nanoparticles on gene therapy for glioblastoma cells apoptosis: A systematic review. Curr Gene Ther 2021; 21(3): 230-45.
[http://dx.doi.org/10.2174/1566523221666210224110454] [PMID: 33655831]
[4]
Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol 2018; 9: 170.
[http://dx.doi.org/10.3389/fphys.2018.00170] [PMID: 29615917]
[5]
Majc B, Novak M, Kopitar-Jerala N, Jewett A, Breznik B. Immunotherapy of glioblastoma: Current strategies and challenges in tumor model development. Cells 2021; 10(2): 265.
[http://dx.doi.org/10.3390/cells10020265] [PMID: 33572835]
[6]
Kim S-S, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun 2015; 468(3): 485-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.137] [PMID: 26116770]
[7]
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281: 42-57.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.008] [PMID: 29753958]
[8]
Yang M, Moon C. Neurotoxicity of cancer chemotherapy. Neural Regen Res 2013; 8(17): 1606-14.
[PMID: 25206457]
[9]
Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol 2019; 47: 14-9.
[http://dx.doi.org/10.1016/j.coph.2019.01.006] [PMID: 30776641]
[10]
Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6): 1189-93.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[11]
Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55(6): 1179-88.
[http://dx.doi.org/10.1016/0092-8674(88)90262-0] [PMID: 2849509]
[12]
Kalafatovic D, Giralt E. Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules 2017; 22(11): 1929.
[http://dx.doi.org/10.3390/molecules22111929] [PMID: 29117144]
[13]
Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep 2016; 4(5): 528-34.
[http://dx.doi.org/10.3892/br.2016.639] [PMID: 27123243]
[14]
Pelaz SG, Jaraíz-Rodríguez M, Álvarez-Vázquez A, et al. Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43266-283. EBioMedicine 2020; 62103134
[http://dx.doi.org/10.1016/j.ebiom.2020.103134] [PMID: 33254027]
[15]
Fan Q, Liu Y, Cui G, Zhong Z, Deng C. Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. J Control Release 2021; 329: 1139-49.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.043] [PMID: 33131697]
[16]
Morais CM, Cardoso AM, Aguiar L, et al. Lauroylated histidine-enriched S413-PV peptide as an efficient gene silencing mediator in cancer cells. Pharm Res 2020; 37(10): 188.
[http://dx.doi.org/10.1007/s11095-020-02904-x] [PMID: 32888084]
[17]
Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces 2019; 173: 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[18]
Opačak-Bernardi T, Ryu JS, Raucher D. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells. J Drug Target 2017; 25(6): 523-31.
[http://dx.doi.org/10.1080/1061186X.2017.1289537] [PMID: 28140690]
[19]
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14(4)041001
[http://dx.doi.org/10.1088/1478-3975/aa708a] [PMID: 28586313]
[20]
Haumann R, Videira JC, Kaspers GJL, van Vuurden DG, Hulleman E. Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs 2020; 34(11): 1121-31.
[http://dx.doi.org/10.1007/s40263-020-00766-w] [PMID: 32965590]
[21]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19: 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[22]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20(1): 26-41.
[http://dx.doi.org/10.1038/s41568-019-0205-x] [PMID: 31601988]
[23]
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: delivering optical labels to brain tumors. Front Oncol 2020; 10: 739.
[http://dx.doi.org/10.3389/fonc.2020.00739] [PMID: 32582530]
[24]
Regberg J, Srimanee A, Langel U. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 2012; 5(9): 991-1007.
[http://dx.doi.org/10.3390/ph5090991] [PMID: 24280701]
[25]
Tripathi PP, Arami H, Banga I, Gupta J, Gandhi S. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 2018; 9(98): 37252-67.
[http://dx.doi.org/10.18632/oncotarget.26442] [PMID: 30647857]
[26]
Sarko D, Beijer B, Garcia Boy R, et al. The pharmacokinetics of cell-penetrating peptides. Mol Pharm 2010; 7(6): 2224-31.
[http://dx.doi.org/10.1021/mp100223d] [PMID: 20845937]
[27]
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang T-Y, Pellois J-P. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5(11): 1177-209.
[http://dx.doi.org/10.3390/ph5111177] [PMID: 24223492]
[28]
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. Biochimica et Biophysica Acta (BBA)-. Proteins and Proteomics 2021; 1869(4)140604
[http://dx.doi.org/10.1016/j.bbapap.2021.140604]
[29]
Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278(1): 585-90.
[http://dx.doi.org/10.1074/jbc.M209548200] [PMID: 12411431]
[30]
Futaki S, Arafiles JVV, Hirose H. Peptide-assisted intracellular delivery of biomacromolecules. Chem Lett 2020; 49: 1088-94.
[http://dx.doi.org/10.1246/cl.200392]
[31]
Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 2020; 11: 101-23.
[http://dx.doi.org/10.3762/bjnano.11.10] [PMID: 31976201]
[32]
Dos Santos Rodrigues B, Kanekiyo T, Singh J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine 2020.28102225
[http://dx.doi.org/10.1016/j.nano.2020.102225] [PMID: 32485318]
[33]
Soe TH, Watanabe K, Ohtsuki T. Photoinduced endosomal escape mechanism: A view from photochemical internalization mediated by CPP-photosensitizer conjugates. Molecules 2020; 26(1): 36.
[http://dx.doi.org/10.3390/molecules26010036] [PMID: 33374732]
[34]
Al-Husaini K, Elkamel E, Han X, Chen P. Therapeutic potential of a cell penetrating peptide (CPP, NP1) mediated siRNA delivery: Evidence in 3D spheroids of colon cancer cells. Can J Chem Eng 2020; 98: 1240-54.
[http://dx.doi.org/10.1002/cjce.23743]
[35]
Li C, Cao X-W, Zhao J, Wang F-J. Effective therapeutic drug delivery by GALA3, an endosomal escape peptide with reduced hydrophobicity. J Membr Biol 2020; 253(2): 139-52.
[http://dx.doi.org/10.1007/s00232-020-00109-2] [PMID: 32002589]
[36]
Meng Z, Luan L, Kang Z, Feng S, Meng Q, Liu K. Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery. J Mater Chem B Mater Biol Med 2017; 5(1): 74-84.
[http://dx.doi.org/10.1039/C6TB02862D] [PMID: 32263436]
[37]
Ullah I, Chung K, Beloor J, et al. Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. J Drug Target 2017; 25(4): 320-9.
[http://dx.doi.org/10.1080/1061186X.2016.1258566] [PMID: 27820977]
[38]
Miyoshi Y, Kadono M, Okazaki S, et al. Endosomal escape of peptide-photosensitizer conjugates is affected by amino acid sequences near the photosensitizer. Bioconjug Chem 2020; 31(3): 916-22.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00046] [PMID: 32027488]
[39]
Kardani K, Milani A. H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16(11): 1227-58.
[http://dx.doi.org/10.1080/17425247.2019.1676720] [PMID: 31583914]
[40]
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9(4): 1153-88.
[http://dx.doi.org/10.1039/D0BM01755H] [PMID: 33355322]
[41]
de Jong H, Bonger KM, Löwik DWPM. Activatable cell-penetrating peptides: 15 years of research. RSC Chemical Biology 2020; 1(4): 192-203.
[http://dx.doi.org/10.1039/D0CB00114G] [PMID: 34458758]
[42]
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2021; 330(10): 1220-8.
[PMID: 33248708]
[43]
Hua D, Tang L, Wang W, et al. Improved antiglioblastoma activity and BBB permeability by conjugation of paclitaxel to a cell-penetrative MMP-2-cleavable peptide. Adv Sci (Weinh) 2020; 8(3)2001960
[http://dx.doi.org/10.1002/advs.202001960] [PMID: 33552853]
[44]
Tian Y, Mi G, Chen Q, et al. Acid-induced activated cell-penetrating peptide-modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces 2018; 10(50): 43411-28.
[http://dx.doi.org/10.1021/acsami.8b15147] [PMID: 30508486]
[45]
Zhu Y, Jiang Y, Meng F, et al. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. J Control Release 2018; 278: 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.025] [PMID: 29596873]
[46]
Reissmann S, Filatova MP. New generation of cell-penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27(5)e3300
[http://dx.doi.org/10.1002/psc.3300] [PMID: 33615648]
[47]
Sharma A, Kapoor P, Gautam A, et al. Computational approach for designing tumor homing peptides. Sci Rep 2013; 3: 1607.
[http://dx.doi.org/10.1038/srep01607] [PMID: 23558316]
[48]
Shergalis A, Bankhead A III, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev 2018; 70(3): 412-45.
[http://dx.doi.org/10.1124/pr.117.014944] [PMID: 29669750]
[49]
Srimanee A, Arvanitidou M, Kim K, Hällbrink M, Langel Ü. Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides 2018; 104: 62-9.
[http://dx.doi.org/10.1016/j.peptides.2018.04.015] [PMID: 29684592]
[50]
Kang RH, Jang J-E, Huh E, et al. A brain tumor-homing tetra-peptide delivers a nano-therapeutic for more effective treatment of a mouse model of glioblastoma. Nanoscale Horiz 2020; 5(8): 1213-25.
[http://dx.doi.org/10.1039/D0NH00077A] [PMID: 32510090]
[51]
Jaraíz-Rodríguez M, Talaverón R, García-Vicente L, et al. Connexin43 peptide, TAT-Cx43266-283, selectively targets glioma cells, impairs malignant growth, and enhances survival in mouse models in vivo. Neuro-oncol 2020; 22(4): 493-504.
[http://dx.doi.org/10.1093/neuonc/noz243] [PMID: 31883012]
[52]
Zhao L, Chen H, Lu L, et al. Design and screening of a novel neuropilin-1 targeted penetrating peptide for anti-angiogenic therapy in glioma. Life Sci 2021; 270119113
[http://dx.doi.org/10.1016/j.lfs.2021.119113] [PMID: 33508290]
[53]
Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006; 30(4): 351-67.
[http://dx.doi.org/10.1007/s00726-005-0289-3] [PMID: 16622600]
[54]
Fominaya J, Bravo J, Rebollo A. Strategies to stabilize cell penetrating peptides for in vivo applications. Ther Deliv 2015; 6(10): 1171-94.
[http://dx.doi.org/10.4155/tde.15.51] [PMID: 26448473]
[55]
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine 2020; 23102112
[http://dx.doi.org/10.1016/j.nano.2019.102112] [PMID: 31669083]
[56]
Saw PE, Song E-W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10(11): 787-807.
[http://dx.doi.org/10.1007/s13238-019-0639-7] [PMID: 31140150]
[57]
Haugaard-Kedström LM, Clemmensen LS, Sereikaite V, et al. A high-affinity peptide ligand targeting syntenin inhibits glioblastoma. J Med Chem 2021; 64(3): 1423-34.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00382] [PMID: 33502198]
[58]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[59]
Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 2016; 11: 47-76.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450]
[60]
Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488(7412): 522-6.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[61]
Kim J, She C, Potez M, et al. Phage display targeting identifies EYA1 as a regulator of glioblastoma stem cell maintenance and proliferation. Stem Cells 2021; 39(7): 853-65.
[http://dx.doi.org/10.1002/stem.3355] [PMID: 33594762]
[62]
Hoffmann K, Milech N, Juraja SM, et al. A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery. Sci Rep 2018; 8(1): 12538.
[http://dx.doi.org/10.1038/s41598-018-30790-2] [PMID: 30135446]
[63]
Porosk L, Gaidutšik I, Langel Ü. Approaches for the discovery of new cell-penetrating peptides. Expert Opin Drug Discov 2020; 1-13.
[PMID: 33874824]
[64]
Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-oncol 2000; 2(1): 45-59.
[http://dx.doi.org/10.1093/neuonc/2.1.45] [PMID: 11302254]
[65]
Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 2019; 9(1): 22.
[http://dx.doi.org/10.3390/biom9010022] [PMID: 30634689]
[66]
Xie J, Bi Y, Zhang H, et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Front Pharmacol 2020; 11: 697.
[http://dx.doi.org/10.3389/fphar.2020.00697] [PMID: 32508641]
[67]
Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 2013; 52(10): 855-68.
[http://dx.doi.org/10.1007/s40262-013-0079-0] [PMID: 23719681]
[68]
Horng C-T, Tsai M-L, Shiang J-C, et al. Glaucoma treatment with the extract of astragalus membranaceus in rats experimental model. Life Sci J 2011; 8: 124-32.
[69]
Langel Ü. CPP, cell-penetrating peptides. Springer 2019.
[http://dx.doi.org/10.1007/978-981-13-8747-0]
[70]
Lulla RR, Goldman S, Yamada T, et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro-oncol 2016; 18(9): 1319-25.
[http://dx.doi.org/10.1093/neuonc/now047] [PMID: 27022131]
[71]
Vatine GD, Barrile R, Workman MJ, et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 2019; 24: 995-1005.
[http://dx.doi.org/10.1016/j.stem.2019.05.011]
[72]
Stalmans S, Bracke N, Wynendaele E, et al. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One 2015; 10(10)e0139652
[http://dx.doi.org/10.1371/journal.pone.0139652] [PMID: 26465925]
[73]
Varnamkhasti BS, Jafari S, Taghavi F, et al. Cell-penetrating peptides: As a promising theranostics strategy to circumvent the blood-brain barrier for CNS diseases. Curr Drug Deliv 2020; 17(5): 375-86.
[http://dx.doi.org/10.2174/1567201817666200415111755] [PMID: 32294035]
[74]
Davidson TA, McGoldrick SJ, Kohn DH. Phage display to augment biomaterial function. Int J Mol Sci 2020; 21(17): 5994.
[http://dx.doi.org/10.3390/ijms21175994] [PMID: 32825391]
[75]
Shukla RS, Qin B, Cheng K. Peptides used in the delivery of small noncoding RNA. Mol Pharm 2014; 11(10): 3395-408.
[http://dx.doi.org/10.1021/mp500426r] [PMID: 25157701]
[76]
Tai W, Gao X. Functional peptides for siRNA deliveryAdv Drug Deliv Rev 2017; 110(111): 157-68.
[http://dx.doi.org/10.1016/j.addr.2016.08.004] [PMID: 27530388]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy