Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Breast Cancer Image Classification: A Review

Author(s): Pooja Pathak, Anand Singh Jalal* and Ritu Rai

Volume 17, Issue 6, 2021

Published on: 28 December, 2020

Page: [720 - 740] Pages: 21

DOI: 10.2174/0929867328666201228125208

Price: $65

Abstract

Background: Breast cancer represents uncontrolled breast cell growth. Breast cancer is the most diagnosed cancer in women worldwide. Early detection of breast cancer improves the chances of survival and increases treatment options. There are various methods for screening breast cancer, such as mammogram, ultrasound, computed tomography and Magnetic Resonance Imaging (MRI). MRI is gaining prominence as an alternative screening tool for early detection and breast cancer diagnosis. Nevertheless, MRI can hardly be examined without the use of a Computer-Aided Diagnosis (CAD) framework, due to the vast amount of data.

Objective: This paper aims to cover the approaches used in the CAD system for the detection of breast cancer.

Methods: In this paper, the methods used in CAD systems are categories into two classes: the conventional approach and artificial intelligence (AI) approach.

Results: The conventional approach covers the basic steps of image processing, such as preprocessing, segmentation, feature extraction and classification. The AI approach covers the various convolutional and deep learning networks used for diagnosis.

Conclusion: This review discusses some of the core concepts used in breast cancer and presents a comprehensive review of efforts in the past to address this problem.

Keywords: Breast cancer, Computer-Aided Diagnosis (CAD), artificial intelligence, tumour, medical imaging, image classification.

Graphical Abstract

[1]
Breast cancer facts and figures 2005:1–28 2006; 1-28.
[2]
Halalli B, Makandar A. Computer Aided Diagnosis-Medical Image Analysis Techniques. Breast Imaging 2017.
[3]
Lima ZS, Ebadi MR, Amjad G, Younesi L. Application of Imaging Technologies in Breast Cancer Detection: A Review Article. Open Access Maced J Med Sci 2019; 7(5): 838-48.
[http://dx.doi.org/10.3889/oamjms.2019.171] [PMID: 30962849]
[4]
Sree SV, Ng EY, Acharya RU, Faust O. Breast imaging: A survey. World J Clin Oncol 2011; 2(4): 171-8.
[http://dx.doi.org/10.5306/wjco.v2.i4.171] [PMID: 21611093]
[5]
Nyström L, Andersson I, Bjurstam N, Frisell J, Nordenskjöld B, Rutqvist LE. Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 2002; 359(9310): 909-19.
[http://dx.doi.org/10.1016/S0140-6736(02)08020-0] [PMID: 11918907]
[6]
Gøtzsche PC. Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality. Cancer 2002; 94(2): 578.
[http://dx.doi.org/10.1002/cncr.10224] [PMID: 11900245]
[7]
Kopans DB. Sonography should not be used for breast cancer screening until its efficacy has been proven scientifically. AJR Am J Roentgenol 2004; 182(2): 489-91.
[http://dx.doi.org/10.2214/ajr.182.2.1820489] [PMID: 14736687]
[8]
Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet 2003; 361(9367): 1405-10.
[http://dx.doi.org/10.1016/S0140-6736(03)13143-1] [PMID: 12727392]
[9]
Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition process. Med Phys 2013; 40(1)
[http://dx.doi.org/10.1118/1.4770279] [PMID: 23298126]
[10]
Chong A, Weinstein SP, McDonald ES, Conant EF. Digital breast tomosynthesis: concepts and clinical practice. Radiology 2019; 292(1): 1-14.
[http://dx.doi.org/10.1148/radiol.2019180760] [PMID: 31084476]
[11]
Weller GE, Wong MK, Modzelewski RA, et al. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 2005; 65(2): 533-9.
[PMID: 15695396]
[12]
Younesi L, Dehkordi ZK, Lima ZS, Amjad G. Ultrasound screening at 11-14 weeks of pregnancy for diagnosis of placenta accreta in mothers with a history of cesarean section. Eur J Transl Myol 2018; 28(4): 7772.
[http://dx.doi.org/10.4081/ejtm.2018.7772] [PMID: 30662697]
[13]
Fass L. Imaging and cancer: a review. Mol Oncol 2008; 2(2): 115-52.
[http://dx.doi.org/10.1016/j.molonc.2008.04.001] [PMID: 19383333]
[14]
Brindle KM. Molecular imaging using magnetic resonance: new tools for the development of tumour therapy. The British journal of radiology 2003; 76(suppl_2): S111-7.
[http://dx.doi.org/10.1259/bjr/50577981]
[15]
Mardor Y. Proceedings of the American Association for Cancer Research 41 (abstract 2547). 2003.
[PMID: 12637476]
[16]
Keith LG, Oleszczuk JJ, Laguens M. Circadian rhythm chaos: a new breast cancer marker. Int J Fertil Womens Med 2001; 46(5): 238-47.
[PMID: 11720196]
[17]
Salhab M, Al Sarakbi W, Mokbel K. The evolving role of the dynamic thermal analysis in the early detection of breast cancer. International Seminars in Surgical Oncology 2005; 2(1): 8.
[18]
Gautherie M, Gros CH. Contribution of infrared thermography to early diagnosis, pretherapeutic prognosis, and post-irradiation follow-up of breast carcinomas. Strasbourg, France: Laboratory of Electroradiology, Faculty of Medicine, Louis Pasteur University 1976.
[19]
Gros C, Gautherie M, Bourjat P. Prognosis and post-therapeutic follow-up of breast cancers by thermography. Bibl Radiol 1975; (6): 77-90.
[PMID: 1180864]
[20]
Ng EY, Chen Y, Ung LN. Computerized breast thermography: study of image segmentation and temperature cyclic variations. J Med Eng Technol 2001; 25(1): 12-6.
[http://dx.doi.org/10.1080/03091900010022247] [PMID: 11345095]
[21]
Codari M, Schiaffino S, Sardanelli F, Trimboli RM. Artificial intelligence for breast MRI in 2008–2018: a systematic mapping review. AJR Am J Roentgenol 2019; 212(2): 280-92.
[http://dx.doi.org/10.2214/AJR.18.20389] [PMID: 30601029]
[22]
Jalalian A, Mashohor S, Mahmud R, Karasfi B, Saripan MIB, Ramli ARB. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI J 2017; 16: 113-37.
[PMID: 28435432]
[23]
Kyaw MM. Pre-segmentation for the computer aided diagnosis system. International Journal of Computer Science & Information Technology 2013; 5(1): 79.
[http://dx.doi.org/10.5121/ijcsit.2013.5106]
[24]
Martin S, Troccaz J, Daanenc V. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Med Phys 2010; 37(4): 1579-90.
[http://dx.doi.org/10.1118/1.3315367] [PMID: 20443479]
[25]
Gubern-Mérida A, Kallenberg M, Martí R, Karssemeijer N. Segmentation of the pectoral muscle in breast MRI using atlas-based approaches. International conference on medical image computing and computer-assisted intervention 2012; 371-8.
[http://dx.doi.org/10.1007/978-3-642-33418-4_46]
[26]
Langerak TR, van der Heide UA, Kotte AN, Viergever MA, van Vulpen M, Pluim JP. Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans Med Imaging 2010; 29(12): 2000-8.
[http://dx.doi.org/10.1109/TMI.2010.2057442] [PMID: 20667809]
[27]
Khalvati F, Gallego-Ortiz C, Balasingham S, Martel AL. Automated segmentation of breast in 3-D MR images using a robust atlas. IEEE Trans Med Imaging 2015; 34(1): 116-25.
[http://dx.doi.org/10.1109/TMI.2014.2347703] [PMID: 25137725]
[28]
Fooladivanda A, Shokouhi SB, Ahmadinejad N. Localized-atlas-based segmentation of breast MRI in a decision-making framework. Australas Phys Eng Sci Med 2017; 40(1): 69-84.
[http://dx.doi.org/10.1007/s13246-016-0513-3] [PMID: 28116639]
[29]
Eugenio Iglesias J, Rory Sabuncu M, Van Leemput K. A unified framework for cross-modality multi-atlas segmentation of brain MRI. Med Image Anal 2013; 17(8): 1181-91.
[http://dx.doi.org/10.1016/j.media.2013.08.001] [PMID: 24001931]
[30]
Dowling J, Fripp J, Freer P, Ourselin S, Salvado O. Automatic atlas-based segmentation of the prostate: A MICCAI 2009 Prostate Segmentation Challenge entry. Worskshop in Med Image Comput Comput Assist Interv 2009; 24: 17-24.
[31]
Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference in neuroimaging: theory. Neuroimage 2002; 16(2): 465-83.
[http://dx.doi.org/10.1006/nimg.2002.1090] [PMID: 12030832]
[32]
Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26(3): 839-51.
[http://dx.doi.org/10.1016/j.neuroimage.2005.02.018] [PMID: 15955494]
[33]
Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999; 18(10): 897-908.
[http://dx.doi.org/10.1109/42.811270] [PMID: 10628949]
[34]
Pandey D, Yin X, Wang H, et al. Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs. Heliyon 2018; 4(12)
[http://dx.doi.org/10.1016/j.heliyon.2018.e01042] [PMID: 30582055]
[35]
Thakran S, Chatterjee S, Singhal M, Gupta RK, Singh A. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients. PLoS One 2018; 13(1)
[http://dx.doi.org/10.1371/journal.pone.0190348] [PMID: 29320532]
[36]
Díaz-Cortés MA, Ortega-Sánchez N, Hinojosa S, et al. A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Phys Technol 2018; 93: 346-61.
[http://dx.doi.org/10.1016/j.infrared.2018.08.007]
[37]
Sun L, He J, Yin X, et al. An image segmentation framework for extracting tumors from breast magnetic resonance images. J Innov Opt Health Sci 2018; 11(04)
[http://dx.doi.org/10.1142/S1793545818500141]
[38]
Rahman M, Hussain MG, Hasan MR, Sultana B, Akter S. Detection and Segmentation of Breast Tumor from MRI Images Using Image Processing Techniques. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). 720-4.
[http://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-000134]
[39]
Shokouhi SB, Fooladivanda A, Ahmadinejad N. Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter. EURASIP J Adv Signal Process 2017; 2017(1): 39.
[http://dx.doi.org/10.1186/s13634-017-0476-x]
[40]
Sharma P, Sharma MS, Tomar RS. A new approach for image segmentation using improved k-means and ROI saliency map. Journal of Information and Optimization Sciences 2017; 38(6): 927-35.
[http://dx.doi.org/10.1080/02522667.2017.1372138]
[41]
Yuan G, Liu Y, Huang W. Segmentation of MR Breast Cancer Images based on DWT and K-means algorithm. Journal of Physics: Conference Series 2019; 1229(1): 012025.
[42]
Dheeba J, Albert Singh N, Tamil Selvi S. Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014; 49: 45-52.
[http://dx.doi.org/10.1016/j.jbi.2014.01.010] [PMID: 24509074]
[43]
Lu W, Li Z, Chu J. A novel computer-aided diagnosis system for breast MRI based on feature selection and ensemble learning. Comput Biol Med 2017; 83: 157-65.
[http://dx.doi.org/10.1016/j.compbiomed.2017.03.002] [PMID: 28282591]
[44]
Keyvanfard F, Shoorehdeli MA, Teshnehlab M, Nie K, Su MY. Specificity enhancement in classification of breast MRI lesion based on multi-classifier. Neural Comput Appl 2013; 22(1): 35-45.
[http://dx.doi.org/10.1007/s00521-012-0937-y]
[45]
Fernandez-Lozano C, Seoane JA, Gestal M, Gaunt TR, Dorado J, Campbell C. Texture classification using feature selection and kernel-based techniques. Soft Comput 2015; 19(9): 2469-80.
[http://dx.doi.org/10.1007/s00500-014-1573-5]
[46]
Fusco R, Sansone M, Filice S, et al. Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. J Med Biol Eng 2016; 36(4): 449-59.
[http://dx.doi.org/10.1007/s40846-016-0163-7] [PMID: 27656117]
[47]
Fusco R, Sansone M, Petrillo A, Sansone C. A multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI. Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) 2012; 684-92.
[http://dx.doi.org/10.1007/978-3-642-34166-3_75]
[48]
Fusco R, Di Marzo M, Sansone C, Sansone M, Petrillo A. Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system. European radiology experimental 2017; 1(1): 1-7.
[http://dx.doi.org/10.1186/s41747-017-0007-4]
[49]
Inglese M, Cavaliere C, Monti S, et al. A multi-parametric PET/MRI study of breast cancer: Evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR Biomed 2019; 32(1)
[http://dx.doi.org/10.1002/nbm.4026] [PMID: 30379384]
[50]
Monti S, Aiello M, Incoronato M, et al. DCE-MRI pharmacokinetic-based phenotyping of invasive ductal carcinoma: a radiomic study for prediction of histological outcomes. Contrast media   molecular imaging 2018.
[http://dx.doi.org/10.1155/2018/5076269]
[51]
Nagasaka K, Satake H, Ishigaki S, Kawai H, Naganawa S. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer. Breast Cancer 2019; 26(1): 113-24.
[http://dx.doi.org/10.1007/s12282-018-0899-8] [PMID: 30069785]
[52]
Niu Q, Jiang X, Li Q, et al. Texture features and pharmacokinetic parameters in differentiating benign and malignant breast lesions by dynamic contrast enhanced magnetic resonance imaging. Oncol Lett 2018; 16(4): 4607-13.
[http://dx.doi.org/10.3892/ol.2018.9196] [PMID: 30214595]
[53]
Aghaei F, Tan M, Hollingsworth AB, Qian W, Liu H, Zheng B. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy. Med Phys 2015; 42(11): 6520-8.
[http://dx.doi.org/10.1118/1.4933198] [PMID: 26520742]
[54]
Tozaki M, Fukuda K. High-spatial-resolution MRI of non-masslike breast lesions: interpretation model based on BI-RADS MRI descriptors. AJR Am J Roentgenol 2006; 187(2): 330-7.
[http://dx.doi.org/10.2214/AJR.05.0998] [PMID: 16861534]
[55]
Banaie M, Soltanian-Zadeh H, Saligheh-Rad HR, Gity M. Spatiotemporal features of DCE-MRI for breast cancer diagnosis. Comput Methods Programs Biomed 2018; 155: 153-64.
[http://dx.doi.org/10.1016/j.cmpb.2017.12.015] [PMID: 29512495]
[56]
Zheng Y, Englander S, Baloch S, et al. STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med Phys 2009; 36(7): 3192-204.
[http://dx.doi.org/10.1118/1.3151811] [PMID: 19673218]
[57]
Agliozzo S, De Luca M, Bracco C, et al. Computer-aided diagnosis for dynamic contrast-enhanced breast MRI of mass-like lesions using a multiparametric model combining a selection of morphological, kinetic, and spatiotemporal features. Med Phys 2012; 39(4): 1704-15.
[http://dx.doi.org/10.1118/1.3691178] [PMID: 22482596]
[58]
Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 2007; 58(3): 562-71.
[http://dx.doi.org/10.1002/mrm.21347] [PMID: 17763361]
[59]
Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY. Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 2008; 15(12): 1513-25.
[http://dx.doi.org/10.1016/j.acra.2008.06.005] [PMID: 19000868]
[60]
Sutton EJ, Oh JH, Dashevsky BZ, et al. Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay. J Magn Reson Imaging 2015; 42(5): 1398-406.
[http://dx.doi.org/10.1002/jmri.24890] [PMID: 25850931]
[61]
Holli-Helenius K, Salminen A, Rinta-Kiikka I, et al. MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study. BMC Med Imaging 2017; 17(1): 69.
[http://dx.doi.org/10.1186/s12880-017-0239-z] [PMID: 29284425]
[62]
Sun X, He B, Luo X, et al. Preliminary study on molecular subtypes of breast cancer based on magnetic resonance imaging texture analysis. J Comput Assist Tomogr 2018; 42(4): 531-5.
[http://dx.doi.org/10.1097/RCT.0000000000000738] [PMID: 29659431]
[63]
Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed 2009; 94(1): 66-76.
[http://dx.doi.org/10.1016/j.cmpb.2008.08.005] [PMID: 18922598]
[64]
Newell D, Nie K, Chen JH, et al. Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement. Eur Radiol 2010; 20(4): 771-81.
[http://dx.doi.org/10.1007/s00330-009-1616-y] [PMID: 19789878]
[65]
Burnside ES, Drukker K, Li H, et al. Using computer-extracted image phenotypes from tumors on breast magnetic resonance imaging to predict breast cancer pathologic stage. Cancer 2016; 122(5): 748-57.
[http://dx.doi.org/10.1002/cncr.29791] [PMID: 26619259]
[66]
Gubern-Mérida A, Martí R, Melendez J, et al. Automated localization of breast cancer in DCE-MRI. Med Image Anal 2015; 20(1): 265-74.
[http://dx.doi.org/10.1016/j.media.2014.12.001] [PMID: 25532510]
[67]
Fan M, Li H, Wang S, Zheng B, Zhang J, Li L. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS One 2017; 12(2)
[http://dx.doi.org/10.1371/journal.pone.0171683] [PMID: 28166261]
[68]
Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997; 97(1-2): 273-324.
[http://dx.doi.org/10.1016/S0004-3702(97)00043-X]
[69]
Uzer MS, Inan O, Yılmaz N. A hybrid breast cancer detection system via neural network and feature selection based on SBS, SFS and PCA. Neural Comput Appl 2013; 23(3-4): 719-28.
[http://dx.doi.org/10.1007/s00521-012-0982-6]
[70]
Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A. Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology. Artif Intell Med 2014; 60(1): 65-77.
[http://dx.doi.org/10.1016/j.artmed.2013.11.003] [PMID: 24355697]
[71]
Mokni R, Gargouri N, Damak A, Sellami D, Feki W, Mnif Z. A Novel CAD System for Breast DCE-MRI Based on Textural Analysis Using Several Machine Learning Methods. InInternational Conference on Hybrid Intelligent Systems. 176-87.
[72]
Hong F, Jing Y, Cun-cun H, Ke-zhen Z, Ruo-xia Y. A fast density peak clustering algorithm optimized by uncertain number neighbors for breast MR image. Journal of Physics: Conference Series 2019; 1229(1): 012024.
[http://dx.doi.org/10.1088/1742-6596/1229/1/012024]
[73]
Sonego P, Kocsor A, Pongor S. ROC analysis: applications to the classification of biological sequences and 3D structures. Brief Bioinform 2008; 9(3): 198-209.
[http://dx.doi.org/10.1093/bib/bbm064] [PMID: 18192302]
[74]
Fawcett T. ROC graphs: Notes and practical considerations for researchers. Mach Learn 2004; 31(1): 1-38.
[75]
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006; 27(8): 861-74.
[http://dx.doi.org/10.1016/j.patrec.2005.10.010]
[76]
Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging 2020; 51(5): 1310-24.
[http://dx.doi.org/10.1002/jmri.26878] [PMID: 31343790]
[77]
Marrone S, Piantadosi G, Fusco R, Petrillo A, Sansone M, Sansone C. An investigation of deep learning for lesions malignancy classification in breast DCE-MRI. InInternational Conference on Image Analysis and Processing. 479-89.
[http://dx.doi.org/10.1007/978-3-319-68548-9_44]
[78]
Tsougos I, Vamvakas A, Kappas C, Fezoulidis I, Vassiou K. Application of radiomics and decision support systems for breast MR differential diagnosis. Computational and mathematical methods in medicine 2018.
[http://dx.doi.org/10.1155/2018/7417126]
[79]
Bignotti B, Signori A, Valdora F, et al. Evaluation of background parenchymal enhancement on breast MRI: a systematic review. Br J Radiol 2017; 90(1070)
[http://dx.doi.org/10.1259/bjr.20160542] [PMID: 27925480]
[80]
Pang T, Wong JH, Ng WL, Chan CS. Deep Learning Radiomics in Breast Cancer with Different Modalities: Overview and Future. Expert Syst Appl 2020.
[http://dx.doi.org/10.1016/j.eswa.2020.113501]
[81]
Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evol Syst 2020; 11(1): 143-63.
[http://dx.doi.org/10.1007/s12530-019-09297-2]
[82]
Zhang Y, Chen JH, Chang KT, et al. Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-net. Acad Radiol 2019; 26(11): 1526-35.
[http://dx.doi.org/10.1016/j.acra.2019.01.012] [PMID: 30713130]
[83]
Rasti R, Teshnehlab M, Phung SL. Breast cancer diagnosis in DCE-MRI using mixture ensemble of convolutional neural networks. Pattern Recognit 2017; 72: 381-90.
[http://dx.doi.org/10.1016/j.patcog.2017.08.004]
[84]
Zhang J, Saha A, Zhu Z, Mazurowski MA. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans Med Imaging 2019; 38(2): 435-47.
[http://dx.doi.org/10.1109/TMI.2018.2865671] [PMID: 30130181]
[85]
Piantadosi G, Sansone M, Sansone C. Breast segmentation in mri via u-net deep convolutional neural networks. In2018 24th International Conference on Pattern Recognition (ICPR). 3917-22.
[http://dx.doi.org/10.1109/ICPR.2018.8545327]
[86]
Maicas G, Carneiro G, Bradley AP. Globally optimal breast mass segmentation from DCE-MRI using deep semantic segmentation as shape prior. In2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017. 305-9.
[http://dx.doi.org/10.1109/ISBI.2017.7950525]
[87]
Hassanien AE, Moftah HM, Azar AT, Shoman M. MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl Soft Comput 2014; 14: 62-71.
[http://dx.doi.org/10.1016/j.asoc.2013.08.011]
[88]
El Adoui M, Mahmoudi SA, Larhmam MA, Benjelloun M. MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures. Computers 2019; 8(3): 52.
[http://dx.doi.org/10.3390/computers8030052]
[89]
Herent P, Schmauch B, Jehanno P, et al. Detection and characterization of MRI breast lesions using deep learning. Diagn Interv Imaging 2019; 100(4): 219-25.
[http://dx.doi.org/10.1016/j.diii.2019.02.008] [PMID: 30926444]
[90]
Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on DCE‐MRI by using radiomics and deep learning with consideration of peritumor tissue. J Magn Reson Imaging 2019.
[PMID: 31675151]
[91]
ElNawasany AM, Ali AF, Waheed ME. A novel hybrid perceptron neural network algorithm for classifying breast MRI tumors. InInternational Conference on Advanced Machine Learning Technologies and Applications. 357-66.
[http://dx.doi.org/10.1007/978-3-319-13461-1_34]
[92]
Ertaş G, Demirgüneş DD, Eroğul O. Conventional and multi-state cellular neural networks in segmenting breast region from MR images: performance comparison. In2012 International Symposium on Innovations in Intelligent Systems and Applications. 1-5.
[http://dx.doi.org/10.1109/INISTA.2012.6246994]
[93]
Hassanien AE, El-Bendary N, Kudělka M, Snášel V. Breast cancer detection and classification using support vector machines and pulse coupled neural network. InProceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011). Prague, Czech Republic. Springer, Berlin, Heidelberg. 2011; pp. 269-79.
[94]
Amit G, Ben-Ari R, Hadad O, Monovich E, Granot N, Hashoul S. Classification of breast MRI lesions using small-size training sets: comparison of deep learning approaches. Medical Imaging 2017: Computer-Aided Diagnosis 2017; 10134: 101341H.
[95]
Hu Q, Whitney HM, Giger ML. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci Rep 2020; 10(1): 10536.
[http://dx.doi.org/10.1038/s41598-020-67441-4] [PMID: 32601367]
[96]
Haarburger C, Langenberg P, Truhn D, et al. Transfer learning for breast cancer malignancy classification based on dynamic contrast-enhanced MR images. Bildverarbeitung für die Medizin 2018; 216-21.
[http://dx.doi.org/10.1007/978-3-662-56537-7_61]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy