Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Benefits of Coffee Consumption for Human Health: An Overview

Author(s): Jéssica Petrine Castro Pereira*, Fernanda Aparecida Castro Pereira and Carlos José Pimenta

Volume 18, Issue 4, 2022

Published on: 26 January, 2022

Page: [387 - 397] Pages: 11

DOI: 10.2174/1573401318666220111151531

Price: $65

Abstract

Background: Coffee is one of the most consumed beverages worldwide and is popular for its characteristic flavor and rich organoleptic properties.

Aim: Based on published articles, the aims of this review are i) study the association between coffee consumption and benefits to human health; ii) the effects of coffee consumption on some pathologies; and iii) provide a description of coffee’s bioactive compounds.

Discussion: Coffee presents bioactive compounds, which include phenolic compounds, especially chlorogenic acid (caffeoylquinic acid), trigonelline, and diterpenes, such as cafestol and kahweol. These compounds are related to the beneficial effects for human health, including high antioxidant activity, antimutagenic activity, hepatoprotective action, reduced incidence of type 2 diabetes mellitus, reduced risk of cardiovascular diseases, decreased incidence of inflammatory diseases, reduced menopausal symptoms, and others. Coffee’s bioactive compounds are caffeine, chlorogenic acid, trigonelline, cafestol and kahweol, which are closely related to coffee’s beneficial effects.

Conclusion: The present review clarified that the benefits of moderate coffee consumption outweigh the associated risks.

Keywords: Bioactive compounds, antioxidant activity, anti-inflammatory activity, antimutagenic activity, type 2 diabetes mellitus, cardiovascular disease.

Graphical Abstract

[1]
Butt MS, Sultan MT. Coffee and its consumption: Benefits and risks. Crit Rev Food Sci Nutr 2011; 51(4): 363-73.
[http://dx.doi.org/10.1080/10408390903586412] [PMID: 21432699]
[2]
Speer K, Kölling-Speer I. The lipid fraction of the coffee bean. Braz J Plant Physiol 2006; 18(1): 201-16.
[http://dx.doi.org/10.1590/S1677-04202006000100014]
[3]
Klingel T, Kremer JI, Gottstein V, Rajcic de Rezende T, Schwarz S, Lachenmeier DW. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European union. Foods 2020; 9(5): 1-20.
[http://dx.doi.org/10.3390/foods9050665] [PMID: 32455549]
[4]
CONAB. Companhia Nacional de Abastecimento. Bienalidade positiva impulsiona safra de café no país e aumenta produção 2020.Available from: https://www.conab.gov.br/ultimas-noticias/3223-bienalidade-positiva-impulsiona-safra-de-cafe-na-maior-parte-do-pais-e-aumenta-producao
[5]
Tucker CM. Coffee Culture: Local Experiences, Global Connections. 2nd ed. New York: Routledge 2016; pp. 233-4.
[6]
International Coffee Organization. Coffee Market Report 2021.Available from: https://www.ico.org/prices/new-consumption-table.pdf
[7]
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017; 359: j5024.
[http://dx.doi.org/10.1136/bmj.j5024] [PMID: 29167102]
[8]
Canela MD, Bastos DHM, Pinheiro MM, Ciconelli RM, Ferraz MB, Martini LA. Consumption of stimulant drinks and consequent ingestion of phenolic compounds and caffeine. Nutr Rev Soc Bras Aliment Nutr 2009; 34(1): 143-57.
[9]
Frost-Meyer NJ, Logomarsino JV. Impact of coffee components on inflammatory markers: A review. J Funct Foods 2012; 4(4): 819-30.
[http://dx.doi.org/10.1016/j.jff.2012.05.010]
[10]
Brandt A, Nier A, Jin CJ, et al. Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biol 2019; 21: 101092.
[http://dx.doi.org/10.1016/j.redox.2018.101092] [PMID: 30605883]
[11]
Langland J, Jacobs B, Wagner CE, Ruiz G, Cahill TM. Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses. Antiviral Res 2018; 160: 143-50.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.021] [PMID: 30393014]
[12]
Bresciani L, Calani L, Bruni R, Brighenti F, Del Rio D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res Int 2014; 61: 196-201.
[http://dx.doi.org/10.1016/j.foodres.2013.10.047]
[13]
Pourshahidi LK, Navarini L, Petracco M, Strain JJ. A comprehensive overview of the risks and benefits of coffee consumption. Compr Rev Food Sci Food Saf 2016; 15(4): 671-84.
[http://dx.doi.org/10.1111/1541-4337.12206] [PMID: 33401838]
[14]
Ukers WH. All About Coffee. New York: The Tea & Coffee Trade Journal Company 1935; p. 832.
[15]
Bernado WP, Rakocevic M, Santos AR, et al. Biomass and leaf acclimations to ultraviolet solar radiation in juvenile plants of Coffea arabica and C. Canephora Plants 2021; 10(4): 1-17.
[http://dx.doi.org/10.3390/plants10040640] [PMID: 33800618]
[16]
Durán CAA, Tsukui A, Santos FKF, Martinez ST, Bizzo HR, Rezende CM. Coffee: General aspects and its use beyond drink. Rev Virtual Quim 2017; 9(1): 107-34.
[http://dx.doi.org/10.21577/1984-6835.20170010]
[17]
Volsi B, Telles TS, Caldarelli CE, Camara MRGD. The dynamics of coffee production in Brazil. PLoS One 2019; 14(7): e0219742.
[http://dx.doi.org/10.1371/journal.pone.0219742] [PMID: 31335891]
[18]
Loftfield E, Freedman ND, Dodd KW, et al. Coffee drinking is widespread in the United States, but usual intake varies by key demographic and lifestyle factors. J Nutr 2016; 146(9): 1762-8.
[http://dx.doi.org/10.3945/jn.116.233940] [PMID: 27489008]
[19]
Baek JH, Kim NJ, Song JK, Chun KH. Kahweol inhibits lipid accumulation and induces Glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep 2017; 50(11): 566-71.
[http://dx.doi.org/10.5483/BMBRep.2017.50.11.031] [PMID: 28602160]
[20]
Farias-Pereira R, Park CS, Park Y. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Sci Biotechnol 2019; 28(5): 1287-96.
[http://dx.doi.org/10.1007/s10068-019-00662-0] [PMID: 31695927]
[21]
Messina G, Zannella C, Monda V, et al. The beneficial effects of coffee in human nutrition. Biol Med (Aligarh) 2015; 7(4): 1-5.
[22]
Freeman AM, Morris PB, Aspry K, et al. A clinician’s guide for trending cardiovascular nutrition controversies: Part II. J Am Coll Cardiol 2018; 72(5): 553-68.
[http://dx.doi.org/10.1016/j.jacc.2018.05.030] [PMID: 30049315]
[23]
De Oliveira PMA, De Almeida RH, De Oliveira NA, Bostyn S, Gonçalves CB, De Oliveira AL. Enrichment of diterpenes in green coffee oil using supercritical fluid extraction - Characterization and comparison with green coffee oil from pressing. J Supercrit Fluids 2014; 95: 137-45.
[http://dx.doi.org/10.1016/j.supflu.2014.08.016]
[24]
Martín MX, Pablos F, González AG, Valdenebro MX, León-Camacho M. Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta 2001; 54(2): 291-7.
[http://dx.doi.org/10.1016/S0039-9140(00)00647-0] [PMID: 18968251]
[25]
Lorente-Cebrián S, Costa AGV, Navas-Carretero S, et al. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem 2015; 71(2): 341-9.
[http://dx.doi.org/10.1007/s13105-015-0395-y] [PMID: 25752887]
[26]
Zhang H, Zhang H, Troise AD, Fogliano V. Melanoidins from coffee, cocoa, and bread are able to scavenge α-dicarbonyl compounds under simulated physiological conditions. J Agric Food Chem 2019; 67(39): 10921-9.
[http://dx.doi.org/10.1021/acs.jafc.9b03744] [PMID: 31496242]
[27]
Yu X, Zhao M, Liu F, Zeng S, Hu J. Antioxidants in volatile Maillard reaction products: Identification and interaction. Lebensm Wiss Technol 2013; 53(1): 22-8.
[http://dx.doi.org/10.1016/j.lwt.2013.01.024]
[28]
Moreira ASP, Nunes FM, Domingues MR, Coimbra MA. Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food Funct 2012; 3(9): 903-15.
[http://dx.doi.org/10.1039/c2fo30048f] [PMID: 22584883]
[29]
Mendoza N, Silva EME. Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. In: Asao T, Asaduzzaman M, Eds.Phytochemicals-Source Antioxidants Role in Disease Prevention 2018; pp. 1-24.
[30]
Acidri R, Sawai Y, Sugimoto Y, et al. Phytochemical profile and antioxidant capacity of coffee plant organs compared to green and roasted coffee beans. Antioxidants 2020; 9(2): 93.
[http://dx.doi.org/10.3390/antiox9020093] [PMID: 31979036]
[31]
Brezová V, Šlebodová A, Staško A. Coffee as a source of antioxidants: An EPR study. Food Chem 2009; 114(3): 859-68.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.025]
[32]
Naso LG, Valcarcel M, Roura-Ferrer M, et al. Promising antioxidant and anticancer (human breast cancer) oxidovanadium(IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin. J Inorg Biochem 2014; 135: 86-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.013] [PMID: 24681549]
[33]
Wang LN, Wang W, Hattori M, Daneshtalab M, Ma CM. Synthesis, anti-HCV, antioxidant and reduction of intracellular reactive oxygen species generation of a chlorogenic acid analogue with an amide bond replacing the ester bond. Molecules 2016; 21(6): 1-9.
[http://dx.doi.org/10.3390/molecules21060737] [PMID: 27338318]
[34]
Perrone D, Donangelo R, Donangelo CM, Farah A. Modeling weight loss and chlorogenic acids content in coffee during roasting. J Agric Food Chem 2010; 58(23): 12238-43.
[http://dx.doi.org/10.1021/jf102110u] [PMID: 21049932]
[35]
Fuller M, Rao NZ. The effect of time, roasting temperature, and grind size on caffeine and chlorogenic acid concentrations in cold brew coffee. Sci Rep 2017; 7(1): 17979.
[http://dx.doi.org/10.1038/s41598-017-18247-4] [PMID: 29269877]
[36]
Ky CL, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 2001; 75(2): 223-30.
[http://dx.doi.org/10.1016/S0308-8146(01)00204-7]
[37]
Clifford MN. Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 2000; 80(7): 1033-43.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033:AID-JSFA595>3.0.CO;2-T]
[38]
Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother 2018; 97(97): 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[39]
Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol 2020; 87: 71-88.
[http://dx.doi.org/10.1016/bs.apha.2019.12.002]
[40]
Fernandes MYD, Dobrachinski F, Silva HB, et al. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Sci Rep 2021; 11(1): 10488.
[http://dx.doi.org/10.1038/s41598-021-89964-0] [PMID: 34006978]
[41]
Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017; 22(3): 7-9.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[42]
Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162.
[http://dx.doi.org/10.1155/2014/943162] [PMID: 24711954]
[43]
Han D, Gu X, Gao J, et al. Chlorogenic acid promotes the Nrf2/HO-1 anti-oxidative pathway by activating p21Waf1/Cip1 to resist dexamethasone-induced apoptosis in osteoblastic cells. Free Radic Biol Med 2019; 137: 1-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.014] [PMID: 31004750]
[44]
Ullrich S, de Vries YC, Kühn S, Repantis D, Dresler M, Ohla K. Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment. Physiol Behav 2015; 151: 629-37.
[http://dx.doi.org/10.1016/j.physbeh.2015.08.028] [PMID: 26320858]
[45]
Cheng B, Furtado A, Smyth HE, Henry RJ. Influence of genotype and environment on coffee quality. Trends Food Sci Technol 2016; 57: 20-30.
[http://dx.doi.org/10.1016/j.tifs.2016.09.003]
[46]
Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct 2014; 5(8): 1718-26.
[http://dx.doi.org/10.1039/C4FO00290C] [PMID: 25014672]
[47]
Westerterp-Plantenga M, Diepvens K, Joosen AMCP, Bérubé-Parent S, Tremblay A. Metabolic effects of spices, teas, and caffeine. Physiol Behav 2006; 89(1): 85-91.
[http://dx.doi.org/10.1016/j.physbeh.2006.01.027] [PMID: 16580033]
[48]
Rudolph T, Knudsen K. A case of fatal caffeine poisoning. Obstet Anesthes Dig 2011; 31(2): 127.
[http://dx.doi.org/10.1097/01.aoa.0000397166.79288.20]
[49]
Holmgren P, Nordén-Pettersson L, Ahlner J. Caffeine fatalities--four case reports. Forensic Sci Int 2004; 139(1): 71-3.
[http://dx.doi.org/10.1016/j.forsciint.2003.09.019] [PMID: 14687776]
[50]
Temple JL, Bernard C, Lipshultz SE, Czachor JD, Westphal JA, Mestre MA. The safety of ingested caffeine: A comprehensive review. Front Psychiatry 2017; 8: 80.
[http://dx.doi.org/10.3389/fpsyt.2017.00080] [PMID: 28603504]
[51]
Xu K, Xu Y, Brown-Jermyn D, et al. Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 2006; 26(2): 535-41.
[http://dx.doi.org/10.1523/JNEUROSCI.3008-05.2006] [PMID: 16407551]
[52]
Rosendahl AH, Perks CM, Zeng L, et al. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res 2015; 21: pp 1877-1887.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1748]
[53]
Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 2017; 23(4): 272-90.
[http://dx.doi.org/10.1111/cns.12684] [PMID: 28317317]
[54]
Caporaso N, Whitworth MB, Grebby S, Fisk ID. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res Int 2018; 106(106): 193-203.
[http://dx.doi.org/10.1016/j.foodres.2017.12.031] [PMID: 29579918]
[55]
Stadler RH, Varga N, Hau J, Vera FA, Welti DH. Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. J Agric Food Chem 2002; 50(5): 1192-9.
[http://dx.doi.org/10.1021/jf011234k] [PMID: 11853503]
[56]
Perrone D, Donangelo CM, Farah A. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography-mass spectrometry. Food Chem 2008; 110(4): 1030-5.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.012] [PMID: 26047298]
[57]
Carvalho Ddo C, Brigagão MRPL, dos Santos MH, de Paula FBA, Giusti-Paiva A, Azevedo L. Organic and conventional Coffea arabica L.: A comparative study of the chemical composition and physiological, biochemical and toxicological effects in Wistar rats. Plant Foods Hum Nutr 2011; 66(2): 114-21.
[http://dx.doi.org/10.1007/s11130-011-0221-9] [PMID: 21523414]
[58]
Rodrigues NP, Salva Tde J, Bragagnolo N. Influence of coffee genotype on bioactive compounds and the in vitro capacity to scavenge reactive oxygen and nitrogen species. J Agric Food Chem 2015; 63(19): 4815-26.
[http://dx.doi.org/10.1021/acs.jafc.5b00530] [PMID: 25910038]
[59]
Folwarczna J, Janas A, Pytlik M, et al. Effects of trigonelline, an alkaloid present in coffee, on diabetes-induced disorders in the rat skeletal system. Nutrients 2016; 8(3): 133.
[http://dx.doi.org/10.3390/nu8030133] [PMID: 26950142]
[60]
van Cruchten STJ, de Haan LHJ, Mulder PPJ, et al. The role of epoxidation and electrophile-responsive element-regulated gene transcription in the potentially beneficial and harmful effects of the coffee components cafestol and kahweol. J Nutr Biochem 2010; 21(8): 757-63.
[http://dx.doi.org/10.1016/j.jnutbio.2009.05.001] [PMID: 19616929]
[61]
Halvorsen B, Ranheim T, Nenseter MS, Huggett AC, Drevon CA. Effect of a coffee lipid (cafestol) on cholesterol metabolism in human skin fibroblasts. J Lipid Res 1998; 39(4): 901-12.
[http://dx.doi.org/10.1016/S0022-2275(20)32576-1] [PMID: 9555953]
[62]
Lee KJ, Jeong HG. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol Lett 2007; 173(2): 80-7.
[http://dx.doi.org/10.1016/j.toxlet.2007.06.008] [PMID: 17689207]
[63]
Cárdenas C, Quesada AR, Medina MA. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS One 2011; 6(8): e23407.
[http://dx.doi.org/10.1371/journal.pone.0023407] [PMID: 21858104]
[64]
Wang S, Yoon YC, Sung MJ, Hur HJ, Park JH. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2012; 421(3): 567-71.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.046] [PMID: 22525673]
[65]
Ren Y, Wang C, Xu J, Wang S. Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int J Mol Sci 2019; 20(17): E4238.
[http://dx.doi.org/10.3390/ijms20174238] [PMID: 31480213]
[66]
Kim K, Kim K, Park SM. Association between the prevalence of metabolic syndrome and the level of coffee consumption among Korean women. PLoS One 2016; 11(12): e0167007.
[http://dx.doi.org/10.1371/journal.pone.0167007] [PMID: 27977716]
[67]
Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies in vitro. J Nat Prod 2015; 78(10): 2447-51.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00481] [PMID: 26465380]
[68]
Urgert R, Katan MB. The cholesterol-raising factor from coffee beans. Annu Rev Nutr 1997; 17: 305-24.
[http://dx.doi.org/10.1146/annurev.nutr.17.1.305] [PMID: 9240930]
[69]
Higdon JV, Frei B. Coffee and health: A review of recent human research. Crit Rev Food Sci Nutr 2006; 46(2): 101-23.
[http://dx.doi.org/10.1080/10408390500400009] [PMID: 16507475]
[70]
al Kanhal MA. Lipid analysis of Coffea arabica Linn. beans and their possible hypercholesterolemic effects. Int J Food Sci Nutr 1997; 48(2): 135-9.
[http://dx.doi.org/10.3109/09637489709006973] [PMID: 9135777]
[71]
Santos JR, Viegas O, Páscoa RNMJ, Ferreira IMPLVO, Rangel AOSS, Lopes JA. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chem 2016; 208: 103-10.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.114] [PMID: 27132829]
[72]
Münchow M, Alstrup J, Steen I, Giacalone D. Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages 2020; 6(2): 1-14.
[http://dx.doi.org/10.3390/beverages6020029]
[73]
Vignoli JA, Viegas MC, Bassoli DG, Benassi M de T. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res Int 2014; 61: 279-85.
[http://dx.doi.org/10.1016/j.foodres.2013.06.006]
[74]
Dias RCE, de Faria-Machado AF, Mercadante AZ, Bragagnolo N, Benassi M de T. Roasting process affects the profile of diterpenes in coffee. Eur Food Res Technol 2014; 239(6): 961-70.
[http://dx.doi.org/10.1007/s00217-014-2293-x]
[75]
Buffo RA, Cardelli-Freire C. Coffee flavour: An overview. Flavour Fragrance J 2004; 19(2): 99-104.
[http://dx.doi.org/10.1002/ffj.1325]
[76]
Kiyama R. Estrogenic activity of coffee constituents. Nutrients 2019; 11(6): 1-20.
[http://dx.doi.org/10.3390/nu11061401] [PMID: 31234352]
[77]
Morales FJ, Somoza V, Fogliano V. Physiological relevance of dietary melanoidins. Amino Acids 2012; 42(4): 1097-109.
[http://dx.doi.org/10.1007/s00726-010-0774-1] [PMID: 20949365]
[78]
He S, Chen Y, Brennan C, et al. Antioxidative activity of oyster protein hydrolysates Maillard reaction products. Food Sci Nutr 2020; 8(7): 3274-86.
[http://dx.doi.org/10.1002/fsn3.1605] [PMID: 32724592]
[79]
Wang Z, Zhang Z, Li S, et al. Formation mechanisms and characterisation of the typical polymers in melanoidins from vinegar, coffee and model experiments. Food Chem 2021; 355: 129444.
[http://dx.doi.org/10.1016/j.foodchem.2021.129444]
[80]
Mesías M, Delgado-Andrade C. Melanoidins as a potential functional food ingredient. Curr Opin Food Sci 2017; 14: 37-42.
[http://dx.doi.org/10.1016/j.cofs.2017.01.007]
[81]
Pérez-Burillo S, Rajakaruna S, Pastoriza S, Paliy O, Ángel Rufián-Henares J. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem 2020; 316: 126309.
[http://dx.doi.org/10.1016/j.foodchem.2020.126309] [PMID: 32059165]
[82]
Libby P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr Rev 2007; 65(12 Pt 2): S140-6.
[http://dx.doi.org/10.1301/nr.2007.dec.S140-S146] [PMID: 18240538]
[83]
Choi S, Jung S, Ko KS. Effects of coffee extracts with different roasting degrees on antioxidant and anti-inflammatory systems in mice. Nutrients 2018; 10(3): E363.
[http://dx.doi.org/10.3390/nu10030363] [PMID: 29547558]
[84]
Liang N, Xue W, Kennepohl P, Kitts DD. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chem 2016; 213: 251-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.041] [PMID: 27451179]
[85]
Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2015; 8(1): 1-20.
[http://dx.doi.org/10.3390/nu8010016] [PMID: 26712785]
[86]
Bagdas D, Etoz BC, Gul Z, et al. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol 2015; 81: 54-61.
[http://dx.doi.org/10.1016/j.fct.2015.04.001] [PMID: 25846499]
[87]
Affonso RCL, Voytena APL, Fanan S, et al. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev 2016; 2016: 1923754.
[http://dx.doi.org/10.1155/2016/1923754] [PMID: 27965732]
[88]
Grosso G, Micek A, Godos J, et al. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: A dose-response meta-analysis. Eur J Epidemiol 2016; 31(12): 1191-205.
[http://dx.doi.org/10.1007/s10654-016-0202-2] [PMID: 27699514]
[89]
Di Dalmazi G, Hirshberg J, Lyle D, Freij JB, Caturegli P. Reactive oxygen species in organ-specific autoimmunity. Auto Immun Highlights 2016; 7(1): 11.
[http://dx.doi.org/10.1007/s13317-016-0083-0] [PMID: 27491295]
[90]
Bøhn SK, Blomhoff R, Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol Nutr Food Res 2014; 58(5): 915-30.
[http://dx.doi.org/10.1002/mnfr.201300526] [PMID: 24668519]
[91]
Dik VK, Bueno-de-Mesquita HB, Van Oijen MGH, et al. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study. Int J Cancer 2014; 135(2): 401-12.
[http://dx.doi.org/10.1002/ijc.28655] [PMID: 24318358]
[92]
Bułdak RJ, Hejmo T, Osowski M, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro Molecules 2018; 23(12): 1-26.
[http://dx.doi.org/10.3390/molecules23123309] [PMID: 30551667]
[93]
Tverdal A, Hjellvik V, Selmer R. Coffee intake and oral-oesophageal cancer: Follow-up of 389,624 Norwegian men and women 40-45 years. Br J Cancer 2011; 105(1): 157-61.
[http://dx.doi.org/10.1038/bjc.2011.192] [PMID: 21629248]
[94]
Yan Y, Liu N, Hou N, Dong L, Li J. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J Nutr Biochem 2017; 46: 68-73.
[http://dx.doi.org/10.1016/j.jnutbio.2017.04.007] [PMID: 28458139]
[95]
Saidi Merzouk A, Hafida M, Medjdoub A, et al. Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols. Free Radic Res 2017; 51(3): 294-305.
[http://dx.doi.org/10.1080/10715762.2017.1307979] [PMID: 28301981]
[96]
Bhoo-Pathy N, Peeters PHM, Uiterwaal CSPM, et al. Coffee and tea consumption and risk of pre- and postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Breast Cancer Res 2015; 17(1): 15.
[http://dx.doi.org/10.1186/s13058-015-0521-3] [PMID: 25637171]
[97]
Li XJ, Ren ZJ, Qin JW, et al. Coffee consumption and risk of breast cancer: An up-to-date meta-analysis. PLoS One 2013; 8(1): e52681.
[http://dx.doi.org/10.1371/journal.pone.0052681] [PMID: 23308117]
[98]
Pauwels EKJ, Volterrani D. Coffee consumption and cancer risk: An assessment of the health implications Based on Recent Knowledge. Med Princ Pract 2021; 30(5): 401-11.
[http://dx.doi.org/10.1159/000516067] [PMID: 33761499]
[99]
van den Brandt PA. Coffee or Tea? A prospective cohort study on the associations of coffee and tea intake with overall and cause-specific mortality in men versus women. Eur J Epidemiol 2018; 33(2): 183-200.
[http://dx.doi.org/10.1007/s10654-018-0359-y] [PMID: 29380105]
[100]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(July): 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[101]
Reis CEG, Dórea JG, da Costa THM. Effects of coffee consumption on glucose metabolism: A systematic review of clinical trials. J Tradit Complement Med 2018; 9(3): 184-91.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.001] [PMID: 31193893]
[102]
Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care 2014; 37(2): 569-86.
[http://dx.doi.org/10.2337/dc13-1203] [PMID: 24459154]
[103]
Shokouh P, Jeppesen PB, Christiansen CB, Mellbye FB, Hermansen K, Gregersen S. Efficacy of arabica versus robusta coffee in improving weight, insulin resistance, and liver steatosis in a rat model of type-2 diabetes. Nutrients 2019; 11(9): 1-15.
[http://dx.doi.org/10.3390/nu11092074] [PMID: 31484373]
[104]
Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: A meta-analysis of prospective studies. Eur J Nutr 2014; 53(1): 25-38.
[http://dx.doi.org/10.1007/s00394-013-0603-x] [PMID: 24150256]
[105]
Shokouh P, Jeppesen PB, Hermansen K, et al. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 2017; 10(1): 1-16.
[http://dx.doi.org/10.3390/nu10010006] [PMID: 29271886]
[106]
Zhou J, Zhou S, Zeng S. Experimental diabetes treated with trigonelline: effect on β cell and pancreatic oxidative parameters. Fundam Clin Pharmacol 2013; 27(3): 279-87.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01022.x] [PMID: 22172053]
[107]
Alves RC, Casal S, Oliveira B. Benefícios do café na saúde: Mito ou realidade? Quim Nova 2009; 32(8): 2169-80.
[http://dx.doi.org/10.1590/S0100-40422009000800031]
[108]
Hoelzl C, Knasmüller S, Wagner KH, et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 2010; 54(12): 1722-33.
[http://dx.doi.org/10.1002/mnfr.201000048] [PMID: 20589860]
[109]
Priftis A, Stagos D, Konstantinopoulos K, et al. Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 2015; 12(5): 7293-302.
[http://dx.doi.org/10.3892/mmr.2015.4377] [PMID: 26458565]
[110]
Bambha K, Wilson LA, Unalp A, et al. Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int 2014; 34(8): 1250-8.
[http://dx.doi.org/10.1111/liv.12379] [PMID: 24267865]
[111]
Wijarnpreecha K, Thongprayoon C, Ungprasert P. Coffee consumption and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2017; 29(2): e8-e12.
[http://dx.doi.org/10.1097/MEG.0000000000000776] [PMID: 27824642]
[112]
Saab S, Mallam D, Cox GA II, Tong MJ. Impact of coffee on liver diseases: A systematic review. Liver Int 2014; 34(4): 495-504.
[http://dx.doi.org/10.1111/liv.12304] [PMID: 24102757]
[113]
Choi SY, Lee KJ, Kim HG, et al. Protective effect of the coffee diterpenes kahweol and cafestol on tert-butyl hydroperoxide-induced oxidative hepatotoxicity. Bull Korean Chem Soc 2006; 27(9): 1386-92.
[http://dx.doi.org/10.5012/bkcs.2006.27.9.1386]
[114]
O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol 2013; 62(12): 1043-51.
[http://dx.doi.org/10.1016/j.jacc.2013.06.035] [PMID: 23871889]
[115]
Nieber K. The Impact of Coffee on Health. Planta Med 2017; 83(16): 1256-63.
[http://dx.doi.org/10.1055/s-0043-115007] [PMID: 28675917]
[116]
Del Giorno R, Scanzio S, De Napoli E, et al. Habitual coffee and caffeinated beverages consumption is inversely associated with arterial stiffness and central and peripheral blood pressure. Int J Food Sci Nutr 2022; 73(1): 106-15.
[http://dx.doi.org/10.1080/09637486.2021.1926935] [PMID: 34058944]
[117]
Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. Eur J Clin Nutr 2012; 66(8): 872-7.
[http://dx.doi.org/10.1038/ejcn.2012.68] [PMID: 22713771]
[118]
Ranheim T, Halvorsen B. Coffee consumption and human health--beneficial or detrimental?--Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Mol Nutr Food Res 2005; 49(3): 274-84.
[http://dx.doi.org/10.1002/mnfr.200400109] [PMID: 15704241]
[119]
Rebello SA, van Dam RM. Coffee consumption and cardiovascular health: Getting to the heart of the matter. Curr Cardiol Rep 2013; 15(10): 403.
[http://dx.doi.org/10.1007/s11886-013-0403-1] [PMID: 23990273]
[120]
Miranda AM, Steluti J, Fisberg RM, Marchioni DM. Association between coffee consumption and its polyphenols with cardiovascular risk factors: A population-based study. Nutrients 2017; 9(3): 1-15.
[http://dx.doi.org/10.3390/nu9030276] [PMID: 28335422]
[121]
Hao WR, Sung LC, Chen CC, et al. Cafestol inhibits cyclic-strain-induced interleukin-8, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 production in vascular endothelial cells. Oxid Med Cell Longev 2018; 2018: 7861518.
[http://dx.doi.org/10.1155/2018/7861518] [PMID: 29854096]
[122]
van Dongen LH, Mölenberg FJM, Soedamah-Muthu SS, Kromhout D, Geleijnse JM. Coffee consumption after myocardial infarction and risk of cardiovascular mortality: A prospective analysis in the Alpha Omega Cohort. Am J Clin Nutr 2017; 106(4): 1113-20.
[http://dx.doi.org/10.3945/ajcn.117.153338] [PMID: 28835365]
[123]
Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am J Epidemiol 2001; 153(4): 353-62.
[http://dx.doi.org/10.1093/aje/153.4.353] [PMID: 11207153]
[124]
Leurs LJ, Schouten LJ, Goldbohm RA, van den Brandt PA. Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr 2010; 104(8): 1212-21.
[http://dx.doi.org/10.1017/S0007114510001923] [PMID: 20456812]
[125]
Choi E, Choi KH, Park SM, Shin D, Joh HK, Cho E. The benefit of bone health by drinking coffee among Korean postmenopausal women: A cross-sectional analysis of the fourth & fifth Korea National Health and Nutrition Examination Surveys. PLoS One 2016; 11(1): e0147762.
[http://dx.doi.org/10.1371/journal.pone.0147762] [PMID: 26816211]
[126]
Yang P, Zhang XZ, Zhang K, Tang Z. Associations between frequency of coffee consumption and osteoporosis in Chinese postmenopausal women. Int J Clin Exp Med 2015; 8(9): 15958-66.
[PMID: 26629099]
[127]
Lee DR, Lee J, Rota M, et al. Coffee consumption and risk of fractures: A systematic review and dose-response meta-analysis. Bone 2014; 63: 20-8.
[http://dx.doi.org/10.1016/j.bone.2014.02.007] [PMID: 24576685]
[128]
Lima R, Wofford M, Reckelhoff JF. Hypertension in postmenopausal women. Curr Hypertens Rep 2012; 14(3): 254-60.
[http://dx.doi.org/10.1007/s11906-012-0260-0] [PMID: 22427070]
[129]
Dickinson HO, Mason JM, Nicolson DJ, et al. Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. J Hypertens 2006; 24(2): 215-33.
[http://dx.doi.org/10.1097/01.hjh.0000199800.72563.26] [PMID: 16508562]
[130]
Lafranconi A, Micek A, De Paoli P, et al. Coffee intake decreases risk of postmenopausal breast cancer: A dose-response meta-analysis on prospective cohort studies. Nutrients 2018; 10(2): 1-17.
[http://dx.doi.org/10.3390/nu10020112] [PMID: 29360766]
[131]
Sánchez-Quesada C, Romanos-Nanclares A, Navarro AM, et al. Coffee consumption and breast cancer risk in the SUN project. Eur J Nutr 2020; 59(8): 3461-71.
[http://dx.doi.org/10.1007/s00394-020-02180-w] [PMID: 31955220]
[132]
Stromeier S, Petereit F, Nahrstedt A. Phenolic esters from the rhizomes of Cimicifuga racemosa do not cause proliferation effects in MCF-7 cells. Planta Med 2005; 71(6): 495-500.
[http://dx.doi.org/10.1055/s-2005-864148] [PMID: 15971118]
[133]
Boldrin P, Resende F, Höhne A, et al. Estrogenic and mutagenic activities of Crotalaria pallida measured by recombinant yeast assay and Ames test. BMC Complement Altern Med 2013; 13: 216.
[http://dx.doi.org/10.1186/1472-6882-13-216] [PMID: 24134316]
[134]
Rhee JJ, Qin F, Hedlin HK, et al. Coffee and caffeine consumption and the risk of hypertension in postmenopausal women. Am J Clin Nutr 2016; 103(1): 210-7.
[http://dx.doi.org/10.3945/ajcn.115.120147] [PMID: 26657046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy