Mini-Review Article

CircRNAs在肺腺癌中的诊断和治疗

卷 22, 期 1, 2022

发表于: 30 December, 2021

页: [15 - 22] 页: 8

弟呕挨: 10.2174/1566523221666211202095258

价格: $65

摘要

肺腺癌(LUAD)是非小细胞肺癌(NSCLC)常见的组织学亚型。环状rna (circRNAs)是一类新的非编码rna (ncRNAs),参与了癌症的发展。越来越多的证据表明,大量环状rna参与了许多生物学过程,包括肿瘤的起始、增殖和进展。这些环状rna作为新的生物标志物和疾病诊断和预后的重要靶点具有巨大的潜力。在这篇综述中,我们主要关注差异表达的环状rna及其在LUAD发病机制中的作用,这使得环状rna作为一种新的生物标志物用于早期诊断和治疗成为可能。特别是将环状rna作为关键的治疗靶点,为癌症基因治疗领域提供了广阔的生物医学应用前景。

关键词: 环状RNA,肺腺癌,生物标志物,诊断,治疗,应用。

图形摘要

[1]
Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: Good or bad news from the 2018 global cancer Statistics? Cancer Commun (Lond) 2019; 39(1): 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[2]
Marentakis P, Karaiskos P, Kouloulias V, et al. Lung cancer histology classification from CT images based on radiomics and deep learning models. Med Biol Eng Comput 2021; 59(1): 215-26.
[http://dx.doi.org/10.1007/s11517-020-02302-w] [PMID: 33411267]
[3]
Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers 2021; 7(1): 3.
[http://dx.doi.org/10.1038/s41572-020-00235-0] [PMID: 33446664]
[4]
Chen J, Yang H, Teo ASM, et al. Genomic landscape of lung adenocarcinoma in East Asians. Nat Genet 2020; 52(2): 177-86.
[http://dx.doi.org/10.1038/s41588-019-0569-6] [PMID: 32015526]
[5]
Zappa C, Mousa SA. Non-small cell lung cancer: Current treatment and future advances. Transl Lung Cancer Res 2016; 5(3): 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[6]
Lu T, Wang Y, Chen D, Liu J, Jiao W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther 2018; 11: 8045-52.
[http://dx.doi.org/10.2147/OTT.S178431] [PMID: 30519046]
[7]
Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543-50.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[8]
de Fraipont F, Gazzeri S, Cho WC, Eymin B. Circular RNAs and RNA splice variants as biomarkers for prognosis and therapeutic response in the liquid biopsies of lung cancer patients. Front Genet 2019; 10: 390.
[http://dx.doi.org/10.3389/fgene.2019.00390] [PMID: 31134126]
[9]
Weidle UH, Birzele F, Nopora A. MicroRNAs as potential targets for therapeutic intervention with metastasis of non-small cell lung cancer. Cancer Genomics Proteomics 2019; 16(2): 99-119.
[http://dx.doi.org/10.21873/cgp.20116] [PMID: 30850362]
[10]
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20(11): 675-91.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[11]
Su M, Xiao Y, Ma J, et al. Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 2019; 18(1): 90.
[http://dx.doi.org/10.1186/s12943-019-1002-6] [PMID: 30999909]
[12]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66(1): 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[13]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[14]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[15]
Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 1976; 73(11): 3852-6.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[16]
Shen Z, Sun S. CircPTCH1 promotes migration in lung cancer by regulating MYCN expression through miR-34c-5p. OncoTargets Ther 2021; 14: 4779-89.
[http://dx.doi.org/10.2147/OTT.S324015] [PMID: 34531664]
[17]
Yuan DF, Wang HR, Wang ZF, Liang GH, Xing WQ, Qin JJ. CircRNA CircZMYM4 inhibits the growth and metastasis of lung adenocarcinoma via the miR-587/ODAM pathway. Biochem Biophys Res Commun 2021; 580: 100-6.
[http://dx.doi.org/10.1016/j.bbrc.2021.09.085] [PMID: 34634673]
[18]
Yang F, Ma C, Qiu J, Feng X, Yang K. Identification of circRNA_001846 as putative non-small cell lung cancer biomarker. Bioengineered 2021; 12(1): 8690-7.
[http://dx.doi.org/10.1080/21655979.2021.1991161] [PMID: 34635012]
[19]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function (reprinted from Cell, vol 116, pg 281-297, 2004). Cell 2007; 131(4): 11-29.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5]
[20]
Mumtaz PT, Taban Q, Dar MA, et al. Deep Insights in Circular RNAs: From biogenesis to therapeutics. Biol Proced Online 2020; 22(1): 10.
[http://dx.doi.org/10.1186/s12575-020-00122-8] [PMID: 32467674]
[21]
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res 2013; 73(18): 5609-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1568] [PMID: 24014594]
[22]
Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 2017; 66(4): 1151-64.
[http://dx.doi.org/10.1002/hep.29270] [PMID: 28520103]
[23]
Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 2016; 7(18): 26680-91.
[http://dx.doi.org/10.18632/oncotarget.8589] [PMID: 27058418]
[24]
Yang C, Yuan W, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 2018; 17(1): 19.
[http://dx.doi.org/10.1186/s12943-018-0771-7] [PMID: 29386015]
[25]
Du WW, Yang W, Li X, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 2018; 37(44): 5829-42.
[http://dx.doi.org/10.1038/s41388-018-0369-y] [PMID: 29973691]
[26]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[27]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66(1): 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[28]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[29]
Zhang Y, Wang X, Zhang X, et al. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc Natl Acad Sci USA 2019; 116(3): 976-81.
[http://dx.doi.org/10.1073/pnas.1812536116] [PMID: 30591559]
[30]
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56(1): 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[31]
Li ZY, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus (vol 22, pg 256, 2015). Nat Struct Mol Biol 2017; 24(2): 194-4.
[http://dx.doi.org/10.1038/nsmb0217-194a] [PMID: 28170000]
[32]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[33]
Wang X, Zhu X, Zhang H, et al. Increased circular RNA hsa_circ_0012673 acts as a sponge of miR-22 to promote lung adenocarcinoma proliferation. Biochem Biophys Res Commun 2018; 496(4): 1069-75.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.126] [PMID: 29366790]
[34]
Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 2017; 284(14): 2170-82.
[http://dx.doi.org/10.1111/febs.14132] [PMID: 28685964]
[35]
Feng D, Xu Y, Hu J, Zhang S, Li M, Xu L. A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun 2020; 521(2): 395-401.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.134] [PMID: 31668923]
[36]
Ying X, Zhu J, Zhang Y. Circular RNA circ-TSPAN4 promotes lung adenocarcinoma metastasis by upregulating ZEB1 via sponging miR-665. Mol Genet Genomic Med 2019; 7(12): e991.
[http://dx.doi.org/10.1002/mgg3.991] [PMID: 31573758]
[37]
Du J, Zhang G, Qiu H, Yu H, Yuan W. The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett 2019; 24(1): 72.
[http://dx.doi.org/10.1186/s11658-019-0198-1] [PMID: 31889960]
[38]
Lu T, Qiu T, Han B, et al. Circular RNA circCSNK1G3 induces HOXA10 signaling and promotes the growth and metastasis of lung adenocarcinoma cells through hsa-miR-143-3p sponging. Cell Oncol (Dordr) 2021; 44(2): 297-310.
[http://dx.doi.org/10.1007/s13402-020-00565-x] [PMID: 33118120]
[39]
Xu Y, Yu J, Huang Z, et al. Circular RNA hsa_circ_0000326 acts as a miR-338-3p sponge to facilitate lung adenocarcinoma progression. J Exp Clin Canc Res 2020; 39(1): 57.
[http://dx.doi.org/10.1186/s13046-020-01556-4] [PMID: 32248836]
[40]
Zuo Y, Shen W, Wang C, Niu N, Pu J. Circular RNA Circ-ZNF609 Promotes lung adenocarcinoma proliferation by modulating miR-1224-3p/ETV1 signaling. Cancer Manag Res 2020; 12: 2471-9.
[http://dx.doi.org/10.2147/CMAR.S232260] [PMID: 32308483]
[41]
Wu S, Li H, Lu C, et al. Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol Chem 2018; 399(12): 1457-67.
[http://dx.doi.org/10.1515/hsz-2018-0303] [PMID: 30138108]
[42]
Liang Y, Wang H, Sun Y, et al. miR-198-induced upregulation of Livin may be associated with the prognosis and contribute to the oncogenesis of lung adenocarcinoma. Oncol Rep 2017; 38(4): 2096-104.
[http://dx.doi.org/10.3892/or.2017.5866] [PMID: 28765921]
[43]
Han HS, Yun J, Lim SN, et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int J Cancer 2013; 133(3): 645-52.
[http://dx.doi.org/10.1002/ijc.28054] [PMID: 23354517]
[44]
Yao Y, Hua Q, Zhou Y, Shen H. CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother 2019; 111: 1367-75.
[http://dx.doi.org/10.1016/j.biopha.2018.12.120] [PMID: 30841451]
[45]
Gao N, Ye B. Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int 2020; 20(1): 2.
[http://dx.doi.org/10.1186/s12935-019-1065-x] [PMID: 31911754]
[46]
Lv X, Huang H, Feng H, Wei Z. Circ-MMP2 (circ-0039411) induced by FOXM1 promotes the proliferation and migration of lung adenocarcinoma cells in vitro and in vivo . Cell Death Dis 2020; 11(6): 426.
[http://dx.doi.org/10.1038/s41419-020-2628-4] [PMID: 32513952]
[47]
Ma D, Liu H, Qin Y, et al. Circ_0007142/miR-186/FOXK1 axis promoted lung adenocarcinoma progression. Am J Transl Res 2020; 12(8): 4728-38.
[PMID: 32913545]
[48]
Xin T, Li S, Zhang Y, Kamali X, Liu H, Jia T. circRNA Hsa_circ_0020850 silence represses the development of lung adenocarcinoma via regulating miR-195-5p/IRS2 axis. Cancer Manag Res 2020; 12: 10679-92.
[http://dx.doi.org/10.2147/CMAR.S257764] [PMID: 33149675]
[49]
Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis 2019; 10(12): 885.
[http://dx.doi.org/10.1038/s41419-019-2127-7] [PMID: 31767835]
[50]
Liang Y, Wang H, Chen B, et al. circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucleic Acids 2020; 23: 355-68.
[http://dx.doi.org/10.1016/j.omtn.2020.11.012] [PMID: 33425493]
[51]
Wang L, Liang Y, Mao Q, et al. Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci 2019; 110(9): 2960-72.
[http://dx.doi.org/10.1111/cas.14131] [PMID: 31301086]
[52]
Yao Y, Hua Q, Zhou Y. CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2019; 508(1): 37-45.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.079] [PMID: 30470570]
[53]
Chen M, Huang X, Li L, Huang M, Cai R, Liao X. A Regulatory axis of circ_0008193/miR-1180-3p/TRIM62 Suppresses proliferation, migration, invasion, and Warburg effect in lung adenocarcinoma cells under hypoxia. Med Sci Monit 2020; 26: e922900.
[http://dx.doi.org/10.12659/MSM.922900] [PMID: 32782238]
[54]
Zhang SJ, Ma J, Wu JC, Hao ZZ, Zhang YN, Zhang YJ. CircRNA EPB41L2 inhibits tumorigenicity of lung adenocarcinoma through regulating CDH4 by miR-211-5p. Eur Rev Med Pharmaco 2020; 24(7): 3749-60.
[http://dx.doi.org/10.26355/eurrev_202004_20839] [PMID: 32329852]
[55]
Wei S, Chen Y, Han S, et al. Hsa_circ_0044013: A potential novel diagnostic biomarker of lung adenocarcinoma. J Thorac Oncol 2017; 12(11): S2293-3.
[http://dx.doi.org/10.1016/j.jtho.2017.09.1680]
[56]
Li S, Sun X, Miao S, et al. hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma. Thorac Cancer 2018; 9(8): 924-30.
[http://dx.doi.org/10.1111/1759-7714.12761] [PMID: 29932500]
[57]
Cheng X, Qiu J, Wang S, et al. Comprehensive circular RNA profiling identifies CircFAM120A as a new biomarker of hypoxic lung adenocarcinoma. Ann Transl Med 2019; 7(18): 442.
[http://dx.doi.org/10.21037/atm.2019.08.79] [PMID: 31700878]
[58]
Liu XX, Yang YE, Liu X, et al. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J Transl Med 2019; 17(1): 50.
[http://dx.doi.org/10.1186/s12967-019-1800-z] [PMID: 30777071]
[59]
Wang C, Tan S, Liu W-R, et al. RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol Cancer 2019; 18(1): 134.
[http://dx.doi.org/10.1186/s12943-019-1061-8] [PMID: 31484581]
[60]
Yan Y, Zhang R, Zhang X, Zhang A, Zhang Y, Bu X. RNA-Seq profiling of circular RNAs and potential function of hsa_circ_0002360 in human lung adenocarcinom. Am J Transl Res 2019; 11(1): 160-75.
[PMID: 30787976]
[61]
Lu GJ, Cui J, Qian Q, et al. Overexpression of hsa_circ_0001715 is a potential diagnostic and prognostic biomarker in lung adenocarcinoma. OncoTargets Ther 2020; 13: 10775-83.
[http://dx.doi.org/10.2147/OTT.S274932] [PMID: 33122916]
[62]
Zhang B, Chen M, Jiang N, Shi K, Qian R. A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biol Ther 2019; 20(8): 1127-35.
[http://dx.doi.org/10.1080/15384047.2019.1598762] [PMID: 30975029]
[63]
Zhou Q, Sun Y. Circular RNA cMras suppresses the progression of lung adenocarcinoma through ABHD5/ATGL axis using NF-kappa B signaling pathway. Cancer Biother Radio 2020.
[http://dx.doi.org/10.1089/cbr.2020.3709] [PMID: 32822232]
[64]
Barrett SP, Salzman J. Circular RNAs: Analysis, expression and potential functions. Development 2016; 143(11): 1838-47.
[http://dx.doi.org/10.1242/dev.128074] [PMID: 27246710]
[65]
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7.
[http://dx.doi.org/10.1126/science.7536344] [PMID: 7536344]
[66]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[67]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37(33): 2602-11.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[68]
Meganck RM, Borchardt EK, Castellanos Rivera RM, et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids 2018; 13: 89-98.
[http://dx.doi.org/10.1016/j.omtn.2018.08.008] [PMID: 30245471]
[69]
Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 2018; 9(1): 2629.
[http://dx.doi.org/10.1038/s41467-018-05096-6] [PMID: 29980667]
[70]
Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro. Nucleic acids res 2015; 43(4): 2454-65.
[http://dx.doi.org/10.1093/nar/gkv045] [PMID: 25662225]
[71]
Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016; 7: 12429.
[http://dx.doi.org/10.1038/ncomms12429] [PMID: 27539542]
[72]
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38(18): 1402-12.
[http://dx.doi.org/10.1093/eurheartj/ehw001] [PMID: 26873092]
[73]
Zhang Y, Xue W, Li X, et al. The biogenesis of nascent circular RNAs. Cell Rep 2016; 15(3): 611-24.
[http://dx.doi.org/10.1016/j.celrep.2016.03.058] [PMID: 27068474]
[74]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[75]
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-27.
[http://dx.doi.org/10.1126/science.aaq0180] [PMID: 29070703]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy