Mini-Review Article

CRISPR Systems Suitable for Single AAV Vector Delivery

Author(s): Marta Stevanovic*, Elena Piotter, Michelle E. McClements and Robert E. MacLaren

Volume 22, Issue 1, 2022

Published on: 09 December, 2021

Page: [1 - 14] Pages: 14

DOI: 10.2174/1566523221666211006120355

Price: $65

conference banner
Abstract

Abstract: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas gene editing is a revolutionary technology that can enable the correction of genetic mutations in vivo, providing great promise as a therapeutic intervention for inherited diseases. Adeno-associated viral (AAV) vectors are a potential vehicle for delivering CRISPR/Cas. However, they are restricted by their limited packaging capacity. Identifying smaller Cas orthologs that can be packaged, along with the required guide RNA elements, into a single AAV would be an important optimization for CRISPR/- Cas gene editing. Expanding the options of Cas proteins that can be delivered by a single AAV not only increases translational application but also expands the genetic sites that can be targeted for editing. This review considers the benefits and current scope of small Cas protein orthologs that are suitable for gene editing approaches using single AAV vector delivery.

Keywords: CRISPR, CRISPR/Cas9, gene therapy, Cas9, orthologs, AAV.

Next »
Graphical Abstract

[1]
Xue K, Jolly JK, Barnard AR, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med 2018; 24(10): 1507-12.
[http://dx.doi.org/10.1038/s41591-018-0185-5]
[2]
Rangarajan S, Walsh L, Lester W, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377(26): 2519-30.
[http://dx.doi.org/10.1056/NEJMoa1708483]
[3]
George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377(23): 2215-27.
[http://dx.doi.org/10.1056/NEJMoa1708538]
[4]
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med Springer US 2020; 26(3): 354-9.
[http://dx.doi.org/10.1038/s41591-020-0763-1]
[5]
Boye SE, Boye SL, Lewin AS, et al. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21(3): 509-19.
[http://dx.doi.org/10.1038/mt.2012.280]
[6]
Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci USA 2018; 115(36): E8547-56.
[http://dx.doi.org/10.1073/pnas.1805055115]
[7]
Fry LE, Peddle CF, Barnard AR, et al. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int J Mol Sci 2020; 21(3): 777.
[http://dx.doi.org/10.3390/ijms21030777]
[8]
Peddle CF, Fry LE, McClements ME, et al. CRISPR-interference–potential application in retinal disease. Int J Mol Sci 2020; 21(7): 2329.
[http://dx.doi.org/10.3390/ijms21072329]
[9]
Koo T, Lu-Nguyen NB, Malerba A, et al. Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Mol Ther 2018; 26(6): 1529-38.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.018]
[10]
Hung SSC, McCaughey T, Swann O, et al. Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 2016; 53: 1-20.
[http://dx.doi.org/10.1016/j.preteyeres.2016.05.001]
[11]
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124(10): 4154-61.
[http://dx.doi.org/10.1172/JCI72992]
[12]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82.
[http://dx.doi.org/10.1007/s00239-004-0046-3]
[13]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(March): 1709-12.
[http://dx.doi.org/10.1126/science.1138140]
[14]
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829]
[15]
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): 2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109]
[16]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009; 155(3): 733-40.
[http://dx.doi.org/10.1099/mic.0.023960-0]
[17]
Sternberg SH, Lafrance B, Kaplan M, et al. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 2015; 527(7576): 110-3.
[http://dx.doi.org/10.1038/nature15544]
[18]
Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156: 935-49.
[http://dx.doi.org/10.1016/j.cell.2014.02.001]
[19]
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-71.
[http://dx.doi.org/10.1016/j.cell.2015.09.038]
[20]
Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-Cas systems. Science 2019; 363(6422): 88-91.
[http://dx.doi.org/10.1126/science.aav7271]
[21]
Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015; 60(3): 385-97.
[http://dx.doi.org/10.1016/j.molcel.2015.10.008]
[22]
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353(6299): aaf5573.
[http://dx.doi.org/10.1126/science.aaf5573]
[23]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049]
[24]
Yu W, Wu Z. In vivo applications of CRISPR-based genome editing in the retina. Front Cell Dev Biol 2018; 6: 53.
[http://dx.doi.org/10.3389/fcell.2018.00053]
[25]
Lefesvre P, Attema J, Van Bekkum D. A comparison of the efficacy and toxicity between electroporation and adenoviral gene transfer. BMC Mol Biol 2002; 3(12)
[26]
Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2018; 2(7): 497-507.
[http://dx.doi.org/10.1038/s41551-018-0252-8]
[27]
Lino CA, Harper JC, Carney JP, et al. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964]
[28]
Jiang T, Henderson JM, Coote K, et al. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun 2020; 11(1): 1-9.
[29]
Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27(3): 419-26.
[http://dx.doi.org/10.1101/gr.219089.116]
[30]
Parks RJ, Chen L, Anton M, et al. A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93(24): 13565-70.
[http://dx.doi.org/10.1073/pnas.93.24.13565]
[31]
Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8(5): 846-52.
[http://dx.doi.org/10.1016/j.ymthe.2003.08.014]
[32]
Reichel MB, Ali RR, Thrasher AJ, et al. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 1998; 5(8): 1038-46.
[http://dx.doi.org/10.1038/sj.gt.3300691]
[33]
Hoffman LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Invest Ophthalmol Vis Sci 1997; 38(11): 2224-33.
[34]
Auricchio A. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: The retina as a model. Hum Mol Genet 2001; 10(26): 3075-81.
[http://dx.doi.org/10.1093/hmg/10.26.3075]
[35]
Schlimgen R, Howard J, Wooley D, et al. Risks associated with lentiviral vector exposures and prevention strategies. J Occup Environ Med 2016; 58(12): 1159-66.
[http://dx.doi.org/10.1097/JOM.0000000000000879]
[36]
Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073-80.
[http://dx.doi.org/10.1038/mt.2008.76]
[37]
Mays LE, Wilson JM. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 2011; 19(1): 16-27.
[http://dx.doi.org/10.1038/mt.2010.250]
[38]
Podsakoff G, Wong KK, Chatterjee S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 1994; 68(9): 5656-66.
[http://dx.doi.org/10.1128/jvi.68.9.5656-5666.1994]
[39]
DiFranco M, Quinonez M, Capote J, et al. DNA transfection of mammalian skeletal muscules using in vivo electroporation. J Vis Exp 2009; (32): 1520.
[40]
Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with leber congenital amaurosis type 2. Ophthalmology 2013; 120(6): 1283-91.
[http://dx.doi.org/10.1016/j.ophtha.2012.11.048]
[41]
Swiech L, Heidenreich M, Banerjee A, et al. in vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015; 33(1): 102-6.
[http://dx.doi.org/10.1038/nbt.3055]
[42]
Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun 2017; 8(1): 4-11.
[http://dx.doi.org/10.1038/s41467-017-00140-3]
[43]
Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for duchenne muscular dystrophy. Nat Commun 2017; 8: 14454.
[44]
Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther 2018; 26(7): 1818-27.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.017]
[45]
Trapani I, Colella P, Sommella A, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 2014; 6(2): 194-211.
[http://dx.doi.org/10.1002/emmm.201302948]
[46]
Maddalena A, Tornabene P, Tiberi P, et al. Triple vectors expand AAV transfer capacity in the retina. Mol Ther 2018; 26(2): 524-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.11.019]
[47]
Tornabene P, Trapani I, Minopoli R, et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 2019; 11(492): 1-14.
[http://dx.doi.org/10.1126/scitranslmed.aav4523]
[48]
Krooss SA, Dai Z, Schmidt F, et al. Ex vivo/in vivo gene editing in hepatocytes using “all-in-one” CRISPR-adeno-associated virus vectors wit ha self-linearizing repair template. iScience 2020; 23(1): 100764.
[http://dx.doi.org/10.1016/j.isci.2019.100764]
[49]
Nishiguchi KM, Fujita K, Miya F, et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nat Commun 2020; 11(482): 1-9.
[http://dx.doi.org/10.1038/s41467-019-14181-3]
[50]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 2015; 33(12): 1293-8.
[http://dx.doi.org/10.1038/nbt.3404]
[51]
Ran FA, Cong L, Yan WX, et al. in vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[http://dx.doi.org/10.1038/nature14299]
[52]
Nishimasu H, Cong L, Yan WX, et al. Crystal structure of Staphylococcus aureus Cas9. Cell 2015; 162(5): 1113-26.
[http://dx.doi.org/10.1016/j.cell.2015.08.007]
[53]
Shen S, Sanchez ME, Blomenkamp K, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 2018; 29(8): 861-73.
[http://dx.doi.org/10.1089/hum.2017.227]
[54]
Zheng R, Li Y, Wang L, et al. CRISPR/Cas9–mediated metabolic pathway reprogramming in a novel humanized rat model ameliorates primary hyperoxaluria type 1. Kidney Int 2020; 98(4): 947-57.
[http://dx.doi.org/10.1016/j.kint.2020.04.049]
[55]
Jung EL, Jong CH, Park DY, et al. Effect of connective tissue growth factor gene editing using adeno-associated virus – mediated CRISPR – Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther 2021; 28(5): 277-86.
[56]
Weng S, Gao F, Wang J, et al. Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice. Cancer Gene Ther 2020; 27: 960-75.
[http://dx.doi.org/10.1038/s41417-020-0178-7]
[57]
Gaj T, Ojala DS, Ekman FK, et al. in vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 2017; 3(12): 1-11.
[http://dx.doi.org/10.1126/sciadv.aar3952]
[58]
Pan X, Philippen L, Lahiri SK, et al. In vivo ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ Res 2018; 123(8): 953-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313369]
[59]
Duan W, Guo M, Yi L, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 2020; 27(3–4): 157-69.
[http://dx.doi.org/10.1038/s41434-019-0116-1]
[60]
Tabebordbar M, Zhu K, Chen JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-12.
[http://dx.doi.org/10.1126/science.aad5177]
[61]
Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in leber congenital amaurosis type 10. Nat Med 2019; 25(2): 229-33.
[http://dx.doi.org/10.1038/s41591-018-0327-9]
[62]
De Caneva A, Porro F, Bortolussi G, et al. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 2019; 4(15): e128863.
[http://dx.doi.org/10.1172/jci.insight.128863]
[63]
Ohmori T, Nagao Y, Mizukami H, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep 2017; 7(1): 1-11.
[http://dx.doi.org/10.1038/s41598-017-04625-5]
[64]
Chen H, Shi M, Gilam A, et al. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human factor VIII. Sci Rep 2019; 9(1): 1-15.
[http://dx.doi.org/10.1038/s41598-019-53198-y]
[65]
Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268): 84-8.
[http://dx.doi.org/10.1126/science.aad5227]
[66]
Tan Y, Chu AHY, Bao S, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 2019; 116(42): 20969-76.
[http://dx.doi.org/10.1073/pnas.1906843116]
[67]
Ma D, Xu Z, Zhang Z, et al. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nat Commun 2019; 10(560): 10-9.
[http://dx.doi.org/10.1038/s41467-019-08395-8]
[68]
György B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 2019; 25(7): 1123-30.
[http://dx.doi.org/10.1038/s41591-019-0500-9]
[69]
Lau CH, Ho JWT, Lo PK, et al. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol Ther Nucleic Acids 2019; 16(June): 637-49.
[http://dx.doi.org/10.1016/j.omtn.2019.04.015]
[70]
Kemaladewi DU, Bassi PS, Erwood S, et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 2019; 572(7767): 125-30.
[http://dx.doi.org/10.1038/s41586-019-1430-x]
[71]
Thakore PI, Kwon JB, Nelson CE, et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun 2018; 9(1): 1-9.
[http://dx.doi.org/10.1038/s41467-018-04048-4]
[72]
Alerasool N, Segal D, Lee H, et al. An efficient KRAB domain for CRISPRi applications in human cells. Nat Methods 2020; 17(11): 1093-6.
[http://dx.doi.org/10.1038/s41592-020-0966-x]
[73]
Ma D, Peng S, Huang W, et al. Rational design of mini-Cas9 for transcriptional activation. ACS Synth Biol 2018; 7(4): 978-85.
[http://dx.doi.org/10.1021/acssynbio.7b00404]
[74]
Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017; 8.
[http://dx.doi.org/10.1038/ncomms14500]
[75]
Jo DH, Koo T, Cho CS, et al. Long-term effects of in vivo genome editing in the mouse retina using Campylobacter jejuni Cas9 Expressed via adeno-associated virus. Mol Ther 2019; 27(1): 130-6.
[http://dx.doi.org/10.1016/j.ymthe.2018.10.009]
[76]
Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Mol Cell 2017; 65(6): 1109-1121.e3.
[http://dx.doi.org/10.1016/j.molcel.2017.02.007]
[77]
Josipović G, Zoldoš V, Vojta A. Active fusions of Cas9 orthologs. J Biotechnol 2019; 301: 18-23.
[http://dx.doi.org/10.1016/j.jbiotec.2019.05.306]
[78]
Piotter EC, McClements ME, MacLaren RE. Comparison of two Campylobacter jejuni CRISPR Cas9 Orthologues in active and deactive forms. ASGCT Annual Meeting 2020 [Online].
[79]
Hu Z, Wang S, Zhang C, et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol 2020; 18(3): e3000686.
[http://dx.doi.org/10.1371/journal.pbio.3000686]
[80]
Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 2016; 24(3): 645-54.
[http://dx.doi.org/10.1038/mt.2016.8]
[81]
Zhang Y, Heidrich N, Ampattu BJ, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50(4): 488-503.
[http://dx.doi.org/10.1016/j.molcel.2013.05.001]
[82]
Esvelt KM, Mali P, Braff JL, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 2013; 10(11): 1116-23.
[http://dx.doi.org/10.1038/nmeth.2681]
[83]
Ibraheim R, Song CQ, Mir A, et al. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol 2018; 19(1): 1-11.
[http://dx.doi.org/10.1186/s13059-018-1515-0]
[84]
Edraki A, Mir A, Ibraheim R, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell 2019; 73(4): 714-726.e4.
[http://dx.doi.org/10.1016/j.molcel.2018.12.003]
[85]
Xia CH, Ferguson I, Li M, et al. Essential function of NHE8 in mouse retina demonstrated by AAV-mediated CRISPR/Cas9 knockdown. Exp Eye Res 2018; 176(June): 29-39.
[86]
Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523]
[87]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas9 systems. Science 2013; 339(15): 819-23.
[http://dx.doi.org/10.1126/science.1231143]
[88]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561): 481-5.
[http://dx.doi.org/10.1038/nature14592]
[89]
Agudelo D, Carter S, Velimirovic M, et al. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Res 2020; 30(1): 107-17.
[http://dx.doi.org/10.1101/gr.255414.119]
[90]
Fedorova I, Vasileva A, Selkova P, et al. PpCas9 from Pasteurella pneumotropica - a compact type II-C Cas9 ortholog active in human cells. Nucleic Acids Res 2020; 48(21): 12297-309.
[http://dx.doi.org/10.1093/nar/gkaa998]
[91]
Gao N, Zhang C, Hu Z, et al. Characterization of brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing. Front Cell Dev Biol 2020; 8(October): 1-11.
[92]
Harrington LB, Paez-Espino D, Staahl BT, et al. A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 2017; 8(1): 1-8.
[http://dx.doi.org/10.1038/s41467-017-01408-4]
[93]
Wignakumar T, Fairchild PJ. Evasion of pre-existing immunity to Cas9: A prerequisite for successful genome editing in vivo? Curr Transplant Rep 2019; 6(2): 127-33.
[http://dx.doi.org/10.1007/s40472-019-00237-2]
[94]
Harrington LB, Doxzen KW, Ma E, et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 2017; 120: 1224-33.
[http://dx.doi.org/10.1016/j.cell.2017.07.037]
[95]
Garcia B, Lee J, Edraki A, et al. Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep 2019; 29(7): 1739-1746.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.10.017]
[96]
Walker JE, Lanahan AA, Zheng T, et al. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun 2019; 2020(10): e00116.
[97]
Thavalingam A, Cheng Z, Garcia B, et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat Commun 2019; 10: 1-11.
[http://dx.doi.org/10.1038/s41467-019-10577-3]
[98]
Lee J, Mir A, Edraki A, et al. Potent cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. MBio 2018; 9(6): 1-17.
[http://dx.doi.org/10.1128/mBio.02321-18]
[99]
Stevanovic M, McClements ME, MacLaren RE. Investigation of GeoCas9 as an alternative CRISPR/Cas9 system to treat retinal disease. ASGCT Annual Meeting 2020 [Online].
[100]
Hirano H, Gootenberg JS, Horii T, et al. Structure and engineering of Francisella novicida Cas9. Cell 2016; 164(5): 950-61.
[http://dx.doi.org/10.1016/j.cell.2016.01.039]
[101]
Mougiakos I, Mohanraju P, Bosma EF, et al. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun 2017; 8(1): 1647.
[http://dx.doi.org/10.1038/s41467-017-01591-4]
[102]
Wang Y, Liu KI, Sutrisnoh NAB, et al. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biol 2018; 19(1): 1-16.
[http://dx.doi.org/10.1186/s13059-018-1445-x]
[103]
Kim HK, Song M, Lee J, et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017; 14(2): 153-9.
[http://dx.doi.org/10.1038/nmeth.4104]
[104]
Koo T, Park SW, Jo DH, et al. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat Commun 2018; 9(1): 6-13.
[http://dx.doi.org/10.1038/s41467-018-04175-y]
[105]
Zetsche B, Strecker J, Abudayyeh OO, et al. A survey of genome editing activity for 16 Cas12a orthologs. Keio J Med 2019; 6: 1-5.
[106]
Yang H, Gao P, Rajashankar KR, et al. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease. Cell 2016; 167(7): 1814-1828.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.053]
[107]
Liu L, Chen P, Wang M, et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 2017; 65(2): 310-22.
[http://dx.doi.org/10.1016/j.molcel.2016.11.040]
[108]
Teng F, Cui T, Feng G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 2018; 4(1): 63.
[http://dx.doi.org/10.1038/s41421-018-0069-3]
[109]
Teng F, Cui T, Gao Q, et al. Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 2019; 5(1): 10-3.
[http://dx.doi.org/10.1038/s41421-019-0091-0]
[110]
Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 2019; 12(212): 1-8.
[http://dx.doi.org/10.1038/s41467-018-08224-4]
[111]
Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res 2020; 1-8.
[http://dx.doi.org/10.1093/nar/gkaa208]
[112]
Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. Crispr-casΦ from huge phages is a hypercompact genome editor. Science 2020; 369(6501): 333-7.
[http://dx.doi.org/10.1126/science.abb1400]
[113]
Burstein D, Harrington LB, Strutt SC, et al. New CRISPR-Cas systems from uncultivated microbes. Nature 2017; 542(7640): 237-41.
[http://dx.doi.org/10.1038/nature21059]
[114]
Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218-23.
[http://dx.doi.org/10.1038/s41586-019-0908-x]
[115]
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-27.
[http://dx.doi.org/10.1126/science.aaq0180]
[116]
Slaymaker IM, Mesa P, Kellner MJ, et al. High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep 2019; 26: 3741-51.
[http://dx.doi.org/10.1016/j.celrep.2019.02.094]
[117]
Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365(6451): 382-6.
[http://dx.doi.org/10.1126/science.aax7063]
[118]
Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type IV-D CRISPR effectors. Cell 2018; 173(3): 665-76.
[http://dx.doi.org/10.1016/j.cell.2018.02.033]
[119]
He B, Peng W, Huang J, et al. Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein Cell 2020; 11(7): 518-24.
[http://dx.doi.org/10.1007/s13238-020-00700-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy