摘要
CRISPR /Cas基因编辑是一项革命性的技术,可以纠正体内的基因突变,为遗传疾病的治疗干预提供了很大的希望。腺相关病毒(AAV)载体是一种潜在的运载CRISPR/Cas的载体。然而,它们受到其有限的包装容量的限制。识别较小的Cas同源基因,并将其与所需的引导RNA元素一起打包成单个AAV,将是CRISPR/- Cas基因编辑的一个重要优化。扩大Cas蛋白的选择,可以通过单一的AAV交付,不仅增加了翻译应用,也扩大了可用于编辑的基因位点。这篇综述考虑了适用于使用单个AAV载体传递的基因编辑方法的小Cas蛋白同源物的优点和目前的范围。
关键词: CRISPR, CRISPR/Cas9,基因治疗,Cas9,矫形器,AAV。
图形摘要
[1]
Xue K, Jolly JK, Barnard AR, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med 2018; 24(10): 1507-12.
[http://dx.doi.org/10.1038/s41591-018-0185-5]
[http://dx.doi.org/10.1038/s41591-018-0185-5]
[2]
Rangarajan S, Walsh L, Lester W, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377(26): 2519-30.
[http://dx.doi.org/10.1056/NEJMoa1708483]
[http://dx.doi.org/10.1056/NEJMoa1708483]
[3]
George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377(23): 2215-27.
[http://dx.doi.org/10.1056/NEJMoa1708538]
[http://dx.doi.org/10.1056/NEJMoa1708538]
[4]
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med Springer US 2020; 26(3): 354-9.
[http://dx.doi.org/10.1038/s41591-020-0763-1]
[http://dx.doi.org/10.1038/s41591-020-0763-1]
[5]
Boye SE, Boye SL, Lewin AS, et al. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21(3): 509-19.
[http://dx.doi.org/10.1038/mt.2012.280]
[http://dx.doi.org/10.1038/mt.2012.280]
[6]
Cideciyan AV, Sudharsan R, Dufour VL, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci USA 2018; 115(36): E8547-56.
[http://dx.doi.org/10.1073/pnas.1805055115]
[http://dx.doi.org/10.1073/pnas.1805055115]
[7]
Fry LE, Peddle CF, Barnard AR, et al. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int J Mol Sci 2020; 21(3): 777.
[http://dx.doi.org/10.3390/ijms21030777]
[http://dx.doi.org/10.3390/ijms21030777]
[8]
Peddle CF, Fry LE, McClements ME, et al. CRISPR-interference–potential application in retinal disease. Int J Mol Sci 2020; 21(7): 2329.
[http://dx.doi.org/10.3390/ijms21072329]
[http://dx.doi.org/10.3390/ijms21072329]
[9]
Koo T, Lu-Nguyen NB, Malerba A, et al. Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Mol Ther 2018; 26(6): 1529-38.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.018]
[http://dx.doi.org/10.1016/j.ymthe.2018.03.018]
[10]
Hung SSC, McCaughey T, Swann O, et al. Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 2016; 53: 1-20.
[http://dx.doi.org/10.1016/j.preteyeres.2016.05.001]
[http://dx.doi.org/10.1016/j.preteyeres.2016.05.001]
[11]
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124(10): 4154-61.
[http://dx.doi.org/10.1172/JCI72992]
[http://dx.doi.org/10.1172/JCI72992]
[12]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82.
[http://dx.doi.org/10.1007/s00239-004-0046-3]
[http://dx.doi.org/10.1007/s00239-004-0046-3]
[13]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(March): 1709-12.
[http://dx.doi.org/10.1126/science.1138140]
[http://dx.doi.org/10.1126/science.1138140]
[14]
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829]
[http://dx.doi.org/10.1126/science.1225829]
[15]
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): 2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109]
[http://dx.doi.org/10.1073/pnas.1208507109]
[16]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009; 155(3): 733-40.
[http://dx.doi.org/10.1099/mic.0.023960-0]
[http://dx.doi.org/10.1099/mic.0.023960-0]
[17]
Sternberg SH, Lafrance B, Kaplan M, et al. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 2015; 527(7576): 110-3.
[http://dx.doi.org/10.1038/nature15544]
[http://dx.doi.org/10.1038/nature15544]
[18]
Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156: 935-49.
[http://dx.doi.org/10.1016/j.cell.2014.02.001]
[http://dx.doi.org/10.1016/j.cell.2014.02.001]
[19]
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-71.
[http://dx.doi.org/10.1016/j.cell.2015.09.038]
[http://dx.doi.org/10.1016/j.cell.2015.09.038]
[20]
Yan WX, Hunnewell P, Alfonse LE, et al. Functionally diverse type V CRISPR-Cas systems. Science 2019; 363(6422): 88-91.
[http://dx.doi.org/10.1126/science.aav7271]
[http://dx.doi.org/10.1126/science.aav7271]
[21]
Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015; 60(3): 385-97.
[http://dx.doi.org/10.1016/j.molcel.2015.10.008]
[http://dx.doi.org/10.1016/j.molcel.2015.10.008]
[22]
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353(6299): aaf5573.
[http://dx.doi.org/10.1126/science.aaf5573]
[http://dx.doi.org/10.1126/science.aaf5573]
[23]
Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature 2017; 550(7675): 280-4.
[http://dx.doi.org/10.1038/nature24049]
[http://dx.doi.org/10.1038/nature24049]
[24]
Yu W, Wu Z. In vivo applications of CRISPR-based genome editing in the retina. Front Cell Dev Biol 2018; 6: 53.
[http://dx.doi.org/10.3389/fcell.2018.00053]
[http://dx.doi.org/10.3389/fcell.2018.00053]
[25]
Lefesvre P, Attema J, Van Bekkum D. A comparison of the efficacy and toxicity between electroporation and adenoviral gene transfer. BMC Mol Biol 2002; 3(12)
[26]
Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2018; 2(7): 497-507.
[http://dx.doi.org/10.1038/s41551-018-0252-8]
[http://dx.doi.org/10.1038/s41551-018-0252-8]
[27]
Lino CA, Harper JC, Carney JP, et al. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964]
[http://dx.doi.org/10.1080/10717544.2018.1474964]
[28]
Jiang T, Henderson JM, Coote K, et al. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun 2020; 11(1): 1-9.
[29]
Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27(3): 419-26.
[http://dx.doi.org/10.1101/gr.219089.116]
[http://dx.doi.org/10.1101/gr.219089.116]
[30]
Parks RJ, Chen L, Anton M, et al. A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93(24): 13565-70.
[http://dx.doi.org/10.1073/pnas.93.24.13565]
[http://dx.doi.org/10.1073/pnas.93.24.13565]
[31]
Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8(5): 846-52.
[http://dx.doi.org/10.1016/j.ymthe.2003.08.014]
[http://dx.doi.org/10.1016/j.ymthe.2003.08.014]
[32]
Reichel MB, Ali RR, Thrasher AJ, et al. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 1998; 5(8): 1038-46.
[http://dx.doi.org/10.1038/sj.gt.3300691]
[http://dx.doi.org/10.1038/sj.gt.3300691]
[33]
Hoffman LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Invest Ophthalmol Vis Sci 1997; 38(11): 2224-33.
[34]
Auricchio A. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: The retina as a model. Hum Mol Genet 2001; 10(26): 3075-81.
[http://dx.doi.org/10.1093/hmg/10.26.3075]
[http://dx.doi.org/10.1093/hmg/10.26.3075]
[35]
Schlimgen R, Howard J, Wooley D, et al. Risks associated with lentiviral vector exposures and prevention strategies. J Occup Environ Med 2016; 58(12): 1159-66.
[http://dx.doi.org/10.1097/JOM.0000000000000879]
[http://dx.doi.org/10.1097/JOM.0000000000000879]
[36]
Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073-80.
[http://dx.doi.org/10.1038/mt.2008.76]
[http://dx.doi.org/10.1038/mt.2008.76]
[37]
Mays LE, Wilson JM. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 2011; 19(1): 16-27.
[http://dx.doi.org/10.1038/mt.2010.250]
[http://dx.doi.org/10.1038/mt.2010.250]
[38]
Podsakoff G, Wong KK, Chatterjee S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 1994; 68(9): 5656-66.
[http://dx.doi.org/10.1128/jvi.68.9.5656-5666.1994]
[http://dx.doi.org/10.1128/jvi.68.9.5656-5666.1994]
[39]
DiFranco M, Quinonez M, Capote J, et al. DNA transfection of mammalian skeletal muscules using in vivo electroporation. J Vis Exp 2009; (32): 1520.
[40]
Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with leber congenital amaurosis type 2. Ophthalmology 2013; 120(6): 1283-91.
[http://dx.doi.org/10.1016/j.ophtha.2012.11.048]
[http://dx.doi.org/10.1016/j.ophtha.2012.11.048]
[41]
Swiech L, Heidenreich M, Banerjee A, et al. in vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015; 33(1): 102-6.
[http://dx.doi.org/10.1038/nbt.3055]
[http://dx.doi.org/10.1038/nbt.3055]
[42]
Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun 2017; 8(1): 4-11.
[http://dx.doi.org/10.1038/s41467-017-00140-3]
[http://dx.doi.org/10.1038/s41467-017-00140-3]
[43]
Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for duchenne muscular dystrophy. Nat Commun 2017; 8: 14454.
[44]
Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther 2018; 26(7): 1818-27.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.017]
[http://dx.doi.org/10.1016/j.ymthe.2018.04.017]
[45]
Trapani I, Colella P, Sommella A, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 2014; 6(2): 194-211.
[http://dx.doi.org/10.1002/emmm.201302948]
[http://dx.doi.org/10.1002/emmm.201302948]
[46]
Maddalena A, Tornabene P, Tiberi P, et al. Triple vectors expand AAV transfer capacity in the retina. Mol Ther 2018; 26(2): 524-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.11.019]
[http://dx.doi.org/10.1016/j.ymthe.2017.11.019]
[47]
Tornabene P, Trapani I, Minopoli R, et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 2019; 11(492): 1-14.
[http://dx.doi.org/10.1126/scitranslmed.aav4523]
[http://dx.doi.org/10.1126/scitranslmed.aav4523]
[48]
Krooss SA, Dai Z, Schmidt F, et al. Ex vivo/in vivo gene editing in hepatocytes using “all-in-one” CRISPR-adeno-associated virus vectors wit ha self-linearizing repair template. iScience 2020; 23(1): 100764.
[http://dx.doi.org/10.1016/j.isci.2019.100764]
[http://dx.doi.org/10.1016/j.isci.2019.100764]
[49]
Nishiguchi KM, Fujita K, Miya F, et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nat Commun 2020; 11(482): 1-9.
[http://dx.doi.org/10.1038/s41467-019-14181-3]
[http://dx.doi.org/10.1038/s41467-019-14181-3]
[50]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 2015; 33(12): 1293-8.
[http://dx.doi.org/10.1038/nbt.3404]
[http://dx.doi.org/10.1038/nbt.3404]
[51]
Ran FA, Cong L, Yan WX, et al. in vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[http://dx.doi.org/10.1038/nature14299]
[http://dx.doi.org/10.1038/nature14299]
[52]
Nishimasu H, Cong L, Yan WX, et al. Crystal structure of Staphylococcus aureus Cas9. Cell 2015; 162(5): 1113-26.
[http://dx.doi.org/10.1016/j.cell.2015.08.007]
[http://dx.doi.org/10.1016/j.cell.2015.08.007]
[53]
Shen S, Sanchez ME, Blomenkamp K, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 2018; 29(8): 861-73.
[http://dx.doi.org/10.1089/hum.2017.227]
[http://dx.doi.org/10.1089/hum.2017.227]
[54]
Zheng R, Li Y, Wang L, et al. CRISPR/Cas9–mediated metabolic pathway reprogramming in a novel humanized rat model ameliorates primary hyperoxaluria type 1. Kidney Int 2020; 98(4): 947-57.
[http://dx.doi.org/10.1016/j.kint.2020.04.049]
[http://dx.doi.org/10.1016/j.kint.2020.04.049]
[55]
Jung EL, Jong CH, Park DY, et al. Effect of connective tissue growth factor gene editing using adeno-associated virus – mediated CRISPR – Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther 2021; 28(5): 277-86.
[56]
Weng S, Gao F, Wang J, et al. Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice. Cancer Gene Ther 2020; 27: 960-75.
[http://dx.doi.org/10.1038/s41417-020-0178-7]
[http://dx.doi.org/10.1038/s41417-020-0178-7]
[57]
Gaj T, Ojala DS, Ekman FK, et al. in vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv 2017; 3(12): 1-11.
[http://dx.doi.org/10.1126/sciadv.aar3952]
[http://dx.doi.org/10.1126/sciadv.aar3952]
[58]
Pan X, Philippen L, Lahiri SK, et al. In vivo ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ Res 2018; 123(8): 953-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313369]
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313369]
[59]
Duan W, Guo M, Yi L, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 2020; 27(3–4): 157-69.
[http://dx.doi.org/10.1038/s41434-019-0116-1]
[http://dx.doi.org/10.1038/s41434-019-0116-1]
[60]
Tabebordbar M, Zhu K, Chen JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-12.
[http://dx.doi.org/10.1126/science.aad5177]
[http://dx.doi.org/10.1126/science.aad5177]
[61]
Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in leber congenital amaurosis type 10. Nat Med 2019; 25(2): 229-33.
[http://dx.doi.org/10.1038/s41591-018-0327-9]
[http://dx.doi.org/10.1038/s41591-018-0327-9]
[62]
De Caneva A, Porro F, Bortolussi G, et al. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 2019; 4(15): e128863.
[http://dx.doi.org/10.1172/jci.insight.128863]
[http://dx.doi.org/10.1172/jci.insight.128863]
[63]
Ohmori T, Nagao Y, Mizukami H, et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci Rep 2017; 7(1): 1-11.
[http://dx.doi.org/10.1038/s41598-017-04625-5]
[http://dx.doi.org/10.1038/s41598-017-04625-5]
[64]
Chen H, Shi M, Gilam A, et al. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human factor VIII. Sci Rep 2019; 9(1): 1-15.
[http://dx.doi.org/10.1038/s41598-019-53198-y]
[http://dx.doi.org/10.1038/s41598-019-53198-y]
[65]
Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268): 84-8.
[http://dx.doi.org/10.1126/science.aad5227]
[http://dx.doi.org/10.1126/science.aad5227]
[66]
Tan Y, Chu AHY, Bao S, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. Proc Natl Acad Sci USA 2019; 116(42): 20969-76.
[http://dx.doi.org/10.1073/pnas.1906843116]
[http://dx.doi.org/10.1073/pnas.1906843116]
[67]
Ma D, Xu Z, Zhang Z, et al. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nat Commun 2019; 10(560): 10-9.
[http://dx.doi.org/10.1038/s41467-019-08395-8]
[http://dx.doi.org/10.1038/s41467-019-08395-8]
[68]
György B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 2019; 25(7): 1123-30.
[http://dx.doi.org/10.1038/s41591-019-0500-9]
[http://dx.doi.org/10.1038/s41591-019-0500-9]
[69]
Lau CH, Ho JWT, Lo PK, et al. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol Ther Nucleic Acids 2019; 16(June): 637-49.
[http://dx.doi.org/10.1016/j.omtn.2019.04.015]
[http://dx.doi.org/10.1016/j.omtn.2019.04.015]
[70]
Kemaladewi DU, Bassi PS, Erwood S, et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 2019; 572(7767): 125-30.
[http://dx.doi.org/10.1038/s41586-019-1430-x]
[http://dx.doi.org/10.1038/s41586-019-1430-x]
[71]
Thakore PI, Kwon JB, Nelson CE, et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun 2018; 9(1): 1-9.
[http://dx.doi.org/10.1038/s41467-018-04048-4]
[http://dx.doi.org/10.1038/s41467-018-04048-4]
[72]
Alerasool N, Segal D, Lee H, et al. An efficient KRAB domain for CRISPRi applications in human cells. Nat Methods 2020; 17(11): 1093-6.
[http://dx.doi.org/10.1038/s41592-020-0966-x]
[http://dx.doi.org/10.1038/s41592-020-0966-x]
[73]
Ma D, Peng S, Huang W, et al. Rational design of mini-Cas9 for transcriptional activation. ACS Synth Biol 2018; 7(4): 978-85.
[http://dx.doi.org/10.1021/acssynbio.7b00404]
[http://dx.doi.org/10.1021/acssynbio.7b00404]
[74]
Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017; 8.
[http://dx.doi.org/10.1038/ncomms14500]
[http://dx.doi.org/10.1038/ncomms14500]
[75]
Jo DH, Koo T, Cho CS, et al. Long-term effects of in vivo genome editing in the mouse retina using Campylobacter jejuni Cas9 Expressed via adeno-associated virus. Mol Ther 2019; 27(1): 130-6.
[http://dx.doi.org/10.1016/j.ymthe.2018.10.009]
[http://dx.doi.org/10.1016/j.ymthe.2018.10.009]
[76]
Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Mol Cell 2017; 65(6): 1109-1121.e3.
[http://dx.doi.org/10.1016/j.molcel.2017.02.007]
[http://dx.doi.org/10.1016/j.molcel.2017.02.007]
[77]
Josipović G, Zoldoš V, Vojta A. Active fusions of Cas9 orthologs. J Biotechnol 2019; 301: 18-23.
[http://dx.doi.org/10.1016/j.jbiotec.2019.05.306]
[http://dx.doi.org/10.1016/j.jbiotec.2019.05.306]
[78]
Piotter EC, McClements ME, MacLaren RE. Comparison of two Campylobacter jejuni CRISPR Cas9 Orthologues in active and deactive forms. ASGCT Annual Meeting 2020 [Online].
[79]
Hu Z, Wang S, Zhang C, et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol 2020; 18(3): e3000686.
[http://dx.doi.org/10.1371/journal.pbio.3000686]
[http://dx.doi.org/10.1371/journal.pbio.3000686]
[80]
Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 2016; 24(3): 645-54.
[http://dx.doi.org/10.1038/mt.2016.8]
[http://dx.doi.org/10.1038/mt.2016.8]
[81]
Zhang Y, Heidrich N, Ampattu BJ, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50(4): 488-503.
[http://dx.doi.org/10.1016/j.molcel.2013.05.001]
[http://dx.doi.org/10.1016/j.molcel.2013.05.001]
[82]
Esvelt KM, Mali P, Braff JL, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 2013; 10(11): 1116-23.
[http://dx.doi.org/10.1038/nmeth.2681]
[http://dx.doi.org/10.1038/nmeth.2681]
[83]
Ibraheim R, Song CQ, Mir A, et al. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol 2018; 19(1): 1-11.
[http://dx.doi.org/10.1186/s13059-018-1515-0]
[http://dx.doi.org/10.1186/s13059-018-1515-0]
[84]
Edraki A, Mir A, Ibraheim R, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell 2019; 73(4): 714-726.e4.
[http://dx.doi.org/10.1016/j.molcel.2018.12.003]
[http://dx.doi.org/10.1016/j.molcel.2018.12.003]
[85]
Xia CH, Ferguson I, Li M, et al. Essential function of NHE8 in mouse retina demonstrated by AAV-mediated CRISPR/Cas9 knockdown. Exp Eye Res 2018; 176(June): 29-39.
[86]
Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523]
[http://dx.doi.org/10.1038/nature09523]
[87]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas9 systems. Science 2013; 339(15): 819-23.
[http://dx.doi.org/10.1126/science.1231143]
[http://dx.doi.org/10.1126/science.1231143]
[88]
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561): 481-5.
[http://dx.doi.org/10.1038/nature14592]
[http://dx.doi.org/10.1038/nature14592]
[89]
Agudelo D, Carter S, Velimirovic M, et al. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Res 2020; 30(1): 107-17.
[http://dx.doi.org/10.1101/gr.255414.119]
[http://dx.doi.org/10.1101/gr.255414.119]
[90]
Fedorova I, Vasileva A, Selkova P, et al. PpCas9 from Pasteurella pneumotropica - a compact type II-C Cas9 ortholog active in human cells. Nucleic Acids Res 2020; 48(21): 12297-309.
[http://dx.doi.org/10.1093/nar/gkaa998]
[http://dx.doi.org/10.1093/nar/gkaa998]
[91]
Gao N, Zhang C, Hu Z, et al. Characterization of brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing. Front Cell Dev Biol 2020; 8(October): 1-11.
[92]
Harrington LB, Paez-Espino D, Staahl BT, et al. A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 2017; 8(1): 1-8.
[http://dx.doi.org/10.1038/s41467-017-01408-4]
[http://dx.doi.org/10.1038/s41467-017-01408-4]
[93]
Wignakumar T, Fairchild PJ. Evasion of pre-existing immunity to Cas9: A prerequisite for successful genome editing in vivo? Curr Transplant Rep 2019; 6(2): 127-33.
[http://dx.doi.org/10.1007/s40472-019-00237-2]
[http://dx.doi.org/10.1007/s40472-019-00237-2]
[94]
Harrington LB, Doxzen KW, Ma E, et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 2017; 120: 1224-33.
[http://dx.doi.org/10.1016/j.cell.2017.07.037]
[http://dx.doi.org/10.1016/j.cell.2017.07.037]
[95]
Garcia B, Lee J, Edraki A, et al. Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep 2019; 29(7): 1739-1746.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.10.017]
[http://dx.doi.org/10.1016/j.celrep.2019.10.017]
[96]
Walker JE, Lanahan AA, Zheng T, et al. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun 2019; 2020(10): e00116.
[97]
Thavalingam A, Cheng Z, Garcia B, et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat Commun 2019; 10: 1-11.
[http://dx.doi.org/10.1038/s41467-019-10577-3]
[http://dx.doi.org/10.1038/s41467-019-10577-3]
[98]
Lee J, Mir A, Edraki A, et al. Potent cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. MBio 2018; 9(6): 1-17.
[http://dx.doi.org/10.1128/mBio.02321-18]
[http://dx.doi.org/10.1128/mBio.02321-18]
[99]
Stevanovic M, McClements ME, MacLaren RE. Investigation of GeoCas9 as an alternative CRISPR/Cas9 system to treat retinal disease. ASGCT Annual Meeting 2020 [Online].
[100]
Hirano H, Gootenberg JS, Horii T, et al. Structure and engineering of Francisella novicida Cas9. Cell 2016; 164(5): 950-61.
[http://dx.doi.org/10.1016/j.cell.2016.01.039]
[http://dx.doi.org/10.1016/j.cell.2016.01.039]
[101]
Mougiakos I, Mohanraju P, Bosma EF, et al. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun 2017; 8(1): 1647.
[http://dx.doi.org/10.1038/s41467-017-01591-4]
[http://dx.doi.org/10.1038/s41467-017-01591-4]
[102]
Wang Y, Liu KI, Sutrisnoh NAB, et al. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biol 2018; 19(1): 1-16.
[http://dx.doi.org/10.1186/s13059-018-1445-x]
[http://dx.doi.org/10.1186/s13059-018-1445-x]
[103]
Kim HK, Song M, Lee J, et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017; 14(2): 153-9.
[http://dx.doi.org/10.1038/nmeth.4104]
[http://dx.doi.org/10.1038/nmeth.4104]
[104]
Koo T, Park SW, Jo DH, et al. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat Commun 2018; 9(1): 6-13.
[http://dx.doi.org/10.1038/s41467-018-04175-y]
[http://dx.doi.org/10.1038/s41467-018-04175-y]
[105]
Zetsche B, Strecker J, Abudayyeh OO, et al. A survey of genome editing activity for 16 Cas12a orthologs. Keio J Med 2019; 6: 1-5.
[106]
Yang H, Gao P, Rajashankar KR, et al. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease. Cell 2016; 167(7): 1814-1828.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.053]
[http://dx.doi.org/10.1016/j.cell.2016.11.053]
[107]
Liu L, Chen P, Wang M, et al. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 2017; 65(2): 310-22.
[http://dx.doi.org/10.1016/j.molcel.2016.11.040]
[http://dx.doi.org/10.1016/j.molcel.2016.11.040]
[108]
Teng F, Cui T, Feng G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 2018; 4(1): 63.
[http://dx.doi.org/10.1038/s41421-018-0069-3]
[http://dx.doi.org/10.1038/s41421-018-0069-3]
[109]
Teng F, Cui T, Gao Q, et al. Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 2019; 5(1): 10-3.
[http://dx.doi.org/10.1038/s41421-019-0091-0]
[http://dx.doi.org/10.1038/s41421-019-0091-0]
[110]
Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 2019; 12(212): 1-8.
[http://dx.doi.org/10.1038/s41467-018-08224-4]
[http://dx.doi.org/10.1038/s41467-018-08224-4]
[111]
Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res 2020; 1-8.
[http://dx.doi.org/10.1093/nar/gkaa208]
[http://dx.doi.org/10.1093/nar/gkaa208]
[112]
Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. Crispr-casΦ from huge phages is a hypercompact genome editor. Science 2020; 369(6501): 333-7.
[http://dx.doi.org/10.1126/science.abb1400]
[http://dx.doi.org/10.1126/science.abb1400]
[113]
Burstein D, Harrington LB, Strutt SC, et al. New CRISPR-Cas systems from uncultivated microbes. Nature 2017; 542(7640): 237-41.
[http://dx.doi.org/10.1038/nature21059]
[http://dx.doi.org/10.1038/nature21059]
[114]
Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218-23.
[http://dx.doi.org/10.1038/s41586-019-0908-x]
[http://dx.doi.org/10.1038/s41586-019-0908-x]
[115]
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017; 358(6366): 1019-27.
[http://dx.doi.org/10.1126/science.aaq0180]
[http://dx.doi.org/10.1126/science.aaq0180]
[116]
Slaymaker IM, Mesa P, Kellner MJ, et al. High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep 2019; 26: 3741-51.
[http://dx.doi.org/10.1016/j.celrep.2019.02.094]
[http://dx.doi.org/10.1016/j.celrep.2019.02.094]
[117]
Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365(6451): 382-6.
[http://dx.doi.org/10.1126/science.aax7063]
[http://dx.doi.org/10.1126/science.aax7063]
[118]
Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type IV-D CRISPR effectors. Cell 2018; 173(3): 665-76.
[http://dx.doi.org/10.1016/j.cell.2018.02.033]
[http://dx.doi.org/10.1016/j.cell.2018.02.033]
[119]
He B, Peng W, Huang J, et al. Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein Cell 2020; 11(7): 518-24.
[http://dx.doi.org/10.1007/s13238-020-00700-2]
[http://dx.doi.org/10.1007/s13238-020-00700-2]