Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Medicinal Plants for Glioblastoma Treatment

Author(s): Shreeja Datta, Ritika Luthra and Navneeta Bharadvaja*

Volume 22, Issue 13, 2022

Published on: 07 March, 2022

Page: [2367 - 2384] Pages: 18

DOI: 10.2174/1871520622666211221144739

Price: $65

Abstract

Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spread are restricted. Sensitivity towards chemotherapeutic agents has been developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description, and recent clinical studies conducted on them.

Keywords: Glioblastoma, phytotherapy, phytochemicals, anticancer, herbs, bioactive.

Graphical Abstract

[1]
Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther., 2015, 152, 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[2]
Stupp, R.; Tonn, J.C.; Brada, M.; Pentheroudakis, G. High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and fol-low-up. Ann. Oncol., 2010, 21(Suppl. 5), v190-v193.
[http://dx.doi.org/10.1093/annonc/mdq187] [PMID: 20555079]
[3]
Abbas, M.N.; Kausar, S.; Cui, H. Therapeutic potential of natural products in glioblastoma treatment: Targeting key glioblastoma signaling pathways and epigenetic alterations. Clin. Transl. Oncol., 2020, 22(7), 963-977.
[http://dx.doi.org/10.1007/s12094-019-02227-3] [PMID: 31630356]
[4]
Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.; Chen, R.; Miri-ami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.E.; Cheng, Y.; Clark, M.J. Im, H.; Habegger, L.; Balasubramanian, S.; O’Huallachain, M.; Dudley, J.T.; Hillenmeyer, S.; Haraksingh, R.; Sharon, D.; Euskirchen, G.; Lacroute, P.; Bettinger, K.; Boyle, A.P.; Kasowski, M.; Grubert, F.; Seki, S.; Garcia, M.; Whirl-Carrillo, M.; Gallardo, M.; Blasco, M.A.; Greenberg, P.L.; Snyder, P.; Klein, T.E.; Altman, R.B.; Butte, A.J.; Ashley, E.A.; Gerstein, M.; Nadeau, K.C.; Tang, H.; Snyder, M. Personal omics profiling reveals dynam-ic molecular and medical phenotypes. Cell, 2012, 148(6), 1293-1307.
[http://dx.doi.org/10.1016/j.cell.2012.02.009] [PMID: 22424236]
[5]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013, 596496.
[http://dx.doi.org/10.1155/2013/596496] [PMID: 24379902]
[6]
Khaw, A.K.; Sameni, S.; Venkatesan, S.; Kalthur, G.; Hande, M.P. Plum-bagin alters telomere dynamics, induces DNA damage and cell death in hu-man brain tumour cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 793, 86-95.
[http://dx.doi.org/10.1016/j.mrgentox.2015.06.004] [PMID: 26520377]
[7]
Guerram, M.; Jiang, Z.Z.; Sun, L.; Zhu, X.; Zhang, L.Y. Antineoplastic ef-fects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol. Rep., 2015, 67(2), 245-252.
[http://dx.doi.org/10.1016/j.pharep.2014.10.003] [PMID: 25712646]
[8]
Racoma, I.O.; Meisen, W.H.; Wang, Q.E.; Kaur, B.; Wani, A.A. Thymoqui-none inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One, 2013, 8(9), e72882.
[http://dx.doi.org/10.1371/journal.pone.0072882] [PMID: 24039814]
[9]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregu-lating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[10]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[11]
Lwin, Z.; MacFadden, D.; Al-Zahrani, A.; Atenafu, E.; Miller, B.A.; Sahgal, A.; Menard, C.; Laperriere, N.; Mason, W.P. Glioblastoma management in the temozolomide era: Have we improved outcome? J. Neurooncol., 2013, 115(2), 303-310.
[http://dx.doi.org/10.1007/s11060-013-1230-3] [PMID: 23979682]
[12]
Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis., 2016, 3(3), 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[13]
Pegg, A.E. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem. Res. Toxicol., 2011, 24(5), 618-639.
[http://dx.doi.org/10.1021/tx200031q] [PMID: 21466232]
[14]
Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.C.; Pentheroudakis, G. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treat-ment and follow-up. Ann. Oncol., 2014, (25)(Suppl. 3), iii93-iii101.
[http://dx.doi.org/10.1093/annonc/mdu050] [PMID: 24782454]
[15]
Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12] [PMID: 26594645]
[16]
Shukla, S.; Mehta, A. Anticancer potential of medicinal plants and their phytochemicals: A review. Braz. J. Bot., 2015, 38(2), 199-210.
[http://dx.doi.org/10.1007/s40415-015-0135-0]
[17]
Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449.
[http://dx.doi.org/10.1002/ptr.6087] [PMID: 29672977]
[18]
Chen, W.; Wang, D.; Du, X.; He, Y.; Chen, S.; Shao, Q.; Ma, C.; Huang, B.; Chen, A.; Zhao, P.; Qu, X.; Li, X. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med. Oncol., 2015, 32(3), 43.
[http://dx.doi.org/10.1007/s12032-015-0487-0] [PMID: 25631631]
[19]
Calinescu, A.A.; Castro, M.G. Microtubule targeting agents in glioma. Transl. Cancer Res., 2016, 5(Suppl. 1), S54-S60.
[http://dx.doi.org/10.21037/tcr.2016.06.12] [PMID: 30680290]
[20]
Osuka, S.; Van Meir, E.G. Overcoming therapeutic resistance in glioblasto-ma: The way forward. J. Clin. Invest., 2017, 127(2), 415-426.
[http://dx.doi.org/10.1172/JCI89587] [PMID: 28145904]
[21]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[22]
Nam, J.S.; Jagga, S.; Sharma, A.R.; Lee, J.H.; Park, J.B.; Jung, J.S.; Lee, S.S. Anti-inflammatory effects of traditional mixed extract of medicinal herbs (MEMH) on monosodium urate crystal-induced gouty arthritis. Chin. J. Nat. Med., 2017, 15(8), 561-575.
[http://dx.doi.org/10.1016/S1875-5364(17)30084-5] [PMID: 28939019]
[23]
Li, J.; Li, J.; Zhang, F. The immunoregulatory effects of Chinese herbal medicine on the maturation and function of dendritic cells. J. Ethnopharmacol., 2015, 171, 184-195.
[http://dx.doi.org/10.1016/j.jep.2015.05.050] [PMID: 26068430]
[24]
Emsen, B.; Aslan, A.; Togar, B.; Turkez, H. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm. Biol., 2016, 54(9), 1748-1762.
[http://dx.doi.org/10.3109/13880209.2015.1126620] [PMID: 26704132]
[25]
Lantto, T.A.; Laakso, I.; Dorman, H.J.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular Stress and p53-associated apoptosis by Juniperus communis L. Berry extract treatment in the human SH-SY5Y neuroblasto-ma cells. Int. J. Mol. Sci., 2016, 17(7), 1113.
[http://dx.doi.org/10.3390/ijms17071113] [PMID: 27420050]
[26]
Lin, Y.L.; Lai, W.L.; Harn, H.J.; Hung, P.H.; Hsieh, M.C.; Chang, K.F.; Huang, X.F.; Liao, K.W.; Lee, M.S.; Tsai, N.M. The methanol extract of An-gelica sinensis induces cell apoptosis and suppresses tumor growth in hu-man malignant brain tumors. Evid. Based Complement. Alternat. Med., 2013, 2013, 394636.
[http://dx.doi.org/10.1155/2013/394636] [PMID: 24319475]
[27]
Dörr, J.A.; Bitencourt, S.; Bortoluzzi, L.; Alves, C.; Silva, J.; Stoll, S.; Pinteus, S.; Boligon, A.A.; Santos, R.C.V.; Laufer, S.; Pedrosa, R.; Goettert, M.I. In vitro activities of Ceiba speciosa (A.St.-Hil) Ravenna aqueous stem bark extract. Nat. Prod. Res., 2019, 33(23), 3441-3444.
[http://dx.doi.org/10.1080/14786419.2018.1478823] [PMID: 29792358]
[28]
Kuete, V.; Viertel, K.; Efferth, T. Antiproliferative potential of African medicinal plants. Med. Plants Res. Afr., 2013, 18, 712-724.
[http://dx.doi.org/10.1016/B978-0-12-405927-6.00018-7]
[29]
Lima, N.M.; Santos, V.N.C.; La Porta, F.A. Chemodiversity, bioactivity and chemosystematics of the genus Inga (Fabaceae): A brief review. Rev. Vir-tual Quim., 2018, 10(3), 459-473.
[http://dx.doi.org/10.21577/1984-6835.20180035]
[30]
Lúcio, A.S.; Almeida, J.R.; Da-Cunha, E.V.; Tavares, J.F.; Barbosa Filho, J.M. Alkaloids of the Annonaceae: Occurrence and a compilation of their biological activities. Alkaloids Chem. Biol., 2015, 74, 233-409.
[http://dx.doi.org/10.1016/bs.alkal.2014.09.002] [PMID: 25845063]
[31]
Maistro, E.L.; Terrazzas, P.M.; Perazzo, F.F.; Gaivão, I.O.M.; Sawaya, A.C.H.F.; Rosa, P.C.P. Salix alba (white willow) medicinal plant presents genotoxic effects in human cultured leukocytes. J. Toxicol. Environ. Health A, 2019, 82(23-24), 1223-1234.
[http://dx.doi.org/10.1080/15287394.2019.1711476] [PMID: 31906808]
[32]
Mongalo, N.I.; McGaw, L.J.; Segapelo, T.V.; Finnie, J.F.; Van Staden, J. Ethnobotany, phytochemistry, toxicology and pharmacological properties of Terminalia sericea burch. ex DC. (Combretaceae) - A review. J. Ethnopharmacol., 2016, 194, 789-802.
[http://dx.doi.org/10.1016/j.jep.2016.10.072] [PMID: 27989875]
[33]
Rocha, T.A.; Moura, D.F.; Silva, M.M.D.; Dos Santos Souza, T.G.; Lira, M.A.D.C.; Barros, D.M.; da Silva, A.G.; Ximenes, R.M.; Falcão, E.P.D.S.; Chagas, C.A.; Júnior, F.C.A.A.; Santos, N.P.D.S.; Silva, M.V.D.; Correia, M.T.D.S. Evaluation of cytotoxic potential, oral toxicity, genotoxicity, and mutagenicity of organic extracts of Pityrocarpa moniliformis. J. Toxicol. Environ. Health A, 2019, 82(3), 216-231.
[http://dx.doi.org/10.1080/15287394.2019.1576563] [PMID: 30849290]
[34]
De Sousa, J.A.; De Sousa, J.T.; Boaretto, F.B.M.; Salvi, J.O.; Fachini, J.; Da Silva, J.B.; Unfer, J.P.; Allgayer, M.C.; Lemes, M.L.B.; Marroni, N.P.; Ferraz, A.B.F.; Picada, J.N. Anti-hyperlipidemic effects of Campomanesia xantho-carpa aqueous extract and its modulation on oxidative stress and genomic instability in Wistar rats. J. Toxicol. Environ. Health A, 2019, 82(18), 1009-1018.
[http://dx.doi.org/10.1080/15287394.2019.1683925] [PMID: 31658881]
[35]
Bais, S.; Abrol, N.; Prashar, Y.; Kumari, R. Modulatory effect of standard-ised amentoflavone isolated from Juniperus communis L. agianst Freund’s adjuvant induced arthritis in rats (histopathological and X Ray anaysis). Biomed. Pharmacother., 2017, 86, 381-392.
[http://dx.doi.org/10.1016/j.biopha.2016.12.027] [PMID: 28012393]
[36]
Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Jovanović, M.; Nikolić, B. Chemical character-ization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol., 2018, 112, 118-125.
[http://dx.doi.org/10.1016/j.fct.2017.12.044] [PMID: 29287791]
[37]
Tavares, W.R.; Seca, A.M.L. The current status of the pharmaceutical poten-tial of juniperus L. metabolites. Medicines (Basel), 2018, 5(3), 81.
[http://dx.doi.org/10.3390/medicines5030081] [PMID: 30065158]
[38]
Abbassy, M.A.; Marei, G.I. Antifungal and chemical composition of essen-tial oils of J. communis and Thymus vulgaris against two phytopathogenic fungi. J. Appl. Sci. Res., 2013, 9(8), 4584-4588.
[39]
Banerjee, S.; Mukherjee, A.; Chatterjee, T.K. Evaluation of analgesic activi-ties of methanolic extract of medicinal plant Juniperus communis Linn. Int. J. Pharm. Pharm. Sci., 2012, 4, 547-550.
[40]
Carpenter, C.D.; O’Neill, T.; Picot, N.; Johnson, J.A.; Robichaud, G.A.; Webster, D.; Gray, C.A. Anti-mycobacterial natural products from the Ca-nadian medicinal plant Juniperus communis. J. Ethnopharmacol., 2012, 143(2), 695-700.
[http://dx.doi.org/10.1016/j.jep.2012.07.035] [PMID: 22877928]
[41]
Benzina, S.; Harquail, J.; Jean, S.; Beauregard, A.P.; Colquhoun, C.D.; Car-roll, M.; Bos, A.; Gray, C.A.; Robichaud, G.A. Deoxypodophyllotoxin iso-lated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer. Agents Med. Chem., 2015, 15(1), 79-88.
[http://dx.doi.org/10.2174/1871520614666140608150448] [PMID: 24913660]
[42]
Ghaly, N.S.; Mina, S.A.; Younis, N.A.H. In vitro cytotoxic activity and phytochemical analysis of the aerial parts of J. communis L. cultivated in Egypt. J Pharm Sci & Res, 2016, 8, 128-131.
[43]
Ferenbach, D.A.; Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol., 2015, 11(5), 264-276.
[http://dx.doi.org/10.1038/nrneph.2015.3] [PMID: 25643664]
[44]
Sarvothaman, S.; Undi, R.B.; Pasupuleti, S.R.; Gutti, U.; Gutti, R.K. Apop-tosis: Role in myeloid cell development. Blood Res., 2015, 50(2), 73-79.
[http://dx.doi.org/10.5045/br.2015.50.2.73] [PMID: 26157776]
[45]
Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A Review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol., 2019, 9, 1534.
[http://dx.doi.org/10.3389/fphar.2018.01534] [PMID: 30687096]
[46]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strate-gies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[47]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The Role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[48]
Efferth, T. From ancient herb to modern drug: Artemisia annua and artemis-inin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[49]
Abba, M.L.; Patil, N.; Leupold, J.H.; Saeed, M.E.M.; Efferth, T.; Allgayer, H. Prevention of carcinogenesis and metastasis by Artemisinin-type drugs. Cancer Lett., 2018, 429, 11-18.
[http://dx.doi.org/10.1016/j.canlet.2018.05.008] [PMID: 29746932]
[50]
Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61.
[http://dx.doi.org/10.1016/j.phymed.2017.11.003] [PMID: 29174651]
[51]
Children’s Oncology Group. Research. 2020. Available from: https://childrensoncologygroup.org/index.php/research
[52]
Thamm, D.H. Canine cancer: Strategies in experimental therapeutics. Front. Oncol., 2019, 9, 1257.
[http://dx.doi.org/10.3389/fonc.2019.01257] [PMID: 31803625]
[53]
Khan, R.S.; Senthi, M.; Rao, P.C.; Basha, A.; Alvala, M.; Tummuri, D.; Masubuti, H.; Fujimoto, Y.; Begum, A.S. Cytotoxic constituents of Abuti-lon indicum leaves against U87MG human glioblastoma cells. Nat. Prod. Res., 2015, 29(11), 1069-1073.
[http://dx.doi.org/10.1080/14786419.2014.976643] [PMID: 25422029]
[54]
Khadabadi, S.S.; Bhajipale, N.S. A review on some important medicinal plants of Abutilon spp. Res. J. Pharm. Biol. Chem. Sci., 2010, 1, 718-729.
[55]
Musthafa, S.A.; Kasinathan, T.; Bhattacharyya, R.; Muthu, K.; Kumar, S.; Munuswamy-Ramanujam, G. Gallic acid synergistically enhances the apop-totic ability of Abutilon indicum Linn. Stem fraction inhuman U87 glio-blastoma cells. Mater. Today, 2021, 40, S216-S223.
[http://dx.doi.org/10.1016/j.matpr.2020.10.285]
[56]
Li, J.; Tang, H.; Zhang, Y.; Tang, C.; Li, B.; Wang, Y.; Gao, Z.; Luo, P.; Yin, A.; Wang, X.; Cheng, G.; Fei, Z. Saponin 1 induces apoptosis and suppress-es NF-κB-mediated survival signaling in glioblastoma multiforme (GBM). PLoS One, 2013, 8(11), e81258.
[http://dx.doi.org/10.1371/journal.pone.0081258] [PMID: 24278406]
[57]
Wang, Y.; Tang, H.; Zhang, Y.; Li, J.; Li, B.; Gao, Z.; Wang, X.; Cheng, G.; Fei, Z. Saponin B, a novel cytostatic compound purified from Anemone tai-paiensis, induces apoptosis in a human glioblastoma cell line. Int. J. Mol. Med., 2013, 32(5), 1077-1084.
[http://dx.doi.org/10.3892/ijmm.2013.1500] [PMID: 24048272]
[58]
Ji, C.C.; Tang, H.F.; Hu, Y.Y.; Zhang, Y.; Zheng, M.H.; Qin, H.Y.; Li, S.Z.; Wang, X.Y.; Fei, Z.; Cheng, G. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl 2 family proteins. Mol. Med. Rep., 2016, 14(1), 380-386.
[http://dx.doi.org/10.3892/mmr.2016.5287] [PMID: 27175997]
[59]
Uddin, M.J.; Ali Reza, A.S.M.; Abdullah-Al-Mamun, M.; Kabir, M.S.H.; Nasrin, M.S.; Akhter, S.; Arman, M.S.I.; Rahman, M.A. Antinociceptive and anxiolytic and sedative effects of methanol extract of Anisomeles indica: An experimental assessment in mice and computer aided models. Front. Pharmacol., 2018, 9, 246.
[http://dx.doi.org/10.3389/fphar.2018.00246] [PMID: 29706888]
[60]
Huang, H.C.; Lien, H.M.; Ke, H.J.; Chang, L.L.; Chen, C.C.; Chang, T.M. Antioxidative characteristics of Anisomeles indica extract and inhibitory effect of ovatodiolide on melanogenesis. Int. J. Mol. Sci., 2012, 13(5), 6220-6235.
[http://dx.doi.org/10.3390/ijms13056220] [PMID: 22754360]
[61]
Su, Y.K.; Bamodu, O.A.; Tzeng, Y.M.; Hsiao, M.; Yeh, C.T.; Lin, C.M. Ova-todiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of te-mozolomide. Phytomedicine, 2019, 61, 152840.
[http://dx.doi.org/10.1016/j.phymed.2019.152840] [PMID: 31035045]
[62]
Tang, H.F.; Yun, J.; Lin, H.W.; Chen, X.L.; Wang, X.J.; Cheng, G. Two new triterpenoid saponins cytotoxic to human glioblastoma U251MG cells from Ardisia pusilla. Chem. Biodivers., 2009, 6(9), 1443-1452.
[http://dx.doi.org/10.1002/cbdv.200800233] [PMID: 19774606]
[63]
Wang, R.; Xiao, X.; Wang, P.Y.; Wang, L.; Guan, Q.; Du, C.; Wang, X.J. Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla. Life Sci., 2014, 110(1), 15-22.
[http://dx.doi.org/10.1016/j.lfs.2014.06.016] [PMID: 24984215]
[64]
Dang, H.; Wang, J.; Cheng, J.X.; Wang, P.Y.; Wang, Y.; Cheng, L.F.; Du, C.; Wang, X.J. Efficacy of local delivery of ardipusilloside I using biodegrada-ble implants against cerebral tumor growth. Am. J. Cancer Res., 2014, 5(1), 243-254.
[PMID: 25628934]
[65]
Conti, S.; Vexler, A.; Edry-Botzer, L.; Kalich-Philosoph, L.; Corn, B.W.; Shtraus, N.; Meir, Y.; Hagoel, L.; Shtabsky, A.; Marmor, S.; Earon, G.; Lev-Ari, S. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One, 2018, 13(7), e0198627.
[http://dx.doi.org/10.1371/journal.pone.0198627] [PMID: 29969452]
[66]
Schneider, H.; Weller, M. Boswellic acid activity against glioblastoma stem-like cells. Oncol. Lett., 2016, 11(6), 4187-4192.
[http://dx.doi.org/10.3892/ol.2016.4516] [PMID: 27313764]
[67]
Vengoji, R.; Macha, M.A.; Batra, S.K.; Shonka, N.A. Natural products: A hope for glioblastoma patients. Oncotarget, 2018, 9(31), 22194-22219.
[http://dx.doi.org/10.18632/oncotarget.25175] [PMID: 29774132]
[68]
Eom, K.S.; Kim, H.J.; So, H.S.; Park, R.; Kim, T.Y. Berberine-induced apop-tosis in human glioblastoma T98G cells is mediated by endoplasmic reticu-lum stress accompanying reactive oxygen species and mitochondrial dys-function. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[69]
Toegel, S.; Wu, S.Q.; Otero, M.; Goldring, M.B.; Leelapornpisid, P.; Chiari, C.; Kolb, A.; Unger, F.M.; Windhager, R.; Viernstein, H. Caesalpinia sap-pan extract inhibits IL1β-mediated overexpression of matrix metallopro-teinases in human chondrocytes. Genes Nutr., 2012, 7(2), 307-318.
[http://dx.doi.org/10.1007/s12263-011-0244-8] [PMID: 21850498]
[70]
Nirmal, N.P.; Rajput, M.S.; Prasad, R.G.; Ahmad, M. Brazilin from Caesal-pinia sappan heartwood and its pharmacological activities: A review. Asian Pac. J. Trop. Med., 2015, 8(6), 421-430.
[http://dx.doi.org/10.1016/j.apjtm.2015.05.014] [PMID: 26194825]
[71]
Liang, C.H.; Chan, L.P.; Chou, T.H.; Chiang, F.Y.; Yen, C.M.; Chen, P.J.; Ding, H.Y.; Lin, R.J. Brazilein from caesalpinia sappan L. antioxidant in-hibits adipocyte differentiation and induces apoptosis through caspase-3 activity and anthelmintic activities against hymenolepis nana and anisakis simplex. Evid. Based Complement. Alternat. Med., 2013, 2013, 864892.
[http://dx.doi.org/10.1155/2013/864892] [PMID: 23554834]
[72]
Lee, D.Y.; Lee, M.K.; Kim, G.S.; Noh, H.J.; Lee, M.H. Brazilin inhibits growth and induces apoptosis in human glioblastoma cells. Molecules, 2013, 18(2), 2449-2457.
[http://dx.doi.org/10.3390/molecules18022449] [PMID: 23429418]
[73]
Tao, L.Y.; Li, J.Y.; Zhang, J.Y. Brazilein, a compound isolated from Caesal-pinia sappan Linn., induced growth inhibition in breast cancer cells via in-volvement of GSK-3β/β-Catenin/cyclin D1 pathway. Chem. Biol. Interact., 2013, 206(1), 1-5.
[http://dx.doi.org/10.1016/j.cbi.2013.07.015] [PMID: 23948132]
[74]
Kim, S.H.; Lyu, H.N.; Kim, Y.S.; Jeon, Y.H.; Kim, W.; Kim, S.; Lim, J.K.; Lee, H.W.; Baek, N.I.; Choi, K.Y.; Lee, J.; Kim, K.T. Brazilin Isolated from Caesalpinia sappan suppresses nuclear envelope reassembly by inhibiting barrier-to-autointegration factor phosphorylation. J. Pharmacol. Exp. Ther., 2015, 352(1), 175-184.
[http://dx.doi.org/10.1124/jpet.114.218792] [PMID: 25369797]
[75]
Naik Bukke, A.; Nazneen Hadi, F.; Babu, K.S.; Shankar, P.C. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf ex-tracts on MCF7 and A549 cell lines. Data Brief, 2018, 19, 868-877.
[http://dx.doi.org/10.1016/j.dib.2018.05.050] [PMID: 29900385]
[76]
Hsieh, C.Y.; Tsai, P.C.; Chu, C.L.; Chang, F.R.; Chang, L.S.; Wu, Y.C.; Lin, S.R. Brazilein suppresses migration and invasion of MDA-MB-231 breast cancer cells. Chem. Biol. Interact., 2013, 204(2), 105-115.
[http://dx.doi.org/10.1016/j.cbi.2013.05.005] [PMID: 23707804]
[77]
Pena Almidón, A.M. Evaluation of cannabigerol activity in human glio-blastoma cell lines., Master’s Thesis, Scuola di Scienze del Farmaco e dei Prodotti Della Salute, Università’ Degli Studi di Camerino: Camerino, Italy. 2019.
[78]
Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O. Žvar Baškovič B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Can-nabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, 2021, 10(2), 340.
[http://dx.doi.org/10.3390/cells10020340] [PMID: 33562819]
[79]
Ciaglia, E.; Torelli, G.; Pisanti, S.; Picardi, P.; D’Alessandro, A.; Laezza, C.; Malfitano, A.M.; Fiore, D.; Pagano Zottola, A.C.; Proto, M.C.; Catapano, G.; Gazzerro, P.; Bifulco, M. Cannabinoid receptor CB1 regulates STAT3 activi-ty and its expression dictates the responsiveness to SR141716 treatment in human glioma patients’ cells. Oncotarget, 2015, 6(17), 15464-15481.
[http://dx.doi.org/10.18632/oncotarget.3895] [PMID: 26008966]
[80]
Ansari, I.; Patil, D.T. A brief review on phytochemical and pharmacological profile of Carissa spinarum L. Asian J. Pharm. Clin. Res., 2018, 11(9), 12-18.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26316]
[81]
Alqathama, A.; Bader, A.; Khondkar Gibbons, S.; Prieto, J. Bioguided isolation of cytotoxic compounds against melanoma cells from Carissa spinarum L. Planta Med., 2015, 81(16), 1438.
[http://dx.doi.org/10.1055/s-0035-1565428]
[82]
Ya’u, J.; Magaji, M.G.; Yaro, A.H. Antitumour properties of the standard-ised root bark extract of Carissa edulis Vahl. Niger. J. Pharm. Sci., 2016, 15(2), 64-72.
[83]
Ngulde, S.I.; Sandabe, U.K.; Abounader, R.; Zhang, Y.; Hussaini, I.M. Activ-ities of some medicinal plants on the proliferation and invasion of brain tumor cell lines. Adv. Pharmacol. Pharm. Sci., 2020, 2020, 3626879.
[http://dx.doi.org/10.1155/2020/3626879] [PMID: 32908971]
[84]
Lee, Y.K.; Lee, K.W.; Kim, M.; Lee, Y.; Yoo, J.; Hwangbo, C.; Park, K.H.; Kim, K.D. Chelidonine induces caspase-dependent and caspase-independent cell death through G2/M arrest in the t98g human glioblastoma cell line. Evid. Based Complement. Alternat. Med., 2019, 2019, 6318179.
[http://dx.doi.org/10.1155/2019/6318179] [PMID: 31239863]
[85]
Gilca, M.; Gaman, L.; Panait, E.; Stoian, I.; Atanasiu, V. Chelidonium majus--an integrative review: Traditional knowledge versus modern find-ings. Forsch. Komplement. Med., 2010, 17(5), 241-248.
[http://dx.doi.org/10.1159/000321397] [PMID: 20980763]
[86]
Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice In:Herbal medicine: Biomolecular and clinical aspects; Ed. 2ns; CRC Press: Taylor & Francis: Boca Raton, FL. , 2011, p. 13.
[http://dx.doi.org/10.1201/b10787-14]
[87]
Huang, T.Y.; Hsu, C.W.; Chang, W.C.; Wang, M.Y.; Wu, J.F.; Hsu, Y.C. Demethoxycurcumin retards cell growth and induces apoptosis in human brain malignant glioma GBM 8401 cells. Evid. Based Complement. Alternat. Med., 2012, 2012, 396573.
[http://dx.doi.org/10.1155/2012/396573] [PMID: 22454662]
[88]
Shi, L.; Sun, G. Low-dose DMC significantly enhances the effect of TMZ on glioma cells by targeting multiple signaling pathways both in vivo and in vitro. Neuromolecular Med., 2015, 17(4), 431-442.
[http://dx.doi.org/10.1007/s12017-015-8372-8] [PMID: 26458914]
[89]
Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer mechanism of cur-cumin on human glioblastoma. Nutrients, 2021, 13(3), 950.
[http://dx.doi.org/10.3390/nu13030950] [PMID: 33809462]
[90]
Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcu-min inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201.
[http://dx.doi.org/10.1002/mnfr.200900277] [PMID: 20087857]
[91]
Gersey, Z.C.; Rodriguez, G.A.; Barbarite, E.; Sanchez, A.; Walters, W.M.; Ohaeto, K.C.; Komotar, R.J.; Graham, R.M. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer, 2017, 17(1), 99.
[http://dx.doi.org/10.1186/s12885-017-3058-2] [PMID: 28160777]
[92]
Zanotto-Filho, A.; Braganhol, E.; Edelweiss, M.I.; Behr, G.A.; Zanin, R.; Schröder, R.; Simões-Pires, A.; Battastini, A.M.; Moreira, J.C. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in pre-clinical model of glioblastoma. J. Nutr. Biochem., 2012, 23(6), 591-601.
[http://dx.doi.org/10.1016/j.jnutbio.2011.02.015] [PMID: 21775121]
[93]
Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid. Med. Cell. Longev., 2017, 2017, 1459497.
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[94]
Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin sup-presses glioblastoma cell proliferation by p-AKT/mTOR pathway and in-creases the PTEN expression. Arch. Biochem. Biophys., 2020, 689, 108412.
[http://dx.doi.org/10.1016/j.abb.2020.108412] [PMID: 32445778]
[95]
Ramachandran, C.; Nair, S.M.; Escalon, E.; Melnick, S.J. Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines. J. Complement. Integr. Med., 2012, 9, 20.
[http://dx.doi.org/10.1515/1553-3840.1614] [PMID: 22944718]
[96]
Keles, L.C.; Melo, N. Lychnophorinae (asteraceae): A survey of its chemi-cal constituents and biological activities. Quim. Nova, 2010, 33(10), 2245-2260.
[http://dx.doi.org/10.1590/S0100-40422010001000038]
[97]
Sousa, J.P.; Nogueira, E.F.; Ferreira, L.S.; Lopes, N.P.; Lopes, J.L. Valida-tion of analytical procedures using HPLC-ELSD to determine six sesquit-erpene lactones in Eremanthus species. Biomed. Chromatogr., 2016, 30(3), 484-493.
[http://dx.doi.org/10.1002/bmc.3576] [PMID: 26234655]
[98]
Izumi, C.; Laure, H.J.; Barbosa, N.G.; Thomé, C.H.; Ferreira, G.A.; Sousa, J.P.B.; Lopes, N.P.; Rosa, J.C. Sequesterpene lactones isolated from a Brazil-ian cerrado plant (Eremanthus spp.) as anti-proliferative compounds, char-acterized by functional and proteomic analysis, are candidates for new ther-apeutics in glioblastoma. Int. J. Mol. Sci., 2020, 21(13), 4713.
[http://dx.doi.org/10.3390/ijms21134713] [PMID: 32630308]
[99]
Lobo, J.F.R.; Castro, E.S.; Gouvea, D.R. Antiproliferative activity of Ere-manthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines. Rev. Bras. Farmacogn., 2012, 22(6), 1295-1300.
[http://dx.doi.org/10.1590/S0102-695X2012005000131]
[100]
Priya, C.L.; Rao, B. Review of phytochemical a pharmacological profile of Euphorbia tirucalli. Pharmacol Online, 2011, 2, 384-390.
[101]
Reis, R.M.; Silva, V.A.O.; Rosa, M.N. Cytotoxic effect of euphol from Euphorbia tirucalli on a large panel of human cancer cell lines. J. Clin. Oncol., 2013, 31(15)(Suppl.), e13557.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e13557]
[102]
Silva, V.A.O.; Rosa, M.N.; Miranda-Gonçalves, V.; Costa, A.M.; Tansini, A.; Evangelista, A.F.; Martinho, O.; Carloni, A.C.; Jones, C.; Lima, J.P.; Pi-anowski, L.F.; Reis, R.M. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest. New Drugs, 2019, 37(2), 223-237.
[http://dx.doi.org/10.1007/s10637-018-0620-y] [PMID: 29931585]
[103]
Tsai, N.M.; Chang, K.F.; Wang, J.C. Juniperus communis extract exerts antitumor effects in human glioblastomas through blood-brain barrier. Cell. Physiol. Biochem., 2018, 49(6), 2443-2462.
[http://dx.doi.org/10.1159/000493842] [PMID: 30261501]
[104]
Quassinti, L.; Maggi, F.; Ortolani, F.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Miano, A.; Bramucci, M. Exploring new applications of tulip tree (Lirio-dendron tulipifera L.): Leaf essential oil as apoptotic agent for human gli-oblastoma. Environ. Sci. Pollut. Res. Int., 2019, 26(29), 30485-30497.
[http://dx.doi.org/10.1007/s11356-019-06217-4] [PMID: 31444719]
[105]
Kang, Y.F.; Liu, C.M.; Kao, C.L.; Chen, C.Y. Antioxidant and anticancer constituents from the leaves of Liriodendron tulipifera. Molecules, 2014, 19(4), 4234-4245.
[http://dx.doi.org/10.3390/molecules19044234] [PMID: 24705566]
[106]
Li, Q.Q.; Wang, G.; Huang, F.; Li, J.M.; Cuff, C.F.; Reed, E. Sensitization of lung cancer cells to cisplatin by β-elemene is mediated through blockade of cell cycle progression: Antitumor efficacies of β-elemene and its synthetic analogs. Med. Oncol., 2013, 30(1), 488.
[http://dx.doi.org/10.1007/s12032-013-0488-9] [PMID: 23397083]
[107]
Li, W.J.; Lin, Y.C.; Wu, P.F.; Wen, Z.H.; Liu, P.L.; Chen, C.Y.; Wang, H.M. Biofunctional constituents from Liriodendron tulipifera with antioxidants and anti-melanogenic properties. Int. J. Mol. Sci., 2013, 14(1), 1698-1712.
[http://dx.doi.org/10.3390/ijms14011698] [PMID: 23322020]
[108]
Chiu, C.C.; Chou, H.L.; Wu, P.F.; Chen, H.L.; Wang, H.M.; Chen, C.Y. Bio-functional constituents from the stems of Liriodendron tulipifera. Molecules, 2012, 17(4), 4357-4372.
[http://dx.doi.org/10.3390/molecules17044357] [PMID: 22491683]
[109]
Graziose, R.; Rathinasabapathy, T.; Lategan, C.; Poulev, A.; Smith, P.J.; Grace, M.; Lila, M.A.; Raskin, I. Antiplasmodial activity of aporphine alka-loids and sesquiterpene lactones from Liriodendron tulipifera L. J. Ethnopharmacol., 2011, 133(1), 26-30.
[http://dx.doi.org/10.1016/j.jep.2010.08.059] [PMID: 20826204]
[110]
Mustafa, A.M.; Eldahmy, S.I.; Caprioli, G.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Beghelli, D.; Vittori, S.; Maggi, F. Chemical composition and biological activities of the essential oil from Pulicaria undulata (L.) C. A. Mey. growing wild in Egypt. Nat. Prod. Res., 2020, 34(16), 2358-2362.
[http://dx.doi.org/10.1080/14786419.2018.1534107] [PMID: 30394109]
[111]
Fawzy, G.A.; Al Ati, H.Y.; El Gamal, A.A. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Pharmacogn. Mag., 2013, 9(33), 28-32.
[http://dx.doi.org/10.4103/0973-1296.108133] [PMID: 23661990]
[112]
Smruthi, R.; Divya, M.; Archana, K.; Ravi, M. The active compounds of Passiflora spp. and their potential medicinal uses from both in vitro and in vivo evidence. J. Pharm. Pharm. Sci., 2021, 4(1), 45-55.
[http://dx.doi.org/10.21608/jabps.2020.44321.1105]
[113]
Kuete, V.; Dzotam, J.K.; Voukeng, I.K.; Fankam, A.G.; Efferth, T. Cytotoxi-city of methanol extracts of Annona muricata, Passiflora edulis and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines. Springerplus, 2016, 5(1), 1666.
[http://dx.doi.org/10.1186/s40064-016-3361-4] [PMID: 27730025]
[114]
Wilcox, R.M.; Huseman, E.D.; Lin, S.; Darkwah, B.O.; Emeje, M.O.; Gamaniel, K.S.; Orisadipe, A.; Enwerem, N.; Kefas, B.A.; Gryka, R.J.; Simpson, D.S.; Amos, S. Evaluation of the anticancer activity of bioactive fraction g extracted from Pavetta crassipes in malignant brain tumor cell lines. Am. J. Phytomedicine Clin. Ther., 2017, 5(2), 16.
[http://dx.doi.org/10.21767/2321-2748.100329]
[115]
Bello, I.A.; Ndukwe, G.I.; Audu, O.T.; Habila, J.D. A bioactive flavonoid from Pavetta crassipes K. Schum. Org. Med. Chem. Lett., 2011, 1(1), 14.
[http://dx.doi.org/10.1186/2191-2858-1-14] [PMID: 22373191]
[116]
Önen, H. Altuntaş, E.; Özgöz, E.; Bayram, M.; Özcan, S. Moisture effect on physical properties of knotweed (Polygonum cognatum Meissn.) seeds. JAFAG, 2014, 31(2), 15-24.
[http://dx.doi.org/10.13002/jafag670]
[117]
Pehlivan, M. The cytotoxic effect of Polygonum cognatum and chemother-apeutic effect of doxorubicin on glioblastoma cells. Eur J Ther, 2021, 27(1), 50-54.
[http://dx.doi.org/10.5152/eurjther.2021.20085]
[118]
Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portu-laca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Res. Int., 2015, 2015, 925631.
[http://dx.doi.org/10.1155/2015/925631] [PMID: 25692148]
[119]
Yan, J.; Sun, L.R.; Zhou, Z.Y.; Chen, Y.C.; Zhang, W.M.; Dai, H.F.; Tan, J.W. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry, 2012, 80, 37-41.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.014] [PMID: 22683318]
[120]
Baradaran Rahimi, V.; Mousavi, S.H.; Haghighi, S.; Soheili-Far, S.; Askari, V.R. Cytotoxicity and apoptogenic properties of the standardized extract of Portulaca oleracea on glioblastoma multiforme cancer cell line (U-87): A mechanistic study. EXCLI J., 2019, 18, 165-186.
[http://dx.doi.org/10.17179/excli2019-1063] [PMID: 31217780]
[121]
Stump, T.A.; Santee, B.N.; Williams, L.P.; Kunze, R.A.; Heinze, C.E.; Huseman, E.D.; Gryka, R.J.; Simpson, D.S.; Amos, S. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells. J. Pharm. Pharmacol., 2017, 69(7), 907-916.
[http://dx.doi.org/10.1111/jphp.12718] [PMID: 28349530]
[122]
Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme. Biofactors, 2020, 46(3), 356-366.
[http://dx.doi.org/10.1002/biof.1605] [PMID: 31880372]
[123]
Atiq, A.; Parhar, I. Anti-neoplastic potential of flavonoids and polysaccha-ride phytochemicals in glioblastoma. Molecules, 2020, 25(21), 4895.
[http://dx.doi.org/10.3390/molecules25214895] [PMID: 33113890]
[124]
Uçar, E.Ö.; Sengelen, A.; Mertoglu, E.; Pekmez, M.; Arda, N. HSP70 in human diseases and disorders; Springer: New York, USA, 2018, pp. 361-379.
[http://dx.doi.org/10.1007/978-3-319-89551-2_19]
[125]
Wu, Q.; Needs, P.W.; Lu, Y.; Kroon, P.A.; Ren, D.; Yang, X. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct., 2018, 9(3), 1736-1746.
[http://dx.doi.org/10.1039/C7FO01964E] [PMID: 29497723]
[126]
Lesjak, M.; Beara, I.; Simin, N. Antioxidant and antiinflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[127]
Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[128]
Pan, H.C.; Jiang, Q.; Yu, Y.; Mei, J.P.; Cui, Y.K.; Zhao, W.J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibron-ectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem. Int., 2015, 80, 60-71.
[http://dx.doi.org/10.1016/j.neuint.2014.12.001] [PMID: 25481090]
[129]
Kannan, R.; Babu, U.V. Identity and pharmacognosy of Ruta graveolens Linn. Anc. Sci. Life, 2012, 32(1), 16-19.
[http://dx.doi.org/10.4103/0257-7941.113792] [PMID: 23929988]
[130]
Pushpa, H.; Ramya, N.; Shibani, P.; Ramesh, D.H. Screening of antimicrobi-al, antioxidant and anticancer activity of Ruta graveolens. Adv. Biol. Res., 2015, 9(4), 257-264.
[http://dx.doi.org/10.5829/idosi.abr.2015.9.94234]
[131]
Preethi, K.; Ellanghiyil, S.; Kuttan, G.; Kuttan, R. Induction of apoptosis of tumor cells by some potentiated homeopathic drugs: Implications on mech-anism of action. Integr. Cancer Ther., 2012, 11(2), 172-182.
[http://dx.doi.org/10.1177/1534735411400310] [PMID: 21771822]
[132]
Gentile, M.T.; Ciniglia, C.; Reccia, M.G.; Volpicelli, F.; Gatti, M.; Thellung, S.; Florio, T.; Melone, M.A.; Colucci-D’Amato, L. Ruta graveolens L. in-duces death of glioblastoma cells and neural progenitors, but not of neu-rons, via ERK 1/2 and AKT activation. PLoS One, 2015, 10(3), e0118864.
[http://dx.doi.org/10.1371/journal.pone.0118864] [PMID: 25785932]
[133]
Freitas, S.; Costa, S.; Azevedo, C.; Carvalho, G.; Freire, S.; Barbosa, P.; Velozo, E.; Schaer, R.; Tardy, M.; Meyer, R.; Nascimento, I. Flavonoids in-hibit angiogenic cytokine production by human glioma cells. Phytother. Res., 2011, 25(6), 916-921.
[http://dx.doi.org/10.1002/ptr.3338] [PMID: 21170924]
[134]
Jian, S.; Chen, L.; Minxue, L.; Hongmin, C.; Ronghua, T.; Xiaoxuan, F.; Binbin, Z.; Shiwen, G. Tanshinone I induces apoptosis and protective au-tophagy in human glioblastoma cells via a reactive oxygen spe-cies dependent pathway. Int. J. Mol. Med., 2020, 45(4), 983-992.
[http://dx.doi.org/10.3892/ijmm.2020.4499] [PMID: 32124953]
[135]
Tian, X.H.; Wu, J.H. Tanshinone derivatives: A patent review (January 2006 - September 2012). Expert Opin. Ther. Pat., 2013, 23(1), 19-29.
[http://dx.doi.org/10.1517/13543776.2013.736494] [PMID: 23094864]
[136]
Wang, W.; Li, J.; Ding, Z.; Li, Y.; Wang, J.; Chen, S.; Miao, J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J. Cell. Mol. Med., 2019, 23(9), 6454-6465.
[http://dx.doi.org/10.1111/jcmm.14539] [PMID: 31293090]
[137]
Kim, D.H.; Shin, E.A.; Kim, B.; Shim, B.S.; Kim, S.H. Reactive oxygen species-mediated phosphorylation of p38 signaling is critically involved in apoptotic effect of Tanshinone I in colon cancer cells. Phytother. Res., 2018, 32(10), 1975-1982.
[http://dx.doi.org/10.1002/ptr.6126] [PMID: 29876988]
[138]
Cao, Y.; Huang, B.; Gao, C. Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells. Bosn. J. Basic Med. Sci., 2017, 17(3), 235-240.
[http://dx.doi.org/10.17305/bjbms.2017.1800] [PMID: 28485251]
[139]
Di Cesare Mannelli, L.; Piccolo, M.; Maione, F.; Ferraro, M.G.; Irace, C.; De Feo, V.; Ghelardini, C.; Mascolo, N. Tanshinones from Salvia miltiorrhiza bunge revert chemotherapy-induced neuropathic pain and reduce glioblas-toma cells malignancy. Biomed. Pharmacother., 2018, 105, 1042-1049.
[http://dx.doi.org/10.1016/j.biopha.2018.06.047] [PMID: 30021339]
[140]
Ngulde, S.I.; Sandabe, U.K.; Hussaini, I.M. Ethnobotanical survey of anti-cancer plants in Askira/Uba local government area of Borno state, Nigeria. AJPP, 2015, 9(5), 123-130.
[http://dx.doi.org/10.5897/AJPP2014.4083]
[141]
Segun, P.A.; Ogbole, O.O.; Ajaiyeoba, E.O. Medicinal plants used in the management of cancer among the Ijebus of Southwestern Nigeria. J. Herb. Med., 2018, 14, 68-75.
[http://dx.doi.org/10.1016/j.hermed.2018.04.002]
[142]
Dibwe, D.F.; Awale, S.; Kadota, S.; Morita, H.; Tezuka, Y. Muchimangins G-J, fully substituted xanthones with a diphenylmethyl substituent, from Securidaca longepedunculata. J. Nat. Prod., 2014, 77(5), 1241-1244.
[http://dx.doi.org/10.1021/np5000445] [PMID: 24779644]
[143]
Jian, Z. J.; Jiang, H.; Zhu, Y.H.; Wang, Y.Q.; Zhang, W.; Luan, J.J. Regula-tion of MAPKs signaling contributes to the growth inhibition of 1,7-Dihydroxy-3,4-dimethoxyx- anthone on multidrug resistance A549/taxol cells. EVID-BASED COMPL ALT, 2016, 10, 2018704.
[http://dx.doi.org/10.1155/2016/2018704] [PMID: 27403196]
[144]
Obasi, T.C.; Braicu, C.; Iacob, B.C.; Bodoki, E.; Jurj, A.; Raduly, L.; Oniga, I.; Berindan-Neagoe, I.; Oprean, R. Securidaca-saponins are natural inhibi-tors of AKT, MCL-1, and BCL2L1 in cervical cancer cells. Cancer Manag. Res., 2018, 10, 5709-5724.
[http://dx.doi.org/10.2147/CMAR.S163328] [PMID: 30532593]
[145]
Klein-Junior, L.C.; Campos, A.; Niero, R.; Correa, R.; Heyden, Y.V. Xantho-nes and cancer: From natural sources to mechanisms of action. Chem. Biodivers., 2019, 17(2), e1900499.
[http://dx.doi.org/10.1002/cbdv.201900499] [PMID: 31794156]
[146]
Ngulde, S.I.; Sandabe, U.K.; Abounader, R.; Dawson, T.K.; Zhang, Y.; Iliya, I.; Hussaini, I.M. Ethanol extract of Securidaca longipedunculata induces apoptosis in brain tumor (U87) cells. BioMed Res. Int., 2019, 2019, 9826590.
[http://dx.doi.org/10.1155/2019/9826590] [PMID: 30931334]
[147]
Lawal, R.A.; Ozaslan, M.D.; Odesanmi, O.S.; Karagoz, I.D.; Kilic, I.H.; Ebuehi, O.A.T. Cytotoxic and anti- proliferative activity of Securidaca longepedunculata aqueous extract on Ehrlich ascites carcinoma cells in Swiss Albino mice. Int. J. Appl. Res. Nat. Prod., 2012, 5(4), 19-27.
[148]
Bora, N.S.; Kakoti, B.B.; Gogoi, B.; Goswami, A.K. Ethno-medicinal claims, phytochemistry and pharmacology of Spondias pinnata: A Review. Int. J. Pharm. Sci. Res., 2014, 5(4), 1138-1145.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.5(4).1138-45]
[149]
Chaudhuri, D.; Ghate, N.B.; Singh, S.S.; Mandal, N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblas-toma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn. Mag., 2015, 11(42), 269-276.
[http://dx.doi.org/10.4103/0973-1296.153078] [PMID: 25829764]
[150]
Saha, S.; Ghosh, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life, 2012, 31(4), 151-159.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[151]
Parthipan, M.; Aravindhan, V.; Rajendran, A. Medico-botanical study of Yercaud hills in the Eastern ghats of Tamil Nadu, India. Anc. Sci. Life, 2011, 30(4), 104-109.
[PMID: 22557438]
[152]
Rao, S.K.; Rao, P.S. Alteration in the radiosensitivity of HeLa cells by dichloromethane extract of guduchi (Tinospora cordifolia). Integr. Cancer Ther., 2010, 9(4), 378-384.
[http://dx.doi.org/10.1177/1534735410387598] [PMID: 21106617]
[153]
Mishra, R.; Kaur, G. Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas. PLoS One, 2013, 8(10), e78764.
[http://dx.doi.org/10.1371/journal.pone.0078764] [PMID: 24205314]
[154]
Sharma, A.; Saggu, S.K.; Mishra, R.; Kaur, G. Anti-brain cancer activity of chloroform and hexane extracts of Tinospora cordifolia Miers: An in vitro perspective. Ann. Neurosci., 2019, 26(1), 10-20.
[http://dx.doi.org/10.5214/ans.0972.7531.260104] [PMID: 31975767]
[155]
Hashemi, M.; Gharaylou, Z.; Sepand, M.R. Apoptosis induced by viola odorata extract in human glioblastoma multiforme. Arch. Neurosci., 2019, 6(1), e81233.
[156]
Kong, D.; Yan, Y.; He, X-Y.; Yang, H.; Liang, B.; Wang, J.; He, Y.; Ding, Y.; Yu, H. Effects of resveratrol on the mechanisms of antioxidants and estro-gen in Alzheimer’s disease. BioMed Res. Int., 2019, 2019, 8983752.
[http://dx.doi.org/10.1155/2019/8983752] [PMID: 31016201]
[157]
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resvera-trol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[158]
Ogboli, N.E.O.; Isa, A.S.; Dingwoke, E.J.; Umar, A.H. Analgesic and anti-inflammatory effects of resveratrol in rat models of pain: Any role in clini-cal pain management? Arch Med Surg, 2018, 3(1), 19-23.
[http://dx.doi.org/10.4103/archms.archms_54_17]
[159]
El-Ghazaly, M.A.; Fadel, N.A.; Abdel-Naby, D.H.; Abd El-Rehim, H.A.; Zaki, H.F.; Kenawy, S.A. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: Effect on pro-inflammatory cy-tokines and oxidative stress biomarkers. Egypt. Rheumatol., 2020, 42(1), 71-77.
[http://dx.doi.org/10.1016/j.ejr.2019.08.003]
[160]
Lomholt, S.; Mellemkjaer, A.; Iversen, M.B.; Pedersen, S.B.; Kragstrup, T.W. Resveratrol displays anti-inflammatory properties in an ex vivo model of immune mediated inflammatory arthritis. BMC Rheumatol., 2018, 2, 27.
[http://dx.doi.org/10.1186/s41927-018-0036-5] [PMID: 30886977]
[161]
Riba, A.; Deres, L.; Sumegi, B.; Toth, K.; Szabados, E.; Halmosi, R. Cardio-protective effect of resveratrol in a postinfarction heart failure model. Oxid. Med. Cell. Longev., 2017, 2017, 6819281.
[http://dx.doi.org/10.1155/2017/6819281] [PMID: 29109832]
[162]
Thadhani, V.M. Resveratrol in management of diabetes and obesity: Clinical applications, bioavailability, and nanotherapy. In: Resveratrol-Adding Life to Years, Not Adding Years to Life, IntechOpen: London. 2019.
[http://dx.doi.org/10.5772/intechopen.79498]
[163]
Goffart, N.; Kroonen, J.; Rogister, B. Glioblastoma-initiating cells: Relationship with neural stem cells and the micro-environment. Cancers (Basel), 2013, 5(3), 1049-1071.
[http://dx.doi.org/10.3390/cancers5031049] [PMID: 24202333]
[164]
Zhang, Y.; Dube, C.; Gibert, M., Jr; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; Grello, C.; Oxford, M.; Yu-an, F.; Abounader, R. The p53 pathway in glioblastoma. Cancers (Basel), 2018, 10(9), 297.
[http://dx.doi.org/10.3390/cancers10090297] [PMID: 30200436]
[165]
Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg., 2017, 126(5), 1448-1460.
[http://dx.doi.org/10.3171/2016.1.JNS152077] [PMID: 27419830]
[166]
Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Grape resveratrol increases serum adiponectin and downregu-lates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther., 2013, 27(1), 37-48.
[http://dx.doi.org/10.1007/s10557-012-6427-8] [PMID: 23224687]
[167]
Durg, S.; Dhadde, S.B.; Vandal, R.; Shivakumar, B.S.; Charan, C.S. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. J. Pharm. Pharmacol., 2015, 67(7), 879-899.
[http://dx.doi.org/10.1111/jphp.12398] [PMID: 25828061]
[168]
Dar, N.J.; Hamid, A.; Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci., 2015, 72(23), 4445-4460.
[http://dx.doi.org/10.1007/s00018-015-2012-1] [PMID: 26306935]
[169]
Vanden Berghe, W.; Sabbe, L.; Kaileh, M.; Haegeman, G.; Heyninck, K. Molecular insight in the multifunctional activities of Withaferin A. Biochem. Pharmacol., 2012, 84(10), 1282-1291.
[http://dx.doi.org/10.1016/j.bcp.2012.08.027] [PMID: 22981382]
[170]
Sun, G.Y.; Li, R.; Cui, J.; Hannink, M.; Gu, Z.; Fritsche, K.L.; Lubahn, D.B.; Simonyi, A. Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Med., 2016, 18(3), 241-252.
[http://dx.doi.org/10.1007/s12017-016-8411-0] [PMID: 27209361]
[171]
Grogan, P.T.; Sarkaria, J.N.; Timmermann, B.N.; Cohen, M.S. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblas-tomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest. New Drugs, 2014, 32(4), 604-617.
[http://dx.doi.org/10.1007/s10637-014-0084-7] [PMID: 24718901]
[172]
Kataria, H.; Kumar, S.; Chaudhary, H.; Kaur, G. Withania somnifera sup-presses tumor growth of intracranial allograft of glioma cells. Mol. Neurobiol., 2016, 53(6), 4143-4158.
[http://dx.doi.org/10.1007/s12035-015-9320-1] [PMID: 26208698]
[173]
Santagata, S.; Xu, Y.M.; Wijeratne, E.M.; Kontnik, R.; Rooney, C.; Perley, C.C.; Kwon, H.; Clardy, J.; Kesari, S.; Whitesell, L.; Lindquist, S.; Gunatil-aka, A.A. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem. Biol., 2012, 7(2), 340-349.
[http://dx.doi.org/10.1021/cb200353m] [PMID: 22050377]
[174]
Baliga, M.S.; Haniadka, R.; Pereira, M.M.; D’Souza, J.J.; Pallaty, P.L.; Bhat, H.P.; Popuri, S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr., 2011, 51(6), 499-523.
[http://dx.doi.org/10.1080/10408391003698669] [PMID: 21929329]
[175]
Weng, H.Y.; Hsu, M.J.; Wang, C.C.; Chen, B.C.; Hong, C.Y.; Chen, M.C.; Chiu, W.T.; Lin, C.H. Zerumbone suppresses IKKα Akt, and FOXO1 acti-vation, resulting in apoptosis of GBM 8401 cells. J. Biomed. Sci., 2012, 19(1), 86.
[http://dx.doi.org/10.1186/1423-0127-19-86] [PMID: 23035900]
[176]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versa-tile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[177]
Elkady, A.I.; Hussein, R.A.; Abu-Zinadah, O.A. Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro. BioMed Res. Int., 2014, 2014, 260210.
[http://dx.doi.org/10.1155/2014/260210] [PMID: 25136570]
[178]
Zraikat, M.; Gharaibeh, M.; Alshelleh, T. The effect of ginger on the invasion and migration of glioma cells. Eur. J. Med. Chem., 2020, 31(10), 38-43.
[179]
Deorukhkar, A.; Ahuja, N.; Mercado, A.L.; Diagaradjane, P.; Raju, U.; Patel, N.; Mohindra, P.; Diep, N.; Guha, S.; Krishnan, S. Zerumbone increases ox-idative stress in a thiol-dependent ROS-independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation. Cancer Med., 2015, 4(2), 278-292.
[http://dx.doi.org/10.1002/cam4.367] [PMID: 25450478]
[180]
Prasannan, R.; Kalesh, K.A.; Shanmugam, M.K.; Nachiyappan, A.; Rama-chandran, L.; Nguyen, A.H.; Kumar, A.P.; Lakshmanan, M.; Ahn, K.S.; Sethi, G. Key cell signaling pathways modulated by zerumbone: Role in the prevention and treatment of cancer. Biochem. Pharmacol., 2012, 84(10), 1268-1276.
[http://dx.doi.org/10.1016/j.bcp.2012.07.015] [PMID: 22842489]
[181]
Rajan, I.; Jayasree, P.R.; Kumar, P.R. Zerumbone induces mitochondria-mediated apoptosis via increased calcium, generation of reactive oxygen species and upregulation of soluble histone H2AX in K562 chronic mye-logenous leukemia cells. Tumour Biol., 2015, 36(11), 8479-8489.
[http://dx.doi.org/10.1007/s13277-015-3583-z] [PMID: 26026585]
[182]
Jalili-Nik, M.; Sadeghi, M.M.; Mohtashami, E.; Mollazadeh, H.; Afshari, A.R.; Sahebkar, A. Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid. Med. Cell. Longev., 2020, 2020, 3237983.
[http://dx.doi.org/10.1155/2020/3237983] [PMID: 32454937]
[183]
Vartholomatos, E.; Alexiou, G.A.; Markopoulos, G.S.; Lazari, D.; Tsiftso-glou, O.; Chousidis, I.; Leonardos, I.; Kyritsis, A.P. Deglucohellebrin: A potent agent for glioblastoma treatment. Anticancer. Agents Med. Chem., 2020, 20(1), 103-110.
[http://dx.doi.org/10.2174/1871520619666191121110848] [PMID: 31755397]
[184]
Wang, G.; Wang, J.; Du, L.; Li, F. Effect and mechanism of total flavonoids extracted from Cotinus coggygria against glioblastoma cancer in vitro and in vivo. BioMed Res. Int., 2015, 2015, 856349.
[http://dx.doi.org/10.1155/2015/856349] [PMID: 26557705]
[185]
Sengupta, R.; Barone, A.; Marasa, J.; Taylor, S.; Jackson, E.; Warrington, N.M.; Rao, S.; Kim, A.H.; Leonard, J.R.; Piwnica-Worms, D.; Rubin, J.B. Novel chemical library screen identifies naturally occurring plant products that specifically disrupt glioblastoma-endothelial cell interactions. Oncotarget, 2015, 6(21), 18282-18292.
[http://dx.doi.org/10.18632/oncotarget.4957] [PMID: 26286961]
[186]
Wang, J.; Qi, Q.; Feng, Z.; Zhang, X.; Huang, B.; Chen, A.; Prestegarden, L.; Li, X.; Wang, J. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget, 2016, 7(41), 66944-66958.
[http://dx.doi.org/10.18632/oncotarget.11396] [PMID: 27557493]
[187]
Dhami, J.; Chang, E.; Gambhir, S.S. Withaferin A and its potential role in glioblastoma (GBM). J. Neurooncol., 2017, 131(2), 201-211.
[http://dx.doi.org/10.1007/s11060-016-2303-x] [PMID: 27837436]
[188]
Sun, M.; Ye, Y.; Xiao, L.; Duan, X.; Zhang, Y.; Zhang, H. Anticancer effects of ginsenoside Rg3 (Review). Int. J. Mol. Med., 2017, 39(3), 507-518.
[http://dx.doi.org/10.3892/ijmm.2017.2857] [PMID: 28098857]
[189]
Shah, F.H.; Salman, S.; Idrees, J.; Idrees, F.; Shah, S.T.A.; Khan, A.A.; Ah-mad, B. Current progress of phytomedicine in glioblastoma therapy. Curr. Med. Sci., 2020, 40(6), 1067-1074.
[http://dx.doi.org/10.1007/s11596-020-2288-8] [PMID: 33428134]
[190]
Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother., 2015, 15(7), 741-752.
[http://dx.doi.org/10.1586/14737175.2015.1051968] [PMID: 26027432]
[191]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[192]
Puglia, C.; Lauro, M.R.; Tirendi, G.G.; Fassari, G.E.; Carbone, C.; Bonina, F.; Puglisi, G. Modern drug delivery strategies applied to natural active com-pounds. Expert Opin. Drug Deliv., 2017, 14(6), 755-768.
[http://dx.doi.org/10.1080/17425247.2017.1234452] [PMID: 27606793]
[193]
Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product ex-tracts: When 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[194]
Trogrlić, I.; Trogrlić, D.; Trogrlić, D.; Trogrlić, A.K. Treatment of glioblasto-ma with herbal medicines. World J. Surg. Oncol., 2018, 16(1), 28.
[http://dx.doi.org/10.1186/s12957-018-1329-2] [PMID: 29433556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy