Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Letter Article

Efficient One-pot Synthesis of 3,3-di(indolyl)indolin-2-ones from Isatin and Indole Catalyzed by VOSO4 as Non-Sulfonamide Carbonic Anhydrase Inhibitors

Author(s): Baijayantimala Swain, Priti Singh, Andrea Angeli, Santosh Kumar Sahoo, Venkata Madhavi Yaddanapudi*, Claudiu T. Supuran* and Mohammed Arifuddin*

Volume 22, Issue 13, 2022

Published on: 18 March, 2022

Page: [2358 - 2366] Pages: 9

DOI: 10.2174/1871520622666220202112014

Price: $65

Abstract

Background: A high yielding green protocol has been developed and delineated for the synthesis of 3,3- di(indolyl)indolin-2-ones, potentially bioactive compounds, involving one pot aqueous medium condensation of isatin with indole in the presence of VOSO4. The synthesized compounds were screened for their carbonic anhydrase inhibitory activity against human (h) isoforms hCA I, hCA II, hCA IX, and hCA XII. These non-sulfonamide derivatives selectively inhibited hCA II in the micromolar range.

Objective: To develop a high yielding green protocol to synthesize 3,3-diindolyl oxindole derivatives using water as solvent media and screening the synthesized molecules for their carbonic anhydrase inhibitory activity.

Methods: The target compound is obtained by taking isatin, indole, VOSO4, and H2O in one-pot at 70oC.

Results: The designed molecules were synthesized by using the new method. The molecules were screened for their CA inhibitory activity, which shows selective inhibition toward hCA II.The result showed an excellent yield without any loss or decrease in catalytic activity, proving the catalyst's performance and recyclability.

Conclusion: An efficient, simple, and green protocol was established that provides a facile and straightforward approach for the preparation of 3,3-diindolyl oxindole derivatives (3a-r) from Isatin and Indole by using 10 mol% VOSO4 in high yields in a short period of time by a one-pot coupling reaction. Furthermore, the catalyst can also be recovered and reused for three consecutive catalytic cycles without any loss of its efficiency, which was confirmed by performing the experiment with 3a. The newly synthesized molecules (3a-r) were screened for their carbonic anhydrase inhibition potency against four isoforms, hCA I, II, IX, and XII and most of the compounds were found potent against hCA II with potency low to submicromolar range.

Keywords: Oxindoles, vanadyl sulfate, green chemistry, carbonic anhydrase, hCA II isoform, nonsulfonamide.

Graphical Abstract

[1]
(a) Hazarika, P.; Sharma, S.D.; Konwar, D. Efficient synthesis of bis- and tris-indolylalkanes catalyzed by a brønsted acid–surfactant catalyst in water. Synth. Commun., 2008, 38(17), 2870-2880.
[http://dx.doi.org/10.1080/00397910801979387]
(b) Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[2]
Subba Reddy, B.V.; Rajeswari, N.; Sarangapani, M.; Prashanthi, Y.; Ganji, R.J.; Addlagatta, A. Iodine-catalyzed condensation of isatin with indoles: A facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cy-totoxicity. Bioorg. Med. Chem. Lett., 2012, 22(7), 2460-2463.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.011] [PMID: 22386528]
[3]
Chandam, D.; Mulik, A.; Patil, P.; Jagdale, S.; Patil, D.; Sankpal, S.; Deshmukh, M. Oxalic acid dihydrate: Proline (LTTM) as a new generation solvent for synthesis of 3,3-diaryloxindole and chromone based bis(indolyl)alkanes:Green, chromatography free protocol. J. Mol. Liq., 2015, 207, 14-20.
[http://dx.doi.org/10.1016/j.molliq.2015.02.036]
[4]
Hassani, H.; Zakerinasab, B.; Poor, H.H. Synthesis, characterization and application of alumina/vanadium pentoxide nanocomposit by sol-gel method. Appl. Organomet. Chem., 2017, 32, 3945-3951.
[http://dx.doi.org/10.1002/aoc.3945]
[5]
Allahresani, A.; Taheri, B.; Nasseri, M.A. Fe(III) @g-C3N4 nanocomposite-catalyzed green synthesis of di-indolyloxindole derivatives. Res. Chem. Intermed., 2018, 44, 6741-6751.
[http://dx.doi.org/10.1007/s11164-018-3519-5]
[6]
Nasseri, M.A.; Ahrari, F.; Zakerinasab, B. Nickel oxide nanoparticle: A green and recyclablecatalytic system for the synthesis of diindolyloxin-dolederivatives in aqueous medium. RSC Advances, 2015, 5(18), 13901-13905.
[http://dx.doi.org/10.1039/C4RA14551H]
[7]
Xu, D.; Tong, J.; Huang, L. An efficient Friedel-crafts alkylation for synthe-sis of 3-indolyl-3-hydroxy oxindoles and unsymmetrical 3,3-diaryl oxin-doles catalyzed by dabco-base ionic liquids in water. New J. Chem., 2017, 41(10), 3966-3974.
[http://dx.doi.org/10.1039/C7NJ00174F]
[8]
(a) Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N.; Khorshidi, A. Ruthe-nium-catalyzed efficient routes to oxindole Derivatives. Can. J. Chem., 2009, 87(9), 1213-1217.
[http://dx.doi.org/10.1139/V09-098]
(b) Hassani, H.; Zakerinasab, B.; Nasseri, M.A.; Shavakandi, M. The prepara-tion, characterization and application of COOH grafting on ferrite-silica na-noparticles. RSC Advances, 2016, 6(21), 17560-17566.
[http://dx.doi.org/10.1039/C5RA24252E]
(c) Azizian, J.; Mohammadi, A.A.; Karimi, N.; Mohammadizadeh, M.R.; Karimi, A.R. Silica sulfuric acid a novel and heterogeneous catalyst for the synthesis of some new oxindole derivatives. Catal. Commun., 2006, 7(10), 752-755.
[http://dx.doi.org/10.1016/j.catcom.2006.01.026]
(d) Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K.B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N.B. Efficient synthesis of 3,3-diheteroaromatic oxindole analogues and their in vitro evaluation for sper-micidal potential. Bioorg. Med. Chem. Lett., 2009, 19(16), 4786-4789.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.049] [PMID: 19564109]
(e) Praveen, C.; Ayyanar, A.; Perumal, P.T. Gold(III) chloride catalyzed regi-oselective synthesis of pyrano[3,4-b]indol-1(9H)-ones and evaluation of anticancer potential towards human cervix adenocarcinoma. Bioorg. Med. Chem. Lett., 2011, 21(14), 4170-4173.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.088] [PMID: 21684738]
(f) Wang, S.Y.; Ji, S.J. Facile synthesis of 3,3-di(heteroaryl) indolin-2-one derivatives catalyzed by ceric ammonium nitrate (CAN) under ultrasound irradiation. Tetrahedron, 2006, 62(7), 1527-1535.
[http://dx.doi.org/10.1016/j.tet.2005.11.011]
(g) Tayade, Y.A.; Patil, D.R.; Wagh, Y.B.; Jangle, A.D.; Dalal, D.S. An effi-cient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecu-lar catalyst in water. Tetrahedron Lett., 2015, 56(5), 666-673.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.012] [PMID: 32287446]
(h) Sarrafi, Y.; Alimohammadi, K.; Sadatshahabi, M.; Norozipoor, N. An improved catalytic method for the synthesis of 3,3- di(indolyl)oxindoles using amberlyst 15 as a heterogeneous and reusable catalyst in water. Monatsh. Chem., 2012, 143, 1519-1522.
[http://dx.doi.org/10.1007/s00706-012-0723-7]
[9]
(a) Rehder, D. Vanadium. Its role for humans. Met. Ions Life Sci., 2013, 13, 139-169.
[http://dx.doi.org/10.1007/978-94-007-7500-8_5] [PMID: 24470091]
(b) Hirao, T. Vanadium in modern organic synthesis. Chem. Rev., 1997, 97(8), 2707-2724.
[http://dx.doi.org/10.1021/cr960014g] [PMID: 11851478]
(c) Hales, B.J.; Case, E.E.; Morningstar, J.E.; Dzeda, M.F.; Mauterer, L.A. Isolation of a new vanadium-containing nitrogenase from Azotobacter vine-landii. Biochemistry, 1986, 25(23), 7251-7255.
[http://dx.doi.org/10.1021/bi00371a001] [PMID: 3026449]
(d) Robson, R.L.; Eady, R.R.; Richardson, T.H.; Miller, R.W.; Hawkins, M.; Postgate, J.R. The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 1986, 322, 388-390.
[http://dx.doi.org/10.1038/322388a0]
[10]
Moriuchi, T.; Kikushima, K.; Kajikawa, T.; Hirao, T. Vanadium-catalyzed oxidative aromatization of 2-cyclohexenones under molecular oxygen. Tetrahedron Lett., 2009, 50, 7385-7387.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.070]
[11]
Digwal, C.S.; Yadav, U.; Ramya, P.V.S.; Sana, S.; Swain, B.; Kamal, A. Vanadium-catalyzed oxidative C(CO)-C(CO) bond cleavage for c-n bond formation: One-pot domino transformation of 1,2-diketones and amidines into imides and amides. J. Org. Chem., 2017, 82(14), 7332-7345.
[http://dx.doi.org/10.1021/acs.joc.7b00950] [PMID: 28653528]
[12]
Kirihara, M.; Yoshida, K.; Noguchi, T.; Naito, S.; Matsumoto, N.; Ema, Y.; Torii, M.; Ishizuka, Y.; Souta, I. Effective cleavage of ditertiary glycols via vanadium(V)-catalyzed aerobic oxidation. Tetrahedron Lett., 2010, 51, 3619-3622.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.134]
[13]
Vennat, M.; Herson, P.; Brégeault, J.M.; Shul’pin, G.B. Vanadium-catalysed aerobic cleavage of c-c bonds in substituted cyclohexanones to afford car-boxylic acids: Two model complexes with tetrahedral geometry around va-nadium(V). Eur. J. Inorg. Chem., 2003, 2003, 908-917.
[http://dx.doi.org/10.1002/ejic.200390120]
[14]
Yin, C.X.; Finke, R.G. Vanadium-based, extended catalytic lifetime cate-chol dioxygenases: Evidence for a common catalyst. J. Am. Chem. Soc., 2005, 127(25), 9003-9013.
[http://dx.doi.org/10.1021/ja051594e] [PMID: 15969577]
[15]
Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhy-drase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem., 1971, 246(8), 2561-2573.
[http://dx.doi.org/10.1016/S0021-9258(18)62326-9] [PMID: 4994926]
[16]
(a) Grandane, A.; Tanc, M.; Di Cesare Mannelli, L.; Carta, F.; Ghelardini, C.; Žalubovskis, R.; Supuran, C.T. 6-Substituted sulfocoumarins are selective carbonic anhdydrase IX and XII inhibitors with significant cytotoxicity against colorectal cancer cells. J. Med. Chem., 2015, 58(9), 3975-3983.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00523] [PMID: 25875209]
(b) Korkmaz, N.; Obaidi, O.A.; Senturk, M.; Astley, D.; Ekinci, D.; Supu-ran, C.T. Synthesis and biological activity of novel thiourea derivatives as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 75-80.
[http://dx.doi.org/10.3109/14756366.2013.879656] [PMID: 24666304]
(c) Entezari Heravi, Y.; Sereshti, H.; Saboury, A.A.; Ghasemi, J.; Amir-mostofian, M.; Supuran, C.T. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 688-700.
[http://dx.doi.org/10.1080/14756366.2016.1241781] [PMID: 28317396]
(d) Akdemir, A.; De Monte, C.; Carradori, S.; Supuran, C.T. Computational investigation of the selectivity of salen and tetrahydrosalen compounds towards the tumor-associated hCA XII isozyme. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 114-118.
[http://dx.doi.org/10.3109/14756366.2014.892936] [PMID: 24666302]
[17]
(a) Carta, F.; Aggarwal, M.; Maresca, A.; Scozzafava, A.; McKenna, R.; Masi-ni, E.; Supuran, C.T. Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J. Med. Chem., 2012, 55(4), 1721-1730.
[http://dx.doi.org/10.1021/jm300031j] [PMID: 22276570]
(b) Bozdag, M.; Ferraroni, M.; Carta, F.; Vullo, D.; Lucarini, L.; Orlandini, E.; Rossello, A.; Nuti, E.; Scozzafava, A.; Masini, E.; Supuran, C.T. Struc-tural insights on carbonic anhydrase inhibitory action, isoform selectivity, and potency of sulfonamides and coumarins incorporating arylsulfonylu-reido groups. J. Med. Chem., 2014, 57(21), 9152-9167.
[http://dx.doi.org/10.1021/jm501314c] [PMID: 25310626]
(c) Scozzafava, A.; Passaponti, M.; Supuran, C.T. Gülçin, İ. Carbonic anhy-drase inhibitors: Guaiacol and catechol derivatives effectively inhibit cer-tain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII). J. Enzyme Inhib. Med. Chem., 2015, 30(4), 586-591.
[http://dx.doi.org/10.3109/14756366.2014.956310] [PMID: 25373500]
[18]
Kamal, A.; Srikanth, Y.V.V.; Khan, M.N.A.; Shaik, T.B.; Ashraf, M. Synthe-sis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorg. Med. Chem. Lett., 2010, 20(17), 5229-5231.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.152] [PMID: 20673629]
[19]
Patel, G.M.; Deota, P.T. Tungstic acid-catalyzed synthesis of 3,3-bis(1H-indol-3-yl)indolin-2-one derivatives. Heterocycl. Commun., 2013, 19, 421-424.
[http://dx.doi.org/10.1515/hc-2013-0142]
[20]
Moghadam, K.R.; Gholizadeh, S. Selective and efficient synthesis of 3-indolyl-2-oxindoles under catalysis of LiClO4. Iran. J. Catal., 2014, 4(1), 41-47.
[21]
(a) Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
(b) Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
(c) Supuran, C.T. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin. Investig. Drugs, 2018, 27(12), 963-970.
[http://dx.doi.org/10.1080/13543784.2018.1548608] [PMID: 30426805]
(d) Supuran, C.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin. Ther. Pat., 2018, 28(10), 709-712.
[http://dx.doi.org/10.1080/13543776.2018.1523897] [PMID: 30217119]
[22]
Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem., 2016, 31(3), 345-360.
[http://dx.doi.org/10.3109/14756366.2015.1122001] [PMID: 26619898]
[23]
Swain, B.; Singh Digwal, C.; Angeli, A.; Alvala, M.; Singh, P.; Supuran, C.T.; Arifuddin, M. Synthesis and exploration of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives for their effects against carbonic anhydrase I, II, IX and XII isoforms as a non-sulfonamide class of inhibi-tors. Bioorg. Med. Chem., 2019, 27(21), 115090.
[http://dx.doi.org/10.1016/j.bmc.2019.115090] [PMID: 31515058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy