Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Relevance of Bioassay of Biologically Active Substances (BAS) with Geroprotective Properties in the Model of the Nematode Caenorhabditis Elegans in In Vivo Experiments

Author(s): Lyubov S. Dyshlyuk, Anastasiya I. Dmitrieva*, Margarita Yu. Drozdova, Irina S. Milentyeva and Alexander Yu. Prosekov

Volume 15, Issue 2, 2022

Published on: 27 April, 2022

Page: [121 - 134] Pages: 14

DOI: 10.2174/1874609814666211202144911

Price: $65

Abstract

Aging is an inevitable process of nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances and determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems, such as Rattusrattus, Musmusculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, its stress resistance, and other markers of aging is also considered. The review shows that the nematode C.elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.

Keywords: C. elegans, Saccharomyces cerevisiae, D. melanogaster, model organism, biologically active substances (- BAS), geroprotectors, neurodegenerative diseases.

Graphical Abstract

[1]
López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G. Metabolic control of longevity. Cell 2016; 166(4): 802-21.
[http://dx.doi.org/10.1016/j.cell.2016.07.031] [PMID: 27518560]
[2]
Prasanth MI, Sivamaruthi BS, Kesika P, Rosmol PS, Tencomnao T. Unraveling the mode of action of medicinal plants in delaying age-related diseases using model organisms. In: ftab T, Hakeem KR, Eds Medicinal and Aromatic Plants 2020; 37-60.
[3]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[4]
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39(5): 1515-52.
[http://dx.doi.org/10.1002/med.21559] [PMID: 30648267]
[5]
Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR. New phytochemicals as potential human anti-aging compounds: reality, promise, and challenges. Crit Rev Food Sci Nutr 2018; 58(6): 942-57.
[http://dx.doi.org/10.1080/10408398.2016.1233860] [PMID: 27623718]
[6]
Khan F, Niaz K, Maqbool F, et al. Molecular targets underlying the anticancer effects of quercetin: an up-date. Nutrients 2016; 8(9): 529.
[http://dx.doi.org/10.3390/nu8090529] [PMID: 27589790]
[7]
Meng FD, Li Y, Tian X, et al. Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways. Int J Clin Exp Pathol 2015; 8(6): 6157-68.
[PMID: 26261493]
[8]
Proshkina E, Lashmanova E, Dobrovolskaya E, et al. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Front Pharmacol 2016; 7: 505.
[http://dx.doi.org/10.3389/fphar.2016.00505] [PMID: 28066251]
[9]
Leow SS, Luu A, Shrestha S, Hayes KC, Sambanthamurthi R. Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106: 198-221.
[http://dx.doi.org/10.1016/j.exger.2018.03.013] [PMID: 29550564]
[10]
Folch J, Busquets O, Ettcheto M, et al. Experimental models for aging and their potential for novel drug discovery. Curr Neuropharmacol 2018; 16(10): 1466-83.
[http://dx.doi.org/10.2174/1570159X15666170707155345] [PMID: 28685671]
[11]
Park HH, Jung Y, Lee SV. Survival assays using Caenorhabditis elegans. Mol Cells 2017; 40(2): 90-9.
[http://dx.doi.org/10.14348/molcells.2017.0017] [PMID: 28241407]
[12]
Chen BC, Legant WR, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to em-bryos at high spatiotemporal resolution. Science 2014; 346(6208): 1257998.
[http://dx.doi.org/10.1126/science.1257998] [PMID: 25342811]
[13]
Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 2015; 200(2): 387-407.
[http://dx.doi.org/10.1534/genetics.115.176099] [PMID: 26088431]
[14]
Frézal L, Félix MA . C. elegans outside the Petri dish. eLife 2015; 4: 4.
[http://dx.doi.org/10.7554/eLife.05849] [PMID: 25822066]
[15]
Zhu Z, Zhang D, Lee H, Jin Y. Caenorhabditiselegans: an important tool for dissecting microRNA functions, Biomedical genetics and genomics. 2016; 1(2): 34-6.
[http://dx.doi.org/10.15761/BGG.1000106] [PMID: 28529981]
[16]
Mack HI, Heimbucher T, Murphy CT. The nematode Caenorhabditis elegans as a model for aging re-search. Drug Discov Today Dis Models 2018; 27: 3-13.
[http://dx.doi.org/10.1016/j.ddmod.2018.11.001]
[17]
Lee Y, An SWA, Artan M, et al. Genes and pathways that influence longevity in Caenorhabditis ele-gans. Aging Mech 2015; 123-69.
[http://dx.doi.org/10.1007/978-4-431-55763-0_8]
[18]
Shen P, Yue Y, Park Y. A living model for obesity and aging research: Caenorhabditis ele-gans. Crit Rev Food Sci Nutr 2018; 58(5): 741-54.
[http://dx.doi.org/10.1080/10408398.2016.1220914] [PMID: 27575804]
[19]
Xu Y, Park Y. Application of Caenorhabditis elegans for research on endoplasmic reticulum stress. Prev Nutr Food Sci 2018; 23(4): 275-81.
[http://dx.doi.org/10.3746/pnf.2018.23.4.275] [PMID: 30675455]
[20]
Teschendorf D, Link CD. What have worm models told us about the mechanisms of neuronal dys-function in human neurodegenerative diseases? Mol Neurodegener 2009; 4(1): 38.
[http://dx.doi.org/10.1186/1750-1326-4-38] [PMID: 19785750]
[21]
Litke R, Boulanger É, Fradin C. Caenorhabditiselegans, un modèle d’étude du vieillissement. Med Sci (Paris) 2018; 34(6-7): 571-9.
[http://dx.doi.org/10.1051/medsci/20183406017] [PMID: 30067200]
[22]
Sterken MG, Snoek LB, Kammenga JE, Andersen EC. The laboratory domestication of Caenorhabdi-tis elegans. Trends Genet 2015; 31(5): 224-31.
[http://dx.doi.org/10.1016/j.tig.2015.02.009] [PMID: 25804345]
[23]
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditiselegans natural diversi-ty resource. Nucleic Acids Res 2017; 45(D1): D650-7.
[http://dx.doi.org/10.1093/nar/gkw893] [PMID: 27701074]
[24]
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 2018; 210(2): 445-61.
[http://dx.doi.org/10.1534/genetics.118.301307] [PMID: 30120140]
[25]
Mitani S. Comprehensive functional genomics using Caenorhabditis elegans as a model organ-ism. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93(8): 561-77.
[http://dx.doi.org/10.2183/pjab.93.036] [PMID: 29021508]
[26]
Apfeld J, Alper S. What can we learn about human disease from the nematode C elegans? Disease Gene Identification. New York: Humana Press 2018; pp. 53-75.
[27]
Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseas-es. Curr Opin Biotechnol 2020; 63: 118-25.
[http://dx.doi.org/10.1016/j.copbio.2019.12.011] [PMID: 31951916]
[28]
Khan AH, Zou Z, Xiang Y, Chen S, Tian XL. Conserved signaling pathways genetically associated with longevity across the species. Biochim Biophys Acta Mol Basis Dis 2019; 1865(7): 1745-55.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.001] [PMID: 31109448]
[29]
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019; 11(2): 474.
[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[30]
Zhang H. Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88: 314-36.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.036]
[31]
Song B, Zheng B, Li T, Liu RH. Raspberry extract ameliorates oxidative stress in Caenorhabditis ele-gans via the SKN-1/Nrf2 pathway. J Funct Foods 2020; 70: 103977.
[http://dx.doi.org/10.1016/j.jff.2020.103977]
[32]
Ding AJ, Zheng SQ, Huang XB, et al. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect 2017; 7(5): 335-404.
[http://dx.doi.org/10.1007/s13659-017-0135-9] [PMID: 28567542]
[33]
Bulterijs S, Braeckman BP. Phenotypic screening in C. elegans as a tool for the discovery of newgero-protectivedrugs. Pharmaceuticals (Basel) 2020; 13(8): 164.
[http://dx.doi.org/10.3390/ph13080164] [PMID: 32722365]
[34]
Wittkowski P, Marx-Stoelting P, Violet N, et al. Caenorhabditis elegansAs a Promising Alternative Model for Environmental Chemical Mix-ture Effect Assessment–A Comparative Study. Environ Sci Technol 2019; 53(21): 12725-33.
[http://dx.doi.org/10.1021/acs.est.9b03266] [PMID: 31536708]
[35]
Jabeen A, Parween N, Sayrav K, Prasad B. Date (Phoenix dactylifera) seed and syringic acid exhibits antioxidative effect and lifespan extending properties in Caenorhabditis elegans. Arab J Chem 2020; 13(12): 9058-67.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.028]
[36]
Zamberlan DC, Amaral GP, Arantes LP, et al. Rosmarinus officinalisL. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. Braz J Med Biol Res 2016; 49(9): e5235.
[http://dx.doi.org/10.1590/1414-431x20165235] [PMID: 27533765]
[37]
Saier C, Storbeck S, Baier S, Dietz H, Wätjen W. Rosemary extract modulates stress resistance and accumulation of reactive oxygen species in the model organism Caenorhabditis ele-gans. PharmaNutrition 2020. 14(3): 100233
[http://dx.doi.org/10.1016/j.phanu.2020.100233]
[38]
Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalisL.: an update review of its phytochemistry and biological activity. Future Sci OA 2018; 4(4): FSO283.
[http://dx.doi.org/10.4155/fsoa-2017-0124] [PMID: 29682318]
[39]
de Torre MP, Cavero RY, Calvo MI, Vizmanos JL. A simple and a reliable method to quantify antiox-idant activity in vivo. Antioxidants 2019; 8(5): 142.
[http://dx.doi.org/10.3390/antiox8050142] [PMID: 31121854]
[40]
Lin C, Xiao J, Xi Y, et al. Rosmarinic acid improved antiox-idant properties and healthspan via the IIS and MAPK pathways in Caenorhabditis ele-gans. Biofactors 2019; 45(5): 774-87.
[http://dx.doi.org/10.1002/biof.1536] [PMID: 31206890]
[41]
Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR. Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1signaling pathway. J Gerontol A Biol Sci Med Sci 2017; 72(4): 464-72.
[http://dx.doi.org/10.1093/gerona/glw105] [PMID: 27378235]
[42]
Pandey S, Tiwari S, Kumar A, et al. Antioxidant and anti-aging potential of Juniper berry (Juniperus communisL.) essential oil in Caenorhabditis elegans model system. Ind Crops Prod 2018; 120: 113-22.
[http://dx.doi.org/10.1016/j.indcrop.2018.04.066]
[43]
Gu J, Li Q, Liu J, et al. Ultrasonic–assisted extraction of poly-saccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans. Int J Biol Macromol 2021; 167: 423-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.160] [PMID: 33249158]
[44]
Li H, Li T, Li F, Wang W, Wang Y. Enhancing participant selection through caching in mobile crowd sensing. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), 2016. 1-10.
[http://dx.doi.org/ 10.1109/IWQoS.2016.7590450]
[45]
Xu Z, Feng S, Shen S, et al. The antioxidant activities effect of neutral and acidic polysaccharides from EpimediumacuminatumFranch. on Caenorhabditis ele-gans. Carbohydr Polym 2016; 144: 122-30.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.041] [PMID: 27083801]
[46]
Feng S, Cheng H, Xu Z, et al. Panaxnotoginseng pol-ysaccharide increases stress resistance and extends lifespan in Caenorhabditis elegans. J Funct Foods 2018; 45: 15-23.
[http://dx.doi.org/10.1016/j.jff.2018.03.034]
[47]
Lee S, Choi SY, Choo YY, et al. Sappanone A exhibits anti-inflammatory effects via modulation of Nrf2 and NF-κB. Int Immunopharmacol 2015; 28(1): 328-36.
[http://dx.doi.org/10.1016/j.intimp.2015.06.015] [PMID: 26122134]
[48]
Liu X, Yu D, Wang T. Sappanone A attenuates allergic airway inflammation in ovalbumin-induced asthma. Int Arch Allergy Immunol 2016; 170(3): 180-6.
[http://dx.doi.org/10.1159/000448331] [PMID: 27576536]
[49]
Liao LX, Song XM, Wang LC, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci USA 2017; 114(29): E5986-94.
[http://dx.doi.org/10.1073/pnas.1706778114] [PMID: 28674004]
[50]
Duan S, Huang W, Liu X, et al. IMPDH2 promotes colorec-tal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Cancer Res 2018; 37(1): 304.
[http://dx.doi.org/10.1186/s13046-018-0980-3] [PMID: 30518405]
[51]
Zhao J, Zhu A, Sun Y, et al. Beneficial effects of sappanone A on lifespan and thermotolerance in Caenorhabditis elegans. Eur J Pharmacol 2020; 888: 173558.
[http://dx.doi.org/10.1016/j.ejphar.2020.173558] [PMID: 32941928]
[52]
Sicari V, Loizzo MR, Tundis R, Mincione A, Pellicano TM. Portulaca oleraceaL.(purslane) extracts display antioxidant and hypoglycaemic effects. J Appl Bot Food Qual 2018; 91: 39-46.
[53]
Gatea F. DumitraTeodor E, Maria Seciu A, Nagodă E, Lucian Radu G.Chemical constituents and bioactive potential of PortulacapilosaL vs. Portulaca oleraceaL. Med Chem Res 2017; 26(7): 1516-27.
[http://dx.doi.org/10.1007/s00044-017-1862-5]
[54]
Zhang W, Zheng B, Deng N, Wang H, Li T, Liu RH. Effects of ethyl acetate fractional extract from Portulaca oleraceaL.(PO-EA) on lifespan and healthspan in Caenorhabditiselegans. J Food Sci 2020; 85(12): 4367-76.
[http://dx.doi.org/10.1111/1750-3841.15507] [PMID: 33124727]
[55]
Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleraceaL.: a review of phyto-chemistry and pharmacological effects. BioMed Res Int 2015; 2015: 925631.
[http://dx.doi.org/10.1155/2015/925631] [PMID: 25692148]
[56]
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: therapeutic potential and basic molecular mechanisms. Phytomedicine 2020; 79: 153320.
[http://dx.doi.org/10.1016/j.phymed.2020.153320] [PMID: 32920285]
[57]
Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K. Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 2018; 819: 169-80.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.051] [PMID: 29208474]
[58]
Vilasboas-Campos D, Costa MD, Teixeira-Castro A, et al. Neurotherapeutic effect of Hyptis spp. leaf extracts in Caenorhabditis elegans models of tauopathy and polyglutamine disease: role of the glutathione redox cycle. Free Radic Biol Med 2021; 162: 202-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.018] [PMID: 33096249]
[59]
Rathor L, Pandey R. Age-induced diminution of free radicals by Boeravinone B in Caenorhab-ditiselegans. Exp Gerontol 2018; 111: 94-106.
[http://dx.doi.org/10.1016/j.exger.2018.07.005] [PMID: 30004006]
[60]
Smita SS, Raj Sammi S, Laxman TS, Bhatta RS, Pandey R. Shatavarin IV elicits lifespan extension and alleviates Parkinsonism in Caenorhabditis elegans. Free Radic Res 2017; 51(11-12): 954-69.
[http://dx.doi.org/10.1080/10715762.2017.1395419] [PMID: 29069955]
[61]
Tsai CW, Tsai RT, Liu SP, et al. Neuroprotective effects of betulin in pharmacological and transgenic Caenorhabditis elegans models of Parkinson's disease. Cell Transplant 2017; 26(12): 1903-18.
[http://dx.doi.org/10.1177/0963689717738785] [PMID: 29390878]
[62]
Pandey S, Phulara SC, Mishra SK, et al. Betula utilis extract prolongs life expectancy, protects against amyloid-β toxicity and reduces Al-phaSynuclien in Caenorhabditiselegans via DAF-16 and SKN-1. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228: 108647.
[http://dx.doi.org/10.1016/j.cbpc.2019.108647] [PMID: 31669661]
[63]
Zhang PX, Lin H, Qu C. Design, synthesis, and in vitro antiplatelet aggregation activities of ferulic acid derivatives. J Chem 2015 2015.
[64]
Choi JH, Park JK, Kim KM, Lee HJ, Kim S. In vitro and in vivo antithrombotic and cytotoxicity ef-fects of ferulic acid. J Biochem Mol Toxicol 2018; 32(1): e22004.
[http://dx.doi.org/10.1002/jbt.22004] [PMID: 29077251]
[65]
Wang N, Zhou Y, Zhao L, et al. Ferulic acid delayed amyloid β-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans. Food Chem Toxicol 2020; 146: 111808.
[http://dx.doi.org/10.1016/j.fct.2020.111808] [PMID: 33045309]
[66]
Yang C, Li L, Ma Z, et al. Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp Ther Med 2018; 15(3): 2228-38.
[http://dx.doi.org/10.3892/etm.2017.5678] [PMID: 29467841]
[67]
Yakub G, Ignatova M, Manolova N, et al. Chitosan/ferulic acid-- coated poly (ε-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties. Int J Biol Macromol 2018. 107: 689-702.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.183]
[68]
Elateeq AA, Sun Y, Nxumalo W. GabrAMM.Biotechnological production of silymarin in Silybum marianumL.: areview. Biocatal Agric Biotechnol 2020. 29(1): 101775
[http://dx.doi.org/10.1016/j.bcab.2020.101775]
[69]
Singh A, Kumar A, Verma RK, Shukla R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol 2020; 149: 1198-206.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.041] [PMID: 32044368]
[70]
MacDonald-Ramos K, Michán L, Martínez-Ibarra A, Cerbón M. Silymarin is an ally against insulin resistance: a review. Ann Hepatol 2021; 23: 100255.
[http://dx.doi.org/10.1016/j.aohep.2020.08.072] [PMID: 32950646]
[71]
Kumar J, Park KC, Awasthi A, Prasad B. Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2015; 14(2): 295-302.
[72]
Srivastava S, Sammi SR, Laxman TS, et al. Silymarin promotes longevity and alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 2017; 31: 32-43.
[http://dx.doi.org/10.1016/j.jff.2017.01.029]
[73]
Filippopoulou K, Papaevgeniou N, Lefaki M, et al. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic Biol Med 2017; 103: 256-67.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.042] [PMID: 28039083]
[74]
Lasserre JP, Dautant A, Aiyar RS, et al. Yeast as a system for modeling mitochondrial disease mechanisms and dis-covering therapies. Dis Model Mech 2015; 8(6): 509-26.
[http://dx.doi.org/10.1242/dmm.020438] [PMID: 26035862]
[75]
Lee MB, Kaeberlein M. Translational geroscience: from invertebrate models to companion animal and human interventions. Transl Med Aging 2018; 2: 15-29.
[http://dx.doi.org/10.1016/j.tma.2018.08.002] [PMID: 32368707]
[76]
Yalcin G, Lee CK. Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a mod-el organism. Transl Med Aging 2019; 3: 109-15.
[http://dx.doi.org/10.1016/j.tma.2019.10.001]
[77]
Lutchman V, Medkour Y, Samson E, et al. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular pro-cesses. Oncotarget 2016; 7(13): 16542-66.
[http://dx.doi.org/10.18632/oncotarget.7665] [PMID: 26918729]
[78]
Stirpe M, Palermo V, Bianchi MM, et al. Annurca apple (M.pumilaMiller cv Annurca) extracts act against stress and ageing in S. cerevisiae yeast cells. BMC Complement Altern Med 2017; 17(1): 200.
[http://dx.doi.org/10.1186/s12906-017-1666-7] [PMID: 28381226]
[79]
Baiges I, Arola L. COCOA. COCOA (Theobroma cacao) polyphenol-richextractincreases the chrono-logicallifespan of Saccharomyces cerevisiae. J Frailty Aging 2016; 5(3): 186-90.
[PMID: 29240368]
[80]
Pannakal ST, Jäger S, Duranton A, et al. Longevity effect of a polysaccharide from Chlorophytum-borivilianum on Caenorhabditiselegans and Saccharomyces cerevisiae. PLoS One 2017; 12(7): e0179813.
[http://dx.doi.org/10.1371/journal.pone.0179813] [PMID: 28727758]
[81]
Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M. Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr Microbiol 2018; 75(5): 519-30.
[http://dx.doi.org/10.1007/s00284-017-1412-x] [PMID: 29224051]
[82]
Bayliak MM, Lushchak VI. The golden root, Rhodiolarosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae. Phytomedicine 2011; 18(14): 1262-8.
[http://dx.doi.org/10.1016/j.phymed.2011.06.010] [PMID: 21802922]
[83]
Ramos-Gomez M, Olivares-Marin IK, Canizal-García M, González-Hernández JC, Nava GM, Madri-gal-Perez LA. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. J Bioenerg Biomembr 2017; 49(3): 241-51.
[http://dx.doi.org/10.1007/s10863-017-9709-9] [PMID: 28401438]
[84]
Panchal K, Tiwari AK. Drosophila melanogaster“a potential model organism” for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89: 1331-45.
[http://dx.doi.org/10.1016/j.biopha.2017.03.001] [PMID: 28320100]
[85]
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological inter-ventions in aging. Transl Med Aging 2019; 3: 98-103.
[http://dx.doi.org/10.1016/j.tma.2019.09.004]
[86]
Kong Y, Li K, Fu T, et al. Quercetin amelio-rates Aβ toxicity in DrosophilaAD model by modulating cell cycle-related protein expres-sion. Oncotarget 2016; 7(42): 67716-31.
[http://dx.doi.org/10.18632/oncotarget.11963] [PMID: 27626494]
[87]
Han Y, Guo Y, Cui SW, Li H, Shan Y, Wang H. Purple Sweet Potato Extract extends lifespan by ac-tivating autophagy pathway in male Drosophila melanogaster. Exp Gerontol 2021; 144: 111190.
[http://dx.doi.org/10.1016/j.exger.2020.111190] [PMID: 33301922]
[88]
Wang HL, Sun ZO, Rehman RU, Wang H, Wang YF, Wang H. Rosemary extract-mediated lifespan extension and attenuated oxidative damage in Drosophila melanogaster fed on high-fat diet. J Food Sci 2017; 82(4): 1006-11.
[http://dx.doi.org/10.1111/1750-3841.13656] [PMID: 28241105]
[89]
Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430(7000): 686-9.
[http://dx.doi.org/10.1038/nature02789] [PMID: 15254550]
[90]
Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in Dro-sophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 2007; 128(10): 546-52.
[http://dx.doi.org/10.1016/j.mad.2007.07.007] [PMID: 17875315]
[91]
Wu Z, Wu A, Dong J, Sigears A, Lu B. Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitopha-gy. Exp Gerontol 2018; 113: 10-7.
[http://dx.doi.org/10.1016/j.exger.2018.09.014] [PMID: 30248358]
[92]
Arking R. Independent chemical regulation of health and senescent spans in Drosophila. Invertebr Reprod Dev 2015. 59(Suppl 1): 28-32.
[http://dx.doi.org/10.1080/07924259.2014.978028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy