Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

In-silico Exploration of Phytoconstituents of Gymnema sylvestre as Potential Glucokinase Activators and DPP-IV Inhibitors for the Future Synthesis of Silver Nanoparticles for the Treatment of Type 2 Diabetes Mellitus

Author(s): Ajinkya Chavan*, Kratika Daniel and Ansar M. Patel

Volume 18, Issue 1, 2022

Published on: 18 February, 2022

Page: [47 - 60] Pages: 14

DOI: 10.2174/1573408017666211029160203

Price: $65

conference banner
Abstract

Background: Diabetes has a large death toll worldwide, particularly as it falls into the ten leading causes of death. Type 2 diabetes mellitus (T2DM) occurs as the body becomes resistant to insulin and sugar accumulates in the blood. It has been observed that dipeptidyl peptidase-IV (DPP-IV) inhibitors and glucokinase activators are known therapeutic agents to treat T2DM. Among the possible medicinal plants, Gymnema sylvestre (GyS) belongs to the Apocynaceae family and is traditionally used for the treatment of different diseases. This plant is also known as “Gurmur” because it has a sugarreducing ability. GyS is known to be one of the main botanicals for the treatment of diabetes.

Objective: Considering the studies described above, we have tried to investigate the natural DPP-IV inhibitors and potent glucokinase activators from the phytoconstituents of GyS. New drug candidates from the medicinal plant GyS have been reported as potent DPP-IV inhibitors and glucokinase activators.

Methods: As a preliminary investigation, we have studied the effectiveness of phytoconstituents of GyS in T2DM through molecular docking as a proof of concept of synthesizing silver nanoparticles (for the treatment of T2DM) using an extract of this plant.

Results: The present investigative research shows that the recognized compounds included in the present analysis have important values in the treatment of diabetes mellitus. The nine compounds selected are evaluated on the basis of DPP-IV and glucokinase enzyme binding energy values and their drug properties. Except for quercitol, all the selected compounds have exhibited much more potent glucokinase activation potential than their native ligands. Gymnemasin A, lupeol, gymnemoside A, gymnemasaponin V, and gymnemic acid I have shown excellent DPP-IV inhibitory potential.

Conclusion: We aimed to synthesize the silver nanoparticles from the leaf extract of GyS for the treatment of T2DM. As a preliminary investigation, we have studied the effectiveness of phytoconstituents of GyS in T2DM through molecular docking as proof of synthesizing silver nanoparticles (for the treatment of T2DM) using an extract of this plant. As a result of the present investigation, it has been concluded that these compounds can be used to treat T2DM, and hence, in the future, we can synthesize the silver nanoparticles from the GyS extract for the treatment of T2DM.

Keywords: Gymnema sylvestre, dipeptidyl peptidase-IV (DPP-IV), glucokinase activators, type 2 diabetes mellitus, gymnemasin A, silver nanoparticles.

Graphical Abstract

[1]
Pal M. Medicinal chemistry approaches for glucokinase activation to treat type 2 diabetes. Curr Med Chem 2009; 16(29): 3858-74.
[http://dx.doi.org/10.2174/092986709789177993] [PMID: 19747136]
[2]
Zelent D, Najafi H, Odili S, et al. Glucokinase and glucose homeostasis: Proven concepts and new ideas. Biochem Soc Trans 2005; 33(Pt 1): 306-10.
[http://dx.doi.org/10.1042/BST0330306] [PMID: 15667334]
[3]
Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem 2014; 14(7): 585-602.
[http://dx.doi.org/10.2174/1389557514666140722082713] [PMID: 25052034]
[4]
Singh R, Lather V, Pandita D, Judge V, Arumugam K, Grewal A. Synthesis, docking and antidiabetic activity of some newer benzamide derivatives as potential glucokinase activators. Lett Drug Des Discov 2016; 14(5): 540-53.
[http://dx.doi.org/10.2174/1570180813666160819125342]
[5]
Fyfe MCT, Procter MJ. Glucokinase activators as potential antidiabetic agents possessing superior glucose-lowering efficacy. Drugs Future 2009; 34(8): 641-53.
[http://dx.doi.org/10.1358/dof.2009.034.08.1394557]
[6]
Grewal AS, Sharma K, Singh S, Singh V, Pandita D, Lather V. Design, synthesis and antidiabetic activity of novel sulfamoyl benzamide derivatives as glucokinase activators. J Pharm Technol Res Manag 2018; 6(2): 115-24.
[http://dx.doi.org/10.15415/jptrm.2018.62008]
[7]
Charaya N, Pandita D, Grewal AS, Lather V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput Biol Chem 2018; 73: 221-9.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.018] [PMID: 29518630]
[8]
Grewal AS, Kharb R, Prasad DN, Dua JS, Lather V. N-pyridin-2-yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation. Chem Biol Drug Des 2019; 93(3): 364-72.
[http://dx.doi.org/10.1111/cbdd.13423] [PMID: 30369030]
[9]
Park K, Lee BM, Hyun KH, Han T, Lee DH, Choi HH. Design and synthesis of acetylenyl benzamide derivatives as novel glucokinase activators for the treatment of T2DM. ACS Med Chem Lett 2015; 6(3): 296-301.
[http://dx.doi.org/10.1021/ml5004712] [PMID: 25815149]
[10]
Li YQ, Zhang YL, Hu SQ, et al. Design, synthesis and biological evaluation of novel glucokinase activators. Chin Chem Lett 2011; 22(1): 73-6.
[http://dx.doi.org/10.1016/j.cclet.2010.07.023]
[11]
Agrawal M, Kharkar P, Moghe S, et al. Discovery of thiazolyl-phthalazinone acetamides as potent glucose uptake activators via high-throughput screening. Bioorg Med Chem Lett 2013; 23(20): 5740-3.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.067] [PMID: 23992862]
[12]
Sidduri A, Grimsby JS, Corbett WL, et al. 2,3-Disubstituted acrylamides as potent glucokinase activators. Bioorg Med Chem Lett 2010; 20(19): 5673-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.029] [PMID: 20805029]
[13]
Ishikawa M, Nonoshita K, Ogino Y, et al. Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators. Bioorg Med Chem Lett 2009; 19(15): 4450-4.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.038] [PMID: 19540111]
[14]
Pfefferkorn JA, Guzman-Perez A, Oates PJ, et al. Designing glucokinase activators with reduced hypoglycemia risk: Discovery of N,N-dimethyl-5-(2-Methyl-6-((5-Methylpyrazin-2-Yl)-Carbamoyl)benzofuran-4- Yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus. MedChemComm 2011; 2(9): 828-39.
[http://dx.doi.org/10.1039/c1md00116g]
[15]
Kohn TJ, Du X, Lai S, et al. 5-Alkyl-2-urea-substituted pyridines: Identification of efficacious glucokinase activators with improved properties. ACS Med Chem Lett 2016; 7(7): 666-70.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00145] [PMID: 27437074]
[16]
Sarabu R, Berthel SJ, Kester RF, Tilley JW. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin Ther Pat 2008; 7: 759-68.
[http://dx.doi.org/10.1517/13543776.18.7.759]
[17]
Castelhano AL, Dong H, Fyfe MCT, et al. Glucokinase-activating ureas. Bioorg Med Chem Lett 2005; 15(5): 1501-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.083] [PMID: 15713416]
[18]
Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent developments in medicinal chemistry of allosteric activators of human glucokinase for type 2 diabetes mellitus therapeutics. Curr Pharm Des 2020; 26(21): 2510-52.
[http://dx.doi.org/10.2174/1381612826666200414163148] [PMID: 32286938]
[19]
Houze JB, Dransfield P, Pattaropong V, et al. Urea compounds as gka activators and their preparation. WO Patent 2013086397A1, 2013. Available at: https://patents.google.com/patent/WO2013086397A1/en
[20]
Murray A, Lau J, Jeppesen L, et al. Preparation of heteroaryl ureas and their use as glucokinase activators. WO Patent 2005066145A1, 2005. Available at: https://patents.google.com/patent/WO2005066145A1/un
[21]
Polisetti DR, Kodra JT, Lau J, et al. Preparation of thiazolyl aryl ureas as activators of glucokinase. PCT Int Appl 2004; 600.
[22]
Narsimha S, Battula KS, Ravinder M, Reddy YN, Nagavelli VR. Design, synthesis and biological evaluation of novel 1,2,3-triazole-based xanthine derivatives as dpp-4 inhibitors. J Chem Sci 2020; 132(1)
[http://dx.doi.org/10.1007/s12039-020-1760-0]
[23]
Abd El-Karim SS, Anwar MM, Syam YM, Nael MA, Ali HF, Motaleb MA. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies. Bioorg Chem 2018; 81: 481-93.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.021] [PMID: 30243239]
[24]
Han B, Liu JL, Huan Y, et al. Design, synthesis and primary activity of thiomorpholine derivatives as dpp-iv inhibitors. Chin Chem Lett 2012; 23(3): 297-300.
[http://dx.doi.org/10.1016/j.cclet.2011.12.007]
[25]
Pereira ALE, Dos Santos GB, Franco MSF, Federico LB, da Silva CHTP, Santos CBR. Molecular modeling and statistical analysis in the design of derivatives of human dipeptidyl peptidase IV. J Biomol Struct Dyn 2018; 36(2): 318-34.
[http://dx.doi.org/10.1080/07391102.2016.1277163] [PMID: 28027711]
[26]
Patel BD, Bhadada SV, Ghate MD. Design, synthesis and anti-diabetic activity of triazolotriazine derivatives as dipeptidyl peptidase-4 (DPP-4) inhibitors. Bioorg Chem 2017; 72: 345-58.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.004] [PMID: 28302310]
[27]
Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf 2015; 14(4): 505-24.
[http://dx.doi.org/10.1517/14740338.2015.1006625] [PMID: 25630605]
[28]
Tella SH, Rendell MS. DPP-4 inhibitors: Focus on safety. Expert Opin Drug Saf 2015; 14(1): 127-40.
[http://dx.doi.org/10.1517/14740338.2015.977863] [PMID: 25488788]
[29]
Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol (Lausanne) 2019; 10: 389.
[http://dx.doi.org/10.3389/fendo.2019.00389] [PMID: 31275246]
[30]
Gupta R, Walunj SS, Tokala RK, Parsa KV, Singh SK, Pal M. Emerging drug candidates of dipeptidyl peptidase IV (DPP IV) inhibitor class for the treatment of Type 2 Diabetes. Curr Drug Targets 2009; 10(1): 71-87.
[http://dx.doi.org/10.2174/138945009787122860] [PMID: 19149538]
[31]
Lacroix IME, Li-Chan ECY. Food-derived dipeptidyl-peptidase iv inhibitors as a potential approach for glycemic regulation - current knowledge and future research considerations. Trends Food Sci Technol 2016; 54: 1-16.
[http://dx.doi.org/10.1016/j.tifs.2016.05.008]
[32]
Smelcerovic A, Miljkovic F, Kolarevic A, et al. An overview of recent dipeptidyl peptidase-IV inhibitors: Linking their structure and physico-chemical properties with sar, pharmacokinetics and toxicity. Curr Top Med Chem 2015; 15(23): 2342-72.
[http://dx.doi.org/10.2174/1568026615666150619142731] [PMID: 26088350]
[33]
Salvatore T, Carbonara O, Cozzolino D, Torella R, Sasso FC. Adapting the GLP-1-signaling system to the treatment of type 2 diabetes. Curr Diabetes Rev 2007; 3(1): 15-23.
[http://dx.doi.org/10.2174/157339907779802076] [PMID: 18220652]
[34]
Kushwaha RN, Haq W, Katti SB. Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: A perspective. Curr Med Chem 2014; 21(35): 4013-45.
[http://dx.doi.org/10.2174/0929867321666140915143309] [PMID: 25245373]
[35]
Liu Y, Hu Y, Liu T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: Medicinal chemistry and preclinical aspects. Curr Med Chem 2012; 19(23): 3982-99.
[http://dx.doi.org/10.2174/092986712802002491] [PMID: 22709010]
[36]
Salvo F, Moore N, Arnaud M, et al. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: Systematic review and meta-analysis. BMJ 2016; 353: i2231.
[http://dx.doi.org/10.1136/bmj.i2231] [PMID: 27142267]
[37]
Liu M, Sun X, Zhao X. Investigating the contributions of residues to dipeptidyl peptidase-iv inhibitor binding by molecular dynamics simulation. Lett Drug Des Discov 2014; 11(7): 886-93.
[http://dx.doi.org/10.2174/1570180811666140226235522]
[38]
Kumar Verma S, Kant Sharma S, Thareja S. Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPP-IV) inhibitors. Lett Drug Des Discov 2015; 12(4): 284-91.
[http://dx.doi.org/10.2174/1570180811666141016000752]
[39]
Amuthalakshmi S, Anton Smith A, Manavalan R. Modeling assisted in silico design of ligand molecule for DPP IV in type II diabetes mellitus. Lett Drug Des Discov 2012; 9(8): 764-6.
[http://dx.doi.org/10.2174/157018012802652930]
[40]
Gupta S, Chaudhary K, Raj U, Mishra N. Computational identification of inhibitors against DPP-IV for checking type-2 diabetes. Lett Drug Des Discov 2016; 14(1): 66-73.
[http://dx.doi.org/10.2174/1570180813666160720121718]
[41]
Mattei P, Boehringer M, Di Giorgio P, et al. Discovery of carmegliptin: A potent and long-acting dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2010; 20(3): 1109-13.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.024] [PMID: 20031405]
[42]
Said S, Nwosu AC, Mukherjee D, Hernandez GT. Alogliptin; a review of a new dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of type 2 diabetes mellitus. Cardiovasc Hematol Disord Targets 2014; 14(1): 64-70.
[http://dx.doi.org/10.2174/1871529X14666140701095849] [PMID: 24993124]
[43]
Hildebrandt M, Reutter W, Arck P, Rose M, Klapp BF. A guardian angel: The involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clin Sci (Lond) 2000; 99(2): 93-104.
[http://dx.doi.org/10.1042/CS19990368] [PMID: 10918042]
[44]
Kirby M, Yu DMT, O’Connor S, Gorrell MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond) 2009; 118(1): 31-41.
[http://dx.doi.org/10.1042/CS20090047] [PMID: 19780719]
[45]
Pratley RE, Salsali A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 2007; 23(4): 919-31.
[http://dx.doi.org/10.1185/030079906X162746] [PMID: 17407649]
[46]
El-Kaissi S, Sherbeeni S. Pharmacological management of type 2 diabetes mellitus: An update. Curr Diabetes Rev 2011; 7(6): 392-405.
[http://dx.doi.org/10.2174/157339911797579160] [PMID: 21846326]
[47]
Tsai TY, Hsu T, Chen CT, et al. Rational design and synthesis of potent and long-lasting glutamic acid-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2009; 19(7): 1908-12.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.061] [PMID: 19269819]
[48]
Liang GB, Qian X, Biftu T, et al. Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorg Med Chem Lett 2008; 18(13): 3706-10.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.061] [PMID: 18524582]
[49]
Wallace MB, Feng J, Zhang Z, et al. Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2008; 18(7): 2362-7.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.071] [PMID: 18346892]
[50]
Wu WL, Hao J, Domalski M, et al. Discovery of novel tricyclic heterocycles as potent and selective DPP-4 inhibitors for the treatment of type 2 diabetes. ACS Med Chem Lett 2016; 7(5): 498-501.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00027] [PMID: 27190600]
[51]
Kaur J, Singla R, Jaitak V. In silico Study of flavonoids as DPP-4 and α-Glucosidase inhibitors. Lett Drug Des Discov 2017; 14.
[http://dx.doi.org/10.2174/1570180814666170915162232]
[52]
McKeage K. Trelagliptin: First global approval. Drugs 2015; 75(10): 1161-4.
[http://dx.doi.org/10.1007/s40265-015-0431-9] [PMID: 26115728]
[53]
Burness CB. Omarigliptin: First global approval. Drugs 2015; 75(16): 1947-52.
[http://dx.doi.org/10.1007/s40265-015-0493-8] [PMID: 26507988]
[54]
Saranya R, Thirumalai T, Hemalatha M, Balaji R, David E. Pharmacognosy of enicostemma littorale: A review. Asian Pac J Trop Biomed 2013; 3(1): 79-84.
[http://dx.doi.org/10.1016/S2221-1691(13)60028-3] [PMID: 23570022]
[55]
Indumathi C, Durgadevi G, Nithyavani S, Gayathri PK. Estimation of terpenoid content and its antimicrobial property in enicostemma litorrale. Int J Chemtech Res 2014; 6(9): 4264-7.
[56]
Abirami P, Gomathinayagam M, Panneerselvam R. Preliminary study on the antimicrobial activity of Enicostemma littorale using different solvents. Asian Pac J Trop Med 2012; 5(7): 552-5.
[http://dx.doi.org/10.1016/S1995-7645(12)60097-2] [PMID: 22647818]
[57]
Dwivedi C, Daspaul S. Antidiabetic herbal drugs and polyherbal formulation used for diabetes: A Review. J Phytopharm JPHYTO 2013; 2(23): 44-51.
[58]
Celine S, Tomy S, Ujwala TK, Johnson S, Udaya Chander J. A detailed overview of medicinal plants having hypoglycemic activity. Int J Phytomed 2016; 8(2): 139-75.
[http://dx.doi.org/10.5138/09750185.1817]
[59]
Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A memoir. J Clin Biochem Nutr 2007; 41(2): 77-81.
[http://dx.doi.org/10.3164/jcbn.2007010] [PMID: 18193099]
[60]
Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 2014; 94(5): 834-40.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[61]
Leach MJ. Gymnema sylvestre for diabetes mellitus: A systematic review. J Altern Complement Med 2007; 13(9): 977-83.
[http://dx.doi.org/10.1089/acm.2006.6387] [PMID: 18047444]
[62]
Ulbricht C, Abrams TR, Basch E, et al. An evidence-based systematic review of Gymnema (Gymnema sylvestre R. Br.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8(3): 311-30.
[http://dx.doi.org/10.3109/19390211.2011.597977] [PMID: 22432729]
[63]
Daisy P, Eliza J, Mohamed Farook KAM. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J Ethnopharmacol 2009; 126(2): 339-44.
[http://dx.doi.org/10.1016/j.jep.2009.08.018] [PMID: 19703537]
[64]
Ramalingam R, Dhand C, Leung CM, et al. Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater Sci Eng C 2019; 98: 503-14.
[http://dx.doi.org/10.1016/j.msec.2018.12.135] [PMID: 30813052]
[65]
Mall GK, Mishra PK, Prakash V. Antidiabetic and hypolipidemic activity of Gymnema sylvestre in alloxan induced diabetic rats. Glob J Biotechnol Biochem 2009; 4(1): 37-42.
[66]
Fabio GD, Romanucci V, De Marco A, Zarrelli A. Triterpenoids from Gymnema sylvestre and their pharmacological activities. Molecules 2014; 19(8): 10956-81.
[http://dx.doi.org/10.3390/molecules190810956] [PMID: 25072200]
[67]
Singh VK, Umar S, Ansari SA, Iqbal M. Gymnema sylvestre for diabetics. J Herbs Spices Med Plants 2008; 14: 88-106.
[http://dx.doi.org/10.1080/10496470802341508]
[68]
Ghorbani A. Best herbs for managing diabetes: A review of clinical studies. Brazil J Pharmaceut Sci 2013; 413-22.
[69]
Saneja A, Sharma C. Gymnema sylvestre (Gurmar): A review. Pharmbit 2010; 2(1): 275-84.
[70]
Malik J, Manvi F, Alagawadi K, Noolvi M. Evaluation of anti-inflammatory activity of Gymnema sylvestre leaves extract in rats. Int J Green Pharm 2008; 2(2): 114.
[http://dx.doi.org/10.4103/0973-8258.41184]
[71]
Thakur GS, Sharma R, Sanodiya BS, Pandey M, Prasad GBKS, Bisen PS. Gymnema sylvestre: An alternative therapeutic agent for management of diabetes. J Appl Pharm Sci 2012; 2(12): 1-6.
[http://dx.doi.org/10.7324/JAPS.2012.21201]
[72]
Komalavalli N, Rao MV. In vitro micropropagation of Gymnema sylvestre - A multipurpose medicinal plant. Plant Cell Tissue Organ Cult 2000; 61(2): 97-105.
[http://dx.doi.org/10.1023/A:1006421228598]
[73]
Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. BioMed Res Int 2014; 2014: 830285.
[http://dx.doi.org/10.1155/2014/830285] [PMID: 24511547]
[74]
Schroeder JA, Flannery-Schroeder E. Use of the herb Gymnema sylvestre to illustrate the principles of gustatory sensation: An undergraduate neuroscience laboratory exercise. J Undergrad Neurosci Educ 2005; 3(2): A59-62.
[PMID: 23493970]
[75]
Porchezhian E, Dobriyal RM. An overview on the advances of Gymnema sylvestre: chemistry, pharmacology and patents. Pharmazie 2003; 58(1): 5-12.
[http://dx.doi.org/10.1002/chin.200319223] [PMID: 12622244]
[76]
Persaud SJ, Al-Majed H, Raman A, Jones PM. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol 1999; 163(2): 207-12.
[http://dx.doi.org/10.1677/joe.0.1630207] [PMID: 10556769]
[77]
Chattopadhyay RR. A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 1999; 67(3): 367-72.
[http://dx.doi.org/10.1016/S0378-8741(99)00095-1] [PMID: 10617074]
[78]
Khan F, Sarker MMR, Ming LC, et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front Pharmacol 2019; 10(OCT): 1223.
[http://dx.doi.org/10.3389/fphar.2019.01223] [PMID: 31736747]
[79]
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81(1): 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[80]
Simos YV, Spyrou K, Patila M, et al. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharmaceut Sci 2021; 16: 62-76.
[http://dx.doi.org/10.1016/j.ajps.2020.05.001]
[81]
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials (Basel) 2020; 10(6): 1-29.
[http://dx.doi.org/10.3390/nano10061234] [PMID: 32630377]
[82]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015; 1263(1263): 243-50.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[83]
Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992; 114(25): 10024-35.
[http://dx.doi.org/10.1021/ja00051a040]
[84]
Edmondson SD, Mastracchio A, Mathvink RJ, et al. (2S,3S)-3-Amino-4-(3,3-difluoropyrrolidin-1-yl)-N,N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]-pyridin-6-ylphenyl)butanamide: A selective α-amino amide dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2006; 49(12): 3614-27.
[http://dx.doi.org/10.1021/jm060015t] [PMID: 16759103]
[85]
Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 2004; 12(3): 429-38.
[http://dx.doi.org/10.1016/j.str.2004.02.005] [PMID: 15016359]
[86]
Dassault Systèmes. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment 2017.
[87]
Chaudhari RN, Khan SL, Chaudhary RS, Jain SP, Siddiqui FA. B-Sitosterol: Isolation from Muntingia calabura linn bark extract, structural elucidation and molecular docking studies as potential inhibitor of SARS-CoV-2 Mpro (COVID-19). Asian J Pharm Clin Res 2020; 13(5): 204-9.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i5.37909]
[88]
Khan SL, Siddiqui FA, Jain SP, Sonwane GM. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) main protease (Mpro) from Nigella Sativa (Black Seed) by molecular docking study. Coronaviruses 2020; 2(3): 384-402.
[http://dx.doi.org/10.2174/2666796701999200921094103]
[89]
Khan SL, Siddiqui FA, Shaikh MS, Nema NV, Shaikh AA. Discovery of potential inhibitors of the receptor-binding domain (RBD) of pandemic disease-causing SARS-CoV-2 spike glycoprotein from triphala through molecular docking Curr Chinese Chem. 2021. Online Ahead of Print
[http://dx.doi.org/10.2174/2666001601666210322121802]
[90]
Khan SL, Sonwane GM, Siddiqui FA, Jain SP, Kale MA, Borkar VS. Discovery of naturally occurring flavonoids as human cytochrome P450 (CYP3A4) inhibitors with the aid of computational chemistry. Indo Glob J Pharm Sci 2020; 10(04): 58-69.
[http://dx.doi.org/10.35652/IGJPS.2020.10409]
[91]
Khan SL, Siddiui FA. Beta-Sitosterol: As immunostimulant, antioxidant and inhibitor of SARS-CoV-2 spike glycoprotein. Arch Pharmacol Ther 2020; 2(1)
[http://dx.doi.org/10.33696/Pharmacol.2.014]
[92]
Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Computeraided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[93]
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophys Rev 2017; 9(2): 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[94]
Chaudhary KK, Mishra N. A Review on molecular docking: Novel tool for drug discovery. JSM Chem 2016; 4(3): 1029.
[95]
Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 2003; 32: 335-73.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[96]
de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 2016; 9: 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy