Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Ovine COX-1 Isoenzyme Bio-production

Author(s): Morena Miciaccia, Mariaclara Iaselli, Savina Ferorelli, Paola Loguercio Polosa, Maria Grazia Perrone* and Antonio Scilimati*

Volume 18, Issue 1, 2022

Published on: 26 November, 2021

Page: [2 - 9] Pages: 8

DOI: 10.2174/1573408017666211108104731

Price: $65

conference banner
Abstract

Background: Recent findings enlightened the pivotal role of cyclooxygenases-1 and -2 (COX-1 and COX-2) in human diseases with inflammation as the committed earliest stage, such as cancer and neurodegenerative diseases. COXs are the main targets of nonsteroidal anti-inflammatory drugs and catalyze the bis-oxygenation of arachidonic acid into prostaglandin PGH2, then converted into prostaglandins, thromboxane, and prostacyclin by tissue-specific isomerases. A remarkable amount of pure COX-1 is necessary to investigate COX-1 structure and function, as well as for in vitro disease biochemical pathway investigations.

Methods: Spodoptera frugiperda cells were infected with Baculovirus that revealed to be an efficient expression system to obtain a high amount of ovine(o)COX-1. Protein solubilization time in the presence of a non-ionic detergent was modified, and a second purification step was introduced.

Results and Discussion: An improvement of a previously reported method for pure recombinant oCOX-1 production and isolation has been achieved, leading to a lower starting volume of infected cells for each purification, an increased cell density, an increased number of viral particles per cell, and a shortened infection period. The protocol for the recombinant oCOX-1 expression and purification has been in-depth elaborated to obtain 1 mg/L of protein.

Conclusion: The optimized procedure could be suitable for producing other membrane proteins as well, for which an improvement in the solubilization step is necessary to have the availability of high concentration proteins.

Keywords: Cyclooxygenase (COX)-1, recombinant ovineCOX-1, protein expression and purification, baculovirus, viral vector, Sf9 insect cells, non-steroidal anti-inflammatory drugs.

« Previous
Graphical Abstract

[1]
Smith, W.L.; Garavito, R.M.; DeWitt, D.L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem., 1996, 271(52), 33157-33160.
[http://dx.doi.org/10.1074/jbc.271.52.33157] [PMID: 8969167]
[2]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[3]
Smith, W.L.; Malkowski, M.G. Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. J. Biol. Chem., 2019, 294(5), 1697-1705.
[http://dx.doi.org/10.1074/jbc.TM118.006295] [PMID: 30710016]
[4]
Dong, L.; Sharma, N.P.; Jurban, B.J.; Smith, W.L. Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer. J. Biol. Chem., 2013, 288(40), 28641-28655.
[http://dx.doi.org/10.1074/jbc.M113.505503] [PMID: 23955344]
[5]
Vitale, P.; Panella, A.; Scilimati, A.; Perrone, M.G. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med. Res. Rev., 2016, 36(4), 641-671.
[http://dx.doi.org/10.1002/med.21389] [PMID: 27111555]
[6]
Pati, M.L.; Vitale, P.; Ferorelli, S.; Iaselli, M.; Miciaccia, M.; Boccarelli, A.; Di Mauro, G.D.; Fortuna, C.G.; Souza Domingos, T.F.; Rodrigues Pereira da Silva, L.C.; de Pádula, M.; Cabral, L.M.; Sathler, P.C.; Vacca, A.; Scilimati, A.; Perrone, M.G. Translational impact of novel widely pharmacological characterized mofezolac-derived COX-1 inhibitors combined with bortezomib on human multiple myeloma cell lines viability. Eur. J. Med. Chem., 2019, 164, 59-76.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.029] [PMID: 30590258]
[7]
Casalino, G.; Coluccia, M.; Pati, M.L.; Pannunzio, A.; Vacca, A.; Scilimati, A.; Perrone, M.G. Intelligent microarray data analysis through nonnegative matrix factorization to study human multiple myeloma cell lines. Appl. Sci. (Basel), 2019, 9(24), 5552.
[http://dx.doi.org/10.3390/app9245552]
[8]
Herschman, H.R. Prostaglandin synthase 2. Biochim. Biophys. Acta, 1996, 1299(1), 125-140.
[http://dx.doi.org/10.1016/0005-2760(95)00194-8] [PMID: 8555245]
[9]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[10]
Perrone, M.G.; Lofrumento, D.D.; Vitale, P.; De Nuccio, F.; La Pesa, V.; Panella, A.; Calvello, R.; Cianciulli, A.; Panaro, M.A.; Scilimati, A. Selective cyclooxygenase-1 inhibition by p6 and gastrotoxicity: preliminary investigation. Pharmacology, 2015, 95(1-2), 22-28.
[http://dx.doi.org/10.1159/000369826] [PMID: 25591798]
[11]
Kennedy, B.M.; Harris, R.E. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer. Inflammopharmacology, 2018, 26, 909-923.
[http://dx.doi.org/10.1007/s10787-018-0489-6] [PMID: 29736687]
[12]
Wyatt, G.L.; Crump, L.S.; Young, C.M.; Wessells, V.M.; McQueen, C.M.; Wall, S.W.; Gustafson, T.L.; Fan, Y.Y.; Chapkin, R.S.; Porter, W.W.; Lyons, T.R. Cross-talk between SIM2s and NFκB regulates cyclooxygenase 2 expression in breast cancer. Breast Cancer Res., 2019, 21(1), 131-143.
[http://dx.doi.org/10.1186/s13058-019-1224-y] [PMID: 31783895]
[13]
Frejborg, E.; Salo, T.; Salem, A. Role of cyclooxygenase-2 in head and neck tumorigenesis. Int. J. Mol. Sci., 2020, 21(23), 9246-9263.
[http://dx.doi.org/10.3390/ijms21239246] [PMID: 33287464]
[14]
Lipari, L.; Mauro, A.; Gallina, S.; Tortorici, S.; Buscemi, M.; Tete, S.; Gerbino, A. Expression of gelatinases (MMP-2, MMP-9) and cyclooxygenases (COX-1, COX-2) in some benign salivary gland tumors. Int. J. Immunopathol. Pharmacol., 2012, 25(1), 107-115.
[http://dx.doi.org/10.1177/039463201202500113] [PMID: 22507323]
[15]
Osman, W.M.; Youssef, N.S. Combined use of COX-1 and VEGF immunohistochemistry refines the histopathologic prognosis of renal cell carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(7), 8165-8177.
[PMID: 26339385]
[16]
Yu, Z.H.; Zhang, Q.; Wang, Y.D.; Chen, J.; Jiang, Z.M.; Shi, M.; Guo, X.; Qin, J.; Cui, G.H.; Cai, Z.M.; Gui, Y.T.; Lai, Y.Q. Overexpression of cyclooxygenase-1 correlates with poor prognosis in renal cell carcinoma. Asian Pac. J. Cancer Prev., 2013, 14(6), 3729-3734.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3729] [PMID: 23886173]
[17]
Perrone, M.G.; Luisi, O.; De Grassi, A.; Ferorelli, S.; Cormio, G.; Scilimati, A. Translational theragnosis of ovarian cancer: where do we stand? Curr. Med. Chem., 2020, 27(34), 5675-5715.
[http://dx.doi.org/10.2174/0929867326666190816232330] [PMID: 31419925]
[18]
Malerba, P.; Crews, B.C.; Ghebreselasie, K.; Daniel, C.K.; Jashim, E.; Aleem, A.M.; Salam, R.A.; Marnett, L.J.; Uddin, M.J. Targeted detection of cyclooxygenase-1 in ovarian cancer. ACS Med. Chem. Lett., 2019, 11(10), 1837-1842.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00280] [PMID: 33062161]
[19]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid. Res. Suppl., 2009, 50, 29-34.
[20]
Gupta, K.; Selinsky, B.S.; Kaub, C.J.; Katz, A.K.; Loll, P.J. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: Structural insights into an unusual peroxidase. J. Mol. Biol., 2004, 335(2), 503-518.
[http://dx.doi.org/10.1016/j.jmb.2003.10.073] [PMID: 14672659]
[21]
Smith, T.; Leipprandt, J.; DeWitt, D. Purification and characterization of the human recombinant histidine-tagged prostaglandin endoperoxide H synthases-1 and -2. Arch. Biochem. Biophys., 2000, 375(1), 195-200.
[http://dx.doi.org/10.1006/abbi.1999.1659] [PMID: 10683267]
[22]
Nettleship, J.E.; Assenberg, R.; Diprose, J.M.; Rahman-Huq, N.; Owens, R.J. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol., 2010, 172(1), 55-65.
[http://dx.doi.org/10.1016/j.jsb.2010.02.006] [PMID: 20153433]
[23]
Bac-to-Bac® Baculovirus Expression System, Invitrogen. 1994.
[24]
Barnett, J.; Chow, J.; Ives, D.; Chiou, M.; Mackenzie, R.; Osen, E.; Nguyen, B.; Tsing, S.; Bach, C.; Freire, J.; Chana, H.; Sigalb, E.; Rameshab, C. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim. Biophys. Acta, 1994, 1209(1), 130-139.
[http://dx.doi.org/10.1016/0167-4838(94)90148-1] [PMID: 7947975]
[25]
DeWitt, D.L.; Smith, W.L. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. USA, 1988, 85(5), 1412-1416.
[http://dx.doi.org/10.1073/pnas.85.5.1412] [PMID: 3125548]
[26]
Thuresson, E.D.; Lakkides, K.M.; Rieke, C.J.; Sun, Y.; Wingerd, B.A.; Micielli, R.; Mulichak, A.M.; Malkowski, M.G.; Garavito, R.M.; Smith, W.L. Prostaglandin endoperoxide H synthase-1: The functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. J. Biol. Chem., 2001, 276(13), 10347-10357.
[http://dx.doi.org/10.1074/jbc.M009377200] [PMID: 11121412]
[27]
Perrone, M.G.; Miciaccia, M.; Vitale, P.; Ferorelli, S.; Araújo, C.D.C.B.; de Almeida, G.S.; Souza Domingos, T.F.; da Silva, L.C.R.P.; de Pádula, M.; Cabral, L.M.; Sathler, P.C.; Bonaccorso, C.; Fortuna, C.G.; Scilimati, A. An attempt to chemically state the cross-talk between monomers of COX homodimers by double/hybrid inhibitors mofezolac-spacer-mofezolac and mofezolac-spacer-arachidonic acid. Eur. J. Med. Chem., 2021, 209, 112919.
[http://dx.doi.org/10.1016/j.ejmech.2020.112919] [PMID: 33129592]
[28]
Diepart, C.; Verrax, J.; Calderon, P.B.; Feron, O.; Jordan, B.F.; Gallez, B. Comparison of methods for measuring oxygen consumption in tumor cells in vitro. Anal. Biochem., 2010, 396(2), 250-256.
[http://dx.doi.org/10.1016/j.ab.2009.09.029] [PMID: 19766582]
[29]
Mbonye, U.R.; Wada, M.; Rieke, C.J.; Tang, H-Y.; Dewitt, D.L.; Smith, W.L. The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J. Biol. Chem., 2006, 281(47), 35770-35778.
[http://dx.doi.org/10.1074/jbc.M608281200] [PMID: 17001073]
[30]
Koksal, A.C.; Nardozzi, J.D.; Cingolani, G. Dimeric quaternary structure of the prototypical dual specificity phosphatase VH1. J. Biol. Chem., 2009, 284(15), 10129-10137.
[http://dx.doi.org/10.1074/jbc.M808362200] [PMID: 19211553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy