Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

LncRNAs Roles in Chemoresistance of Cancer Cells

Author(s): Sina Taghvimi, Sepideh Abbaszadeh, Fatemeh Bahrami Banan, Elahe Soltani Fard, Zeinab Jamali, Milad Ahmadi Najafabadi, Amir Savardashtaki and Ahmad Movahedpour*

Volume 22, Issue 8, 2022

Published on: 12 January, 2022

Page: [691 - 702] Pages: 12

DOI: 10.2174/1566524021666211027090515

Price: $65

Abstract

Cancer is an important health issue worldwide. Cancer therapy is multifaceted, and drug resistance is still the major limiting factor in the treatment of patients with this disease. Although the mechanisms of anticancer drug resistance have been broadly investigated, a massive biological signal pathway of Non-coding RNAs (ncRNAs) involved in this process has not been completely understood. Long noncoding RNAs (lncRNAs) are a kind of transcripts with a minimum length of 200 nucleotides in size, which have a limited potential for coding proteins. The roles of these RNA molecules have been evaluated in relation to several pathological processes, including tumor formation and progression. Increasing evidence has recently reported that non-coding RNAs (ncRNAs), particularly long non-coding RNAs, have significant roles in many cellular and genomic processes, and because of their potential in regulation specific genes, they are also involved in drug resistance. In this review, we review the literature on the features of lncRNA, their regulation roles in the gene expression related to chemo resistance, and the potential of these RNAs as targeted therapies for personalized treatment in cancers.

Keywords: Non-coding RNAs, Long non-coding RNAs, Drug resistance, personalized treatment, cancer, epithelial to mesenchymal transition.

[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Liu K, Gao L, Ma X, et al. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 2020; 19(1): 54.
[http://dx.doi.org/10.1186/s12943-020-01162-0] [PMID: 32164712]
[4]
Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 2016; 43(8): 723-37.
[http://dx.doi.org/10.1111/1440-1681.12581] [PMID: 27097837]
[5]
Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265-79.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[6]
Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 2013; 85(9): 1219-26.
[http://dx.doi.org/10.1016/j.bcp.2013.02.017] [PMID: 23435357]
[7]
Lønning PE. Genes causing inherited cancer as beacons to identify the mechanisms of chemoresistance. Trends Mol Med 2004; 10(3): 113-8.
[http://dx.doi.org/10.1016/j.molmed.2004.01.005] [PMID: 15102353]
[8]
Ayers D, Vandesompele J. Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes (Basel) 2017; 8(3): 95.
[http://dx.doi.org/10.3390/genes8030095] [PMID: 28273813]
[9]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10(1): 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[10]
Zhu Q-N, Wang G, Guo Y, et al. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget 2017; 8(54): 91990-2003.
[http://dx.doi.org/10.18632/oncotarget.21121] [PMID: 29190892]
[11]
Kaushik SB, Kaushik N. Non-coding RNAs in skin cancers: An update. Noncoding RNA Res 2016; 1(1): 83-6.
[12]
Nikpayam E, Tasharrofi B, Sarrafzadeh S, Ghafouri-Fard S. The role of long non-coding RNAs in ovarian cancer. Iran Biomed J 2017; 21(1): 3-15.
[http://dx.doi.org/10.18869/acadpub.ibj.21.1.3] [PMID: 27664137]
[13]
Xiong G, Feng M, Yang G, et al. The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett 2017; 397: 94-102.
[http://dx.doi.org/10.1016/j.canlet.2017.02.020] [PMID: 28254409]
[14]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[15]
Röhr C, Kerick M, Fischer A, et al. High-throughput miRNA and mRNA sequencing of paired colorectal normal, tumor and metastasis tissues and bioinformatic modeling of miRNA-1 therapeutic applications. PLoS One 2013; 8(7): e67461.
[http://dx.doi.org/10.1371/journal.pone.0067461] [PMID: 23874421]
[16]
Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154(1): 26-46.
[http://dx.doi.org/10.1016/j.cell.2013.06.020] [PMID: 23827673]
[17]
Wang Y, Qian CY, Li XP, et al. Genome-scale long noncoding RNA expression pattern in squamous cell lung cancer. Sci Rep 2015; 5: 11671.
[http://dx.doi.org/10.1038/srep11671] [PMID: 26159226]
[18]
Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer 2018; 17(1): 61.
[http://dx.doi.org/10.1186/s12943-018-0812-2] [PMID: 29458374]
[19]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[20]
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res 2018; 3(3): 108-17.
[http://dx.doi.org/10.1016/j.ncrna.2018.03.001] [PMID: 30175284]
[21]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[22]
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Prot Bioinf 2016; 14(1): 42-54.
[http://dx.doi.org/10.1016/j.gpb.2015.09.006] [PMID: 26883671]
[23]
Pandey RR, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32(2): 232-46.
[http://dx.doi.org/10.1016/j.molcel.2008.08.022] [PMID: 18951091]
[24]
Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013; 52(1): 101-12.
[http://dx.doi.org/10.1016/j.molcel.2013.08.027] [PMID: 24055342]
[25]
Chen N, Guo D, Xu Q, et al. Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma. Oncotarget 2016; 7(10): 11271-83.
[http://dx.doi.org/10.18632/oncotarget.7168] [PMID: 26848625]
[26]
Yu J, Han Z, Sun Z, Wang Y, Zheng M, Song C. LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Cancer Res 2018; 37(1): 222.
[http://dx.doi.org/10.1186/s13046-018-0896-y] [PMID: 30201010]
[27]
Carlevaro-Fita J, Lanzós A, Feuerbach L, et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 2020; 3(1): 56.
[http://dx.doi.org/10.1038/s42003-019-0741-7] [PMID: 32024996]
[28]
Renganathan A, Felley-Bosco E. Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol 2017; 1008: 199-222.
[http://dx.doi.org/10.1007/978-981-10-5203-3_7] [http://dx.doi.org/10.1007/978-981-10-5203-3_7]
[29]
Petrovics G, Zhang W, Makarem M, et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23(2): 605-11.
[http://dx.doi.org/10.1038/sj.onc.1207069] [PMID: 14724589]
[30]
Ginger MR, Shore AN, Contreras A, et al. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci USA 2006; 103(15): 5781-6.
[http://dx.doi.org/10.1073/pnas.0600745103] [PMID: 16574773]
[31]
Gejman R, Batista DL, Zhong Y, et al. Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2008; 93(10): 4119-25.
[http://dx.doi.org/10.1210/jc.2007-2633] [PMID: 18628527]
[32]
Potti A, Dressman HK, Bild A, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006; 12(11): 1294-300.
[http://dx.doi.org/10.1038/nm1491] [PMID: 17057710]
[33]
Crijns AP, Fehrmann RS, de Jong S, et al. Survival-related profile, pathways, and transcription factors in ovarian cancer. PLoS Med 2009; 6(2): e24.
[http://dx.doi.org/10.1371/journal.pmed.1000024] [PMID: 19192944]
[34]
Etemadmoghadam D, deFazio A, Beroukhim R, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009; 15(4): 1417-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1564] [PMID: 19193619]
[35]
Raguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 2008; 99(3): 387-91.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[36]
Roberti A, La Sala D, Cinti C. Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J Cell Physiol 2006; 207(3): 571-81.
[http://dx.doi.org/10.1002/jcp.20515] [PMID: 16250021]
[37]
Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updat 2007; 10(1-2): 59-67.
[http://dx.doi.org/10.1016/j.drup.2007.02.002] [PMID: 17350322]
[38]
Malek E, Jagannathan S, Driscoll JJ. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 2014; 5(18): 8027-38.
[http://dx.doi.org/10.18632/oncotarget.2469] [PMID: 25275300]
[39]
Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 2014; 281(7): 1750-8.
[http://dx.doi.org/10.1111/febs.12737] [PMID: 24495014]
[40]
Wang H, Guan Z, He K, Qian J, Cao J, Teng L. LncRNA UCA1 in anti-cancer drug resistance. Oncotarget 2017; 8(38): 64638-50.
[http://dx.doi.org/10.18632/oncotarget.18344] [PMID: 28969100]
[41]
Hu Y, Zhu QN, Deng JL, Li ZX, Wang G, Zhu YS. Emerging role of long non-coding RNAs in cisplatin resistance. OncoTargets Ther 2018; 11: 3185-94.
[http://dx.doi.org/10.2147/OTT.S158104] [PMID: 29881292]
[42]
Martin T, Jiang W. Anti-Cancer agents in medicinal chemistry (Formerly current medicinal chemistry-Anti-cancer agents). Anticancer Agents Med Chem 2010; 10(1): 1.
[43]
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades. Drug Deliv Transl Res 2019; 9(1): 379-93.
[http://dx.doi.org/10.1007/s13346-018-0584-7] [PMID: 30194528]
[44]
Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009; 3(3): 281-90.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[45]
Chen QN, Wei CC, Wang ZX, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2017; 8(1): 1925-36.
[http://dx.doi.org/10.18632/oncotarget.12461] [PMID: 27713133]
[46]
Eisses JF, Kaplan JH. Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 2002; 277(32): 29162-71.
[http://dx.doi.org/10.1074/jbc.M203652200] [PMID: 12034741]
[47]
Hang Q, Sun R, Jiang C, Li Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anticancer Drugs 2015; 26(6): 632-40.
[http://dx.doi.org/10.1097/CAD.0000000000000227] [PMID: 25763542]
[48]
Fang Z, Chen W, Yuan Z, Liu X, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother 2018; 101: 536-42.
[http://dx.doi.org/10.1016/j.biopha.2018.02.130] [PMID: 29505924]
[49]
Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett 2018; 16(4): 4821-8.
[http://dx.doi.org/10.3892/ol.2018.9293] [PMID: 30250547]
[50]
Zhu J, Zhang R, Yang D, et al. Knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in colorectal cancer by upregulation of miR-124 and downregulation of SGK1. Cell Physiol Biochem 2018; 51(1): 113-28.
[http://dx.doi.org/10.1159/000495168] [PMID: 30439718]
[51]
Chang L, Hu Z, Zhou Z, Zhang H. Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cell Physiol Biochem 2018; 48(1): 16-28.
[http://dx.doi.org/10.1159/000491659] [PMID: 30001527]
[52]
Carke M. Cancer Stem Cells-Perspectives on current status and future directions. AACR Workshop on Cancer Stem Cells Cancer Res. 9339-44.
[53]
Lee MY, Giraddi RR, Tam WL. Cancer Stem Cells: Concepts, Challenges, and Opportunities for Cancer Therapy.Chimera Research. Springer 2019; pp. 43-66.
[http://dx.doi.org/10.1007/978-1-4939-9524-0_4]
[54]
Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3(12): 895-902.
[http://dx.doi.org/10.1038/nrc1232] [PMID: 14737120]
[55]
Zhang L, Jiao M, Li L, et al. Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol 2012; 138(4): 675-86.
[http://dx.doi.org/10.1007/s00432-011-1146-2] [PMID: 22237455]
[56]
Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 2011; 30(15): 3186-99.
[http://dx.doi.org/10.1038/emboj.2011.211] [PMID: 21701559]
[57]
Metzger E, Stepputtis SS, Strietz J, et al. KDM4 Inhibition Targets Breast Cancer Stem-like Cells. Cancer Res 2017; 77(21): 5900-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1754] [PMID: 28883001]
[58]
Mao XG, Guo G, Wang P, et al. Maintenance of critical properties of brain tumor stem-like cells after cryopreservation. Cell Mol Neurobiol 2010; 30(5): 775-86.
[http://dx.doi.org/10.1007/s10571-010-9505-0] [PMID: 20155395]
[59]
Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18(10): 1131-43.
[http://dx.doi.org/10.1101/gad.294104] [PMID: 15155580]
[60]
Elzamly S, Badri N, Padilla O, et al. Epithelial-Mesenchymal Transition Markers in Breast Cancer and Pathological Responseafter Neoadjuvant Chemotherapy. Breast Cancer (Auckl) 2018; 12: 1178223418788074.
[http://dx.doi.org/10.1177/1178223418788074] [PMID: 30083055]
[61]
Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[62]
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging Biological Principles of Metastasis. Cell 2017; 168(4): 670-91.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[63]
Jolly MK, Boareto M, Huang B, et al. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 2015; 5: 155.
[http://dx.doi.org/10.3389/fonc.2015.00155] [PMID: 26258068]
[64]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[65]
Alisi A, Cho WC, Locatelli F, Fruci D. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. Int J Mol Sci 2013; 14(12): 24706-25.
[http://dx.doi.org/10.3390/ijms141224706] [PMID: 24351843]
[66]
Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2(1): 3.
[http://dx.doi.org/10.1186/2001-1326-2-3] [PMID: 23369605]
[67]
Eyre R, Harvey I, Stemke-Hale K, Lennard TW, Tyson-Capper A, Meeson AP. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumour Biol 2014; 35(10): 9879-92.
[http://dx.doi.org/10.1007/s13277-014-2277-2] [PMID: 24993095]
[68]
Zhang Y, Tang X, Shi M, Wen C, Shen B. MiR-216a decreases MALAT1 expression, induces G2/M arrest and apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun 2017; 483(2): 816-22.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.167] [PMID: 28034748]
[69]
Yin T, Wei H, Gou S, et al. Cancer stem-like cells enriched in Panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci 2011; 12(3): 1595-604.
[http://dx.doi.org/10.3390/ijms12031595] [PMID: 21673909]
[70]
Han T, Hu H, Zhuo M, et al. Long non-coding RNA: an emerging paradigm of pancreatic cancer. Curr Mol Med 2016; 16(8): 702-9.
[http://dx.doi.org/10.2174/1566524016666160927095812] [PMID: 27686798]
[71]
Tanei T, Morimoto K, Shimazu K, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15(12): 4234-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1479] [PMID: 19509181]
[72]
Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther 2016; 160: 145-58.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[73]
Xia H, Hui KM. MicroRNAs involved in regulating epithelial-mesenchymal transition and cancer stem cells as molecular targets for cancer therapeutics. Cancer Gene Ther 2012; 19(11): 723-30.
[http://dx.doi.org/10.1038/cgt.2012.58] [PMID: 22975591]
[74]
Majidinia M, Yousefi B. Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 2016; 45: 25-33.
[http://dx.doi.org/10.1016/j.dnarep.2016.06.003] [PMID: 27427176]
[75]
Dou J, Ni Y, He X, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res 2016; 8(1): 98-108.
[PMID: 27069543]
[76]
Yu X, Li Z, Zheng H, Chan MT, Wu WK. NEAT1: A novel cancer-related long non-coding RNA. Cell Prolif 2017; 50(2)
[http://dx.doi.org/10.1111/cpr.12329] [PMID: 28105699]
[77]
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9(4): E38.
[http://dx.doi.org/10.3390/cancers9040038] [PMID: 28430163]
[78]
Kim G, Ouzounova M, Quraishi AA, et al. SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene 2015; 34(6): 671-80.
[http://dx.doi.org/10.1038/onc.2014.4] [PMID: 24531711]
[79]
Zhou QX, Jiang XM, Wang ZD, Li CL, Cui YF. Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis. Med Oncol 2015; 32(4): 105.
[http://dx.doi.org/10.1007/s12032-015-0553-7] [PMID: 25744243]
[80]
Jun W. Am Surg 2019; 85(6): 645-53.
[http://dx.doi.org/10.1177/000313481908500630] [PMID: 31267907]
[81]
Liang WC, Fu WM, Wong CW, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2015; 6(26): 22513-25.
[http://dx.doi.org/10.18632/oncotarget.4154] [PMID: 26068968]
[82]
Jiao F, Hu H, Yuan C, et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol Rep 2014; 32(6): 2485-92.
[http://dx.doi.org/10.3892/or.2014.3518] [PMID: 25269958]
[83]
Du B, Shim JS. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016; 21(7): E965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[84]
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8(9): 741-52.
[http://dx.doi.org/10.1038/nrm2239] [PMID: 17717517]
[85]
Wang C-Y, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5(4): 412-7.
[http://dx.doi.org/10.1038/7410] [PMID: 10202930]
[86]
Heere-Ress E, Thallinger C, Lucas T, et al. Bcl-X(L) is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int J Cancer 2002; 99(1): 29-34.
[http://dx.doi.org/10.1002/ijc.10248] [PMID: 11948488]
[87]
Bermúdez M, Aguilar-Medina M, Lizárraga-Verdugo E, et al. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front Oncol 2019; 9: 1008.
[http://dx.doi.org/10.3389/fonc.2019.01008] [PMID: 31632922]
[88]
Liu J, Wan L, Lu K, et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One 2015; 10(5): e0114586.
[http://dx.doi.org/10.1371/journal.pone.0114586] [PMID: 25992654]
[89]
Li Y, Lv S, Ning H, et al. Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother 2018; 108: 1775-82.
[http://dx.doi.org/10.1016/j.biopha.2018.09.181] [PMID: 30372881]
[90]
Li W, Zhai L, Wang H, et al. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 2016; 7(19): 27778-86.
[http://dx.doi.org/10.18632/oncotarget.8413] [PMID: 27034004]
[91]
Si X, Zang R, Zhang E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 2016; 7(49): 81452-62.
[http://dx.doi.org/10.18632/oncotarget.13263] [PMID: 27845892]
[92]
Jiang M, Huang O, Xie Z, et al. A novel long non-coding RNA-ARA: adriamycin resistance-associated. Biochem Pharmacol 2014; 87(2): 254-83.
[http://dx.doi.org/10.1016/j.bcp.2013.10.020] [PMID: 24184505]
[93]
Tsang S, Patel T, Yustein JT. Long non-coding RNAs regulation of therapeutic resistance. Mol Cancer 2020; 19: 54.
[http://dx.doi.org/10.20517/cdr.2019.58]
[94]
Zhu L, Zhu Y, Han S, et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis 2019; 10(6): 383.
[http://dx.doi.org/10.1038/s41419-019-1585-2] [PMID: 31097692]
[95]
Pohlmann PR, Mayer IA, Mernaugh R. Resistance to Trastuzumab in Breast Cancer. Clin Cancer Res 2009; 15(24): 7479-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0636] [PMID: 20008848]
[96]
Li Y, Ye Y, Feng B, Qi Y. Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-PI3K/Akt pathway. J Cell Biochem 2017; 118(12): 4498-507.
[http://dx.doi.org/10.1002/jcb.26107] [PMID: 28464252]
[97]
Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127-50.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311] [PMID: 18767981]
[98]
Li W, Dong X, He C, et al. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res 2019; 38(1): 183.
[http://dx.doi.org/10.1186/s13046-019-1177-0] [PMID: 31053148]
[99]
Zhuang J, Shen L, Yang L, et al. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics 2017; 7(12): 3053-67.
[http://dx.doi.org/10.7150/thno.19542] [PMID: 28839463]
[100]
Su M, Wang H, Wang W, et al. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50(5): 433-9.
[http://dx.doi.org/10.1093/abbs/gmy022] [PMID: 29554194]
[101]
Wan G, Hu X, Liu Y, et al. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 2013; 32(21): 2833-47.
[http://dx.doi.org/10.1038/emboj.2013.221] [PMID: 24097061]
[102]
Sharma V, Khurana S, Kubben N, et al. A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep 2015; 16(11): 1520-34.
[http://dx.doi.org/10.15252/embr.201540437] [PMID: 26412854]
[103]
Liu J, Sun X, Zhu H, Qin Q, Yang X, Sun X. Long noncoding RNA POU6F2-AS2 is associated with oesophageal squamous cell carcinoma. J Biochem 2016; 160(4): 195-204.
[http://dx.doi.org/10.1093/jb/mvw025] [PMID: 27033944]
[104]
Kalvapalle PB. Functional analysis of tyrosine kinase mutants in cancer. Johns Hopkins University 2016.
[105]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[106]
Pan H, Jiang T, Cheng N, et al. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget 2016; 7(31): 49948-60.
[http://dx.doi.org/10.18632/oncotarget.10521] [PMID: 27409677]
[107]
Herling A, König M, Bulik S, Holzhütter HG. Enzymatic features of the glucose metabolism in tumor cells. FEBS J 2011; 278(14): 2436-59.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08174.x] [PMID: 21564549]
[108]
Rochat B. Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents. Curr Cancer Drug Targets 2009; 9(5): 652-74.
[http://dx.doi.org/10.2174/156800909789056999] [PMID: 19686091]
[109]
Ren J, Ding L, Zhang D, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018; 8(14): 3932-48.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[110]
Liu LC, Wang YL, Lin PL, et al. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15. Int J Cancer 2019; 145(9): 2478-87.
[http://dx.doi.org/10.1002/ijc.32319] [PMID: 30963568]
[111]
Xiong G, Liu C, Yang G, et al. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12(1): 97.
[http://dx.doi.org/10.1186/s13045-019-0777-7] [PMID: 31514732]
[112]
Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 2007; 26(33): 4877-81.
[http://dx.doi.org/10.1038/sj.onc.1210266] [PMID: 17297456]
[113]
Takahashi K, Yan IK, Wood J, Haga H, Patel T. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 2014; 12(10): 1377-87.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0636] [PMID: 24874432]
[114]
Zhang XW, Bu P, Liu L, Zhang XZ, Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun 2015; 462(3): 227-32.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.121] [PMID: 25956062]
[115]
Ren K, Xu R, Huang J, Zhao J, Shi W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother Pharmacol 2017; 80(2): 243-50.
[http://dx.doi.org/10.1007/s00280-017-3356-z] [PMID: 28600629]
[116]
Wu X, Zheng Y, Han B, Dong X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother 2018; 99: 832-8.
[http://dx.doi.org/10.1016/j.biopha.2018.01.130] [PMID: 29710482]
[117]
Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 2014; 34(17): 3182-93.
[http://dx.doi.org/10.1128/MCB.01580-13] [PMID: 24958102]
[118]
Lan W-G, Xu DH, Xu C, et al. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep 2016; 36(1): 263-70.
[http://dx.doi.org/10.3892/or.2016.4771] [PMID: 27121324]
[119]
Luo Y, Yang J, Yu J, et al. Long non-coding RNAs: Emerging roles in the immunosuppressive tumor microenvironment. Front Oncol 2020; 10: 48.
[http://dx.doi.org/10.3389/fonc.2020.00048] [PMID: 32083005]
[120]
Zhou Y, Zhu Y, Xie Y, Ma X. The Role of Long Non-coding RNAs in Immunotherapy Resistance. Front Oncol 2019; 9: 1292.
[http://dx.doi.org/10.3389/fonc.2019.01292] [PMID: 31850199]
[121]
Rapicavoli NA. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. elife 2013; 2: e00762.
[http://dx.doi.org/10.7554/eLife.00762]
[122]
Song B, Guan Z, Liu F, Sun D, Wang K, Qu H. Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells. Biochem Biophys Res Commun 2015; 464(3): 807-13.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.040] [PMID: 26187665]
[123]
Wang C-J, Zhu CC, Xu J, et al. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol Cancer 2019; 18(1): 115.
[http://dx.doi.org/10.1186/s12943-019-1032-0] [PMID: 31272462]
[124]
Dang S, Malik A, Chen J, et al. LncRNA SNHG15 Contributes to Immuno-Escape of Gastric Cancer Through Targeting miR141/PD-L1. OncoTargets Ther 2020; 13: 8547-56.
[http://dx.doi.org/10.2147/OTT.S251625] [PMID: 32943878]
[125]
Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm 2013; 10(1): 337-52.
[http://dx.doi.org/10.1021/mp3004622] [PMID: 23215027]
[126]
Zhou J, Yang L, Zhong T, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosyl-homocysteine hydrolase. Nat Commun 2015; 6(1): 10221.
[http://dx.doi.org/10.1038/ncomms10221] [PMID: 26687445]
[127]
Di Ruscio A, Ebralidze AK, Benoukraf T, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 2013; 503(7476): 371-6.
[http://dx.doi.org/10.1038/nature12598] [PMID: 24107992]
[128]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[129]
Song Y, Wang R, Li LW, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol 2019; 54(1): 77-86.
[PMID: 30431069]
[130]
Beckedorff FC, Amaral MS, Deocesano-Pereira C, Verjovski-Almeida S. Long non-coding RNAs and their implications in cancer epigenetics. Biosci Rep 2013; 33(4): e00061.
[http://dx.doi.org/10.1042/BSR20130054] [PMID: 23875687]
[131]
Kong R, Zhang EB, Yin DD, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer 2015; 14(1): 82.
[http://dx.doi.org/10.1186/s12943-015-0355-8] [PMID: 25890171]
[132]
Lu Z, Xiao Z, Liu F, et al. Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget 2016; 7(1): 241-54.
[http://dx.doi.org/10.18632/oncotarget.6280] [PMID: 26540633]
[133]
Chen R, Li X, He B, Hu W. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma. Mol Med Rep 2017; 15(3): 1326-34.
[http://dx.doi.org/10.3892/mmr.2017.6149] [PMID: 28138700]
[134]
Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother 2019; 118: 109129.
[http://dx.doi.org/10.1016/j.biopha.2019.109129] [PMID: 31326791]
[135]
Grelet S, Link LA, Howley B, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 2017; 19(9): 1105-15.
[http://dx.doi.org/10.1038/ncb3595] [PMID: 28825698]
[136]
Gougelet A, Desbois-Mouthon C. Non-coding RNAs open a new chapter in liver cancer treatment. Clin Res Hepatol Gastroenterol 2019; 43(6): 630-7.
[http://dx.doi.org/10.1016/j.clinre.2019.07.005] [PMID: 31401041]
[137]
Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011; 30(16): 1956-62.
[http://dx.doi.org/10.1038/onc.2010.568] [PMID: 21151178]
[138]
Chung S, Nakagawa H, Uemura M, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102(1): 245-52.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01737.x] [PMID: 20874843]
[139]
Wang X-S, Zhang Z, Wang HC, et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 2006; 12(16): 4851-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0134] [PMID: 16914571]
[140]
Zhou Q, Liu J, Quan J, Liu W, Tan H, Li W. lncRNAs as potential molecular biomarkers for the clinicopathology and prognosis of glioma: A systematic review and meta-analysis. Gene 2018; 668: 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.05.054] [PMID: 29777909]
[141]
Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009; 28(2): 195-208.
[http://dx.doi.org/10.1038/onc.2008.373] [PMID: 18836484]
[142]
Qu X, Li Y, Wang L, Yuan N, Ma M, Chen Y. LncRNA SNHG8 accelerates proliferation and inhibits apoptosis in HPV-induced cervical cancer through recruiting EZH2 to epigenetically silence RECK expression. J Cell Biochem 2020; 121(10): 4120-9.
[http://dx.doi.org/10.1002/jcb.29646] [PMID: 31961005]
[143]
Augoff K, McCue B, Plow EF, Sossey-Alaoui K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 2012; 11(1): 5.
[http://dx.doi.org/10.1186/1476-4598-11-5] [PMID: 22289355]
[144]
Quan J, Pan X, Zhao L, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis. OncoTargets Ther 2018; 11: 6415-24.
[http://dx.doi.org/10.2147/OTT.S167853] [PMID: 30323619]
[145]
Chen F, Yin S, Zhu J, et al. lncRNA DGCR5 acts as a tumor suppressor in papillary thyroid carcinoma via sequestering miR-2861. Exp Ther Med 2019; 17(1): 895-900.
[PMID: 30651878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy