Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Experimental and Computational Study of Hyaluronidase Interactions with Glycosaminoglycans and their Ligands

Author(s): Alexander V. Maksimenko*, Yuliya S. Sakharova and Robert S. Beabealashvilli

Volume 22, Issue 8, 2022

Published on: 12 January, 2022

Page: [675 - 690] Pages: 16

DOI: 10.2174/1566524021666211018113204

Price: $65

Abstract

Covalent conjugation of hyaluronidase with copolymeric glycosaminoglycans (GAG, heparin and dermatan sulfate) considerably inactivates the enzyme, while conjugation with polymeric GAG (chondroitin sulfate and hyaluronan) improves its stability. These effects are associated with structural differences of these GAG caused by С-5 epimerization of glucuronic and iduronic acid residues and different effects of (α[1 – 4] and α[1 – 3] relative to β[1 – 4] and β[1 – 3]) glycosidic bonds. Pronounced effects of galactose C-4 epimers (in comparison with glucose) and disaccharide mixture (lactose, cellobiose, maltose) on endoglycosidase activity of hyaluronidase emphasize the importance of its diversified multi-contact microenvironment. For a better understanding of the mechanisms regulating hyaluronidase activity, molecular docking and molecular dynamics were chosen. Stabilization effect of chondroitin ligands on heat inactivation of hyaluronidase was demonstrated. An increase in denaturation temperature by 10-15oC hampers blocking of the active site entrance and prevents the enzyme inactivation. Enzyme-GAG interactions were examined by molecular docking with molecular dynamic elaboration. Gradual chemical modification of hyaluronidase was based on the calculated sequence of preferential binding of GAG. Theoretically, covalent binding of chondroitin sulfate trimers at cs7 or cs7, cs1 and cs5 on the enzyme surface provides complete protection against heparin inhibition. Computational investigation of hyaluronidase microenvironment and interactions which limit the enzyme activity allows identification of the best GAG regulators of hyaluronidase endoglycosidase activity and their experimental verification.

Keywords: Hyaluronidase, mono- and disaccharides, glycosaminoglycans, ligands, molecular docking, molecular dynamics, 3D enzyme structure.

Next »
[1]
Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72(6): 455-82.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x] [PMID: 19090915]
[2]
Carney SL, Muir H. The structure and function of cartilage proteoglycans. Physiol Rev 1988; 68(3): 858-910.
[http://dx.doi.org/10.1152/physrev.1988.68.3.858] [PMID: 3293094]
[3]
Maksimenko AV, Schechilina YV, Tischenko EG. Role of the glycosaminoglycan microenvironment of hyaluronidase in regulation of its endoglycosidase activity. Biochemistry (Mosc) 2003; 68(8): 862-8.
[http://dx.doi.org/10.1023/A:1025794830705] [PMID: 12948386]
[4]
Jung H. Hyaluronidase: An overview of its properties, applications, and side effects. Arch Plast Surg 2020; 47(4): 297-300.
[http://dx.doi.org/10.5999/aps.2020.00752] [PMID: 32718106]
[5]
Spadaro AC, Draghetta W, Del Lamma SN, Camargo AC, Greene LJ. A convenient manual trinitrobenzenesulfonic acid method for monitoring amino acids and peptides in chromatographic column effluents. Anal Biochem 1979; 96(2): 317-21.
[http://dx.doi.org/10.1016/0003-2697(79)90587-6] [PMID: 474960]
[6]
Turashev AD, Tischenko EG, Maksimenko AV. Nonenzymatic glycosylation of native and modified by chondroitin sulfate hyaluronidase with disaccharides. Mol Med 2009; (6): 50-5.
[7]
Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol Biosyst 2012; 8(6): 1613-25.
[http://dx.doi.org/10.1039/c2mb25021g] [PMID: 22513887]
[8]
Scott JE, Heatley F, Wood B. Comparison of secondary structures in water of chondroitin-4-sulfate and dermatan sulfate: implications in the formation of tertiary structures. Biochemistry 1995; 34(47): 15467-74.
[http://dx.doi.org/10.1021/bi00047a011] [PMID: 7492548]
[9]
Reitsma S, Slaaf DW, Vink H, van Zandvoort MA. oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454(3): 345-59.
[http://dx.doi.org/10.1007/s00424-007-0212-8] [PMID: 17256154]
[10]
Cabrales P, Vázquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 2007; 102(6): 2251-9.
[http://dx.doi.org/10.1152/japplphysiol.01155.2006] [PMID: 17347383]
[11]
Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr Opin Struct Biol 2018; 50: 58-64.
[http://dx.doi.org/10.1016/j.sbi.2017.11.008] [PMID: 29253714]
[12]
Bathe M, Rutledge GC, Grodzinsky AJ, Tidor B. A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid. Biophys J 2005; 88(6): 3870-87.
[http://dx.doi.org/10.1529/biophysj.104.058800] [PMID: 15805173]
[13]
Scott JE. On the polylactose nature of chondroitin and keratan sulphates. Biochem J 1994; 298(Pt 1): 221-2.
[http://dx.doi.org/10.1042/bj2980221] [PMID: 8129722]
[14]
Scott JE, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci USA 1999; 96(9): 4850-5.
[http://dx.doi.org/10.1073/pnas.96.9.4850] [PMID: 10220382]
[15]
Turashev AD, Tischenko EG, Maksimenko AV. Glycation of native and modified by chondroitin sulfate hyaluronidase with monosaccharides. Mol Med 2009; (3): 51-6.
[16]
Di Cera E. Mechanisms of ligand binding. Biophys Rev 2020; 1(1): 011303.
[http://dx.doi.org/10.1063/5.0020997] [PMID: 33313600]
[17]
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452: 54-63.
[http://dx.doi.org/10.1016/j.carres.2017.10.008] [PMID: 29065343]
[18]
Sankaranarayanan NV, Nagarajan B, Desai UR. So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 2018; 50: 91-100.
[http://dx.doi.org/10.1016/j.sbi.2017.12.004] [PMID: 29328962]
[19]
Walls AC, Tortorici MA, Snijder J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 2017; 114(42): 11157-62.
[http://dx.doi.org/10.1073/pnas.1708727114] [PMID: 29073020]
[20]
Maksimenko AV, Turashev AD, Beabealashvili RS. Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein. Biochemistry (Mosc) 2015; 80(3): 284-95.
[http://dx.doi.org/10.1134/S0006297915030049] [PMID: 25761683]
[21]
Maksimenko AV, Beabealashvili RS. Dimers and trimers of chondroitin in molecular docking of bovine testicular hyaluronidase. Russ J Bioorganic Chem 2020; 46(2): 181-6.
[http://dx.doi.org/10.1134/S1068162020020156]
[22]
Maksimenko AV, Beabealashvili RS. Conformational alterations of bovine testicular hyaluronidase 3D-model during molecular docking with glycosaminoglycan ligands. Russ J Bioorganic Chem 2018; 44(2): 165-72.
[http://dx.doi.org/10.1134/S1068162018020048]
[23]
Maneval DC, Caster CL, Derunes C, et al. Pegvorhyaluronidase alfa: a PEGylated recombinant human hyaluronidase PH20 for the treatment of cancers that accumulate hyaluronan.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 175-204.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00009-7]
[24]
Maksimenko AV. Results and achievements in the engineering of pharmacological enzymes for clinical application. Med Res Arch 2018; 6(1): 1-13.
[25]
Zaghmi A, Greschner AA, Gauthier MA. In vivo properties of therapeutic bioconjugates composed of proteins and architecturally/functionally complex polymers.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 389-406.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00017-6]
[26]
Ferguson EL, Varache M, Stokniene J, Thomas DW. Polysaccharides for protein and peptide conjugation.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 421-53.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00019-X]
[27]
Clemente-Moragón A, Gómez M, Villena-Gutiérrez R, et al. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur Heart J 2020; 41(46): 4425-40.
[http://dx.doi.org/10.1093/eurheartj/ehaa733] [PMID: 33026079]
[28]
Maksimenko AV, Petrova ML, Tischenko EG, Schechilina YV. Chemical modification of hyaluronidase regulates its inhibition by heparin. Eur J Pharm Biopharm 2001; 51(1): 33-8.
[http://dx.doi.org/10.1016/S0939-6411(00)00136-3] [PMID: 11154901]
[29]
Maksimenko A. Theoretical research of interactions between glycosidases and glycosaminoglycan ligands with molecular docking and molecular dynamics methods. Cardiol Cardiovasc Res 2020; 4(4): 220-30.
[http://dx.doi.org/10.11648/j.ccr.20200404.19]
[30]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy