Mini-Review Article

透明质酸酶与糖胺聚糖及其配体相互作用的实验和计算研究

卷 22, 期 8, 2022

发表于: 12 January, 2022

页: [675 - 690] 页: 16

弟呕挨: 10.2174/1566524021666211018113204

价格: $65

conference banner
摘要

透明质酸酶与共聚糖胺聚糖(GAG、肝素和硫酸皮肤素)的共价缀合使酶显着失活,而与聚合GAG(硫酸软骨素和透明质酸)的缀合提高了其稳定性。这些影响与由葡萄糖醛酸和艾杜糖醛酸残基的С-5差向异构化引起的这些GAG的结构差异以及(α[1 – 4]和α[1 – 3]相对于β[1 – 4]和β的不同影响)有关[1 – 3]) 糖苷键。半乳糖 C-4 差向异构体(与葡萄糖相比)和二糖混合物(乳糖、纤维二糖、麦芽糖)对透明质酸酶的内切糖苷酶活性的显着影响强调了其多样化的多接触微环境的重要性。为了更好地理解调节透明质酸酶活性的机制,选择了分子对接和分子动力学。证明了软骨素配体对透明质酸酶热失活的稳定作用。变性温度升高 10-15oC 会阻碍活性位点入口的阻塞并防止酶失活。酶-GAG 相互作用通过分子对接与分子动力学精细化进行检查。透明质酸酶的逐步化学修饰基于计算出的 GAG 优先结合序列。理论上,硫酸软骨素三聚体在酶表面的 cs7 或 cs7、cs1 和 cs5 处的共价结合提供了对肝素抑制的完全保护。对限制酶活性的透明质酸酶微环境和相互作用的计算研究允许识别透明质酸酶内切糖苷酶活性的最佳 GAG 调节剂及其实验验证。

关键词: 透明质酸酶、单糖和二糖、糖胺聚糖、配体、分子对接、分子动力学、3D 酶结构。

Next »
[1]
Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72(6): 455-82.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x] [PMID: 19090915]
[2]
Carney SL, Muir H. The structure and function of cartilage proteoglycans. Physiol Rev 1988; 68(3): 858-910.
[http://dx.doi.org/10.1152/physrev.1988.68.3.858] [PMID: 3293094]
[3]
Maksimenko AV, Schechilina YV, Tischenko EG. Role of the glycosaminoglycan microenvironment of hyaluronidase in regulation of its endoglycosidase activity. Biochemistry (Mosc) 2003; 68(8): 862-8.
[http://dx.doi.org/10.1023/A:1025794830705] [PMID: 12948386]
[4]
Jung H. Hyaluronidase: An overview of its properties, applications, and side effects. Arch Plast Surg 2020; 47(4): 297-300.
[http://dx.doi.org/10.5999/aps.2020.00752] [PMID: 32718106]
[5]
Spadaro AC, Draghetta W, Del Lamma SN, Camargo AC, Greene LJ. A convenient manual trinitrobenzenesulfonic acid method for monitoring amino acids and peptides in chromatographic column effluents. Anal Biochem 1979; 96(2): 317-21.
[http://dx.doi.org/10.1016/0003-2697(79)90587-6] [PMID: 474960]
[6]
Turashev AD, Tischenko EG, Maksimenko AV. Nonenzymatic glycosylation of native and modified by chondroitin sulfate hyaluronidase with disaccharides. Mol Med 2009; (6): 50-5.
[7]
Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol Biosyst 2012; 8(6): 1613-25.
[http://dx.doi.org/10.1039/c2mb25021g] [PMID: 22513887]
[8]
Scott JE, Heatley F, Wood B. Comparison of secondary structures in water of chondroitin-4-sulfate and dermatan sulfate: implications in the formation of tertiary structures. Biochemistry 1995; 34(47): 15467-74.
[http://dx.doi.org/10.1021/bi00047a011] [PMID: 7492548]
[9]
Reitsma S, Slaaf DW, Vink H, van Zandvoort MA. oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454(3): 345-59.
[http://dx.doi.org/10.1007/s00424-007-0212-8] [PMID: 17256154]
[10]
Cabrales P, Vázquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 2007; 102(6): 2251-9.
[http://dx.doi.org/10.1152/japplphysiol.01155.2006] [PMID: 17347383]
[11]
Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr Opin Struct Biol 2018; 50: 58-64.
[http://dx.doi.org/10.1016/j.sbi.2017.11.008] [PMID: 29253714]
[12]
Bathe M, Rutledge GC, Grodzinsky AJ, Tidor B. A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid. Biophys J 2005; 88(6): 3870-87.
[http://dx.doi.org/10.1529/biophysj.104.058800] [PMID: 15805173]
[13]
Scott JE. On the polylactose nature of chondroitin and keratan sulphates. Biochem J 1994; 298(Pt 1): 221-2.
[http://dx.doi.org/10.1042/bj2980221] [PMID: 8129722]
[14]
Scott JE, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci USA 1999; 96(9): 4850-5.
[http://dx.doi.org/10.1073/pnas.96.9.4850] [PMID: 10220382]
[15]
Turashev AD, Tischenko EG, Maksimenko AV. Glycation of native and modified by chondroitin sulfate hyaluronidase with monosaccharides. Mol Med 2009; (3): 51-6.
[16]
Di Cera E. Mechanisms of ligand binding. Biophys Rev 2020; 1(1): 011303.
[http://dx.doi.org/10.1063/5.0020997] [PMID: 33313600]
[17]
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452: 54-63.
[http://dx.doi.org/10.1016/j.carres.2017.10.008] [PMID: 29065343]
[18]
Sankaranarayanan NV, Nagarajan B, Desai UR. So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 2018; 50: 91-100.
[http://dx.doi.org/10.1016/j.sbi.2017.12.004] [PMID: 29328962]
[19]
Walls AC, Tortorici MA, Snijder J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 2017; 114(42): 11157-62.
[http://dx.doi.org/10.1073/pnas.1708727114] [PMID: 29073020]
[20]
Maksimenko AV, Turashev AD, Beabealashvili RS. Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein. Biochemistry (Mosc) 2015; 80(3): 284-95.
[http://dx.doi.org/10.1134/S0006297915030049] [PMID: 25761683]
[21]
Maksimenko AV, Beabealashvili RS. Dimers and trimers of chondroitin in molecular docking of bovine testicular hyaluronidase. Russ J Bioorganic Chem 2020; 46(2): 181-6.
[http://dx.doi.org/10.1134/S1068162020020156]
[22]
Maksimenko AV, Beabealashvili RS. Conformational alterations of bovine testicular hyaluronidase 3D-model during molecular docking with glycosaminoglycan ligands. Russ J Bioorganic Chem 2018; 44(2): 165-72.
[http://dx.doi.org/10.1134/S1068162018020048]
[23]
Maneval DC, Caster CL, Derunes C, et al. Pegvorhyaluronidase alfa: a PEGylated recombinant human hyaluronidase PH20 for the treatment of cancers that accumulate hyaluronan.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 175-204.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00009-7]
[24]
Maksimenko AV. Results and achievements in the engineering of pharmacological enzymes for clinical application. Med Res Arch 2018; 6(1): 1-13.
[25]
Zaghmi A, Greschner AA, Gauthier MA. In vivo properties of therapeutic bioconjugates composed of proteins and architecturally/functionally complex polymers.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 389-406.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00017-6]
[26]
Ferguson EL, Varache M, Stokniene J, Thomas DW. Polysaccharides for protein and peptide conjugation.Polymer-Protein Conjugates. 1st ed. Amsterdam: Elsevier 2019; pp. 421-53.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00019-X]
[27]
Clemente-Moragón A, Gómez M, Villena-Gutiérrez R, et al. Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur Heart J 2020; 41(46): 4425-40.
[http://dx.doi.org/10.1093/eurheartj/ehaa733] [PMID: 33026079]
[28]
Maksimenko AV, Petrova ML, Tischenko EG, Schechilina YV. Chemical modification of hyaluronidase regulates its inhibition by heparin. Eur J Pharm Biopharm 2001; 51(1): 33-8.
[http://dx.doi.org/10.1016/S0939-6411(00)00136-3] [PMID: 11154901]
[29]
Maksimenko A. Theoretical research of interactions between glycosidases and glycosaminoglycan ligands with molecular docking and molecular dynamics methods. Cardiol Cardiovasc Res 2020; 4(4): 220-30.
[http://dx.doi.org/10.11648/j.ccr.20200404.19]
[30]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy