Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A New Approach for β-cyclodextrin Conjugated Drug Delivery System in Cancer Therapy

Author(s): Teng Meng Sheng and Palanirajan Vijayaraj Kumar*

Volume 19, Issue 3, 2022

Published on: 05 January, 2022

Page: [266 - 300] Pages: 35

DOI: 10.2174/1567201818666211006103452

Price: $65

Abstract

Natural cyclodextrins (CDs) are macrocyclic starch molecules discovered a decade ago, in which α-, β-, and γ-CD were commonly used. They originally acted as pharmaceutical excipients to enhance the aqueous solubility and alter the physicochemical properties of drugs that fall under class II and IV categories according to the Biopharmaceutics Classification System (BPS). The industrial significance of CDs became apparent during the 1970s as scientists started to discover more of CD’s potential in chemical modifications and the formation of inclusion complexes. CDs can help in masking and prolonging the half-life of drugs used in cancer. Multiple optimization techniques were discovered to prepare the derivatives of CDs and increase their complexation and drug delivery efficiency. In recent years, due to the advancement of nanotechnology in pharmaceutical sectors, there has been growing interest in CDs. This review mainly focuses on the formulation of cyclodextrin conjugated nanocarriers using graphenes, carbon nanotubes, nanosponges, hydrogels, dendrimers, and polymers to achieve drug-release characteristics specific to cells. These approaches benefit the discovery of novel anti-cancer treatments, solubilization of new drug compounds, and cell specific drug delivery properties. Due to these unique properties of CDs, they are essential in achieving and enhancing tumor-specific cancer treatment.

Keywords: Cyclodextrin, cancer therapy, nanocarriers, hydrogel, inclusive compounds, theragnostic.

Graphical Abstract

[1]
Ellis, W.B. Books: Ullmann’s encyclopedia of industrial chemistry. J. Ind. Ecol., 1999, 3(2-3), 192-195.
[http://dx.doi.org/10.1162/jiec.1999.3.2-3.192]
[2]
Saenger, W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl., 1980, 19(5), 344-362.
[http://dx.doi.org/10.1002/anie.198003441]
[3]
Taira, H.; Nagase, H.; Endo, T.; Ueda, H. Isolation, purification and characterization of large-ring cyclodextrins (CD 36~~ CD 39). J. Incl. Phenom. Macrocycl. Chem., 2006, 56(1-2), 23-28.
[http://dx.doi.org/10.1007/s10847-006-9055-8]
[4]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[5]
Das, S.; Roy, D. Cyclodextrin: A novel excipient for drug development. Int. J. Curr. Pharm. Rev Res., 2017, 8.
[6]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[7]
Saha, S.; Roy, A.; Roy, K.; Roy, M.N. Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep., 2016, 6, 35764.
[http://dx.doi.org/10.1038/srep35764] [PMID: 27762346]
[8]
Kurkov, S.V.; Loftsson, T.; Sergey, V.K.; Thorsteinn, L. Cyclodextrins. Int. J. Pharm., 2013, 453(1), 167-180.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.055] [PMID: 22771733]
[9]
Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konrádsdóttir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci., 2007, 96(10), 2532-2546.
[http://dx.doi.org/10.1002/jps.20992] [PMID: 17630644]
[10]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[11]
Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov., 2004, 3(12), 1023-1035.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[12]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[13]
Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm., 2018, 535(1-2), 272-284.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[14]
Davidson, C.D.; Fishman, Y.I.; Puskás, I.; Szemán, J.; Sohajda, T.; McCauliff, L.A.; Sikora, J.; Storch, J.; Vanier, M.T.; Szente, L.; Walkley, S.U.; Dobrenis, K. Efficacy and ototoxicity of different cyclodextrins in Niemann-Pick C disease. Ann. Clin. Transl. Neurol., 2016, 3(5), 366-380.
[http://dx.doi.org/10.1002/acn3.306] [PMID: 27231706]
[15]
Szente, L.; Fenyvesi, É. Cyclodextrin-Lipid complexes: Cavity size matters. Struct. Chem., 2017, 28(2), 479-492.
[http://dx.doi.org/10.1007/s11224-016-0884-9]
[16]
Armstrong, D.W.; Faulkner, J.R., Jr; Han, S.M. Use of hydroxypropyl- and hydroxyethyl-derivatized β-cyclodextrins for the thin-layer chromatographic separation of enantiomers and diastereomers. J. Chromatogr. A, 1988, 452, 323-330.
[http://dx.doi.org/10.1016/S0021-9673(01)81457-6] [PMID: 3243848]
[17]
Okada, Y.; Matsuda, K.; Hara, K.; Hamayasu, K.; Hashimoto, H.; Koizumi, K. Properties and the inclusion behavior of 6-O-α-D- galactosyl- and 6-O-α-D-mannosyl-cyclodextrins. Chem. Pharm. Bull. (Tokyo), 1999, 47(11), 1564-1568.
[http://dx.doi.org/10.1248/cpb.47.1564] [PMID: 10605055]
[18]
Tavornvipas, S.; Arima, H.; Hirayama, F.; Uekama, K.; Ishiguro, T.; Oka, M.; Hamayasu, K.; Hashimoto, H. Some pharmaceutical properties of a new branched cyclodextrin, 6-O-α-(4-O-α-D-Glucuronyl)-D-Glucosylβ-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2002, 44(1-4), 391-394.
[http://dx.doi.org/10.1023/A:1023067232328]
[19]
Wimmer, T. Cyclodextrins. Ullmann’s Encycl. Ind. Chem., 2000.
[20]
Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today, 2016, 21(2), 363-368.
[http://dx.doi.org/10.1016/j.drudis.2015.11.016] [PMID: 26687191]
[21]
Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res., 2018, 79(5), 201-217.
[http://dx.doi.org/10.1002/ddr.21452] [PMID: 30188584]
[22]
Aicart, E.; Junquera, E. Physical methods and experimental techniques for the determination of stability constants. Encyclopedia of surface and colloid science; CRC Press, 2015, pp. 5566-5581.
[http://dx.doi.org/10.1081/E-ESCS3-120012646]
[23]
Connors, K. A.; Higuchi, T. Phase solubility techniques. Adv. Anal. Chem. Instrum., 1965, 4(2)
[24]
Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm., 2005, 302(1-2), 18-28.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.042] [PMID: 16099118]
[25]
Loftsson, T.; Guo¯ M., T. K.; Frio¯, R. The influence of water-soluble polymers and ph on hydroxypropyl-β-Cyclodextrin complexation of drugs. Drug Dev. Ind. Pharm., 1996, 22(5), 401-405.
[http://dx.doi.org/10.3109/03639049609069348]
[26]
Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J. Pharm. Sci., 2012, 101(9), 3019-3032.
[http://dx.doi.org/10.1002/jps.23077] [PMID: 22334484]
[27]
Blanchard, J.; Ugwu, S.O.; Bhardwaj, R.; Dorr, R.T. Development and testing of an improved parenteral formulation of phenytoin using 2-hydroxypropyl-β-cyclodextrin. Pharm. Dev. Technol., 2000, 5(3), 333-338.
[http://dx.doi.org/10.1081/PDT-100100548] [PMID: 10934732]
[28]
Loftsson, T.; Vogensen, S.B.; Desbos, C.; Jansook, P. Carvedilol: Solubilization and cyclodextrin complexation: A technical note. AAPS PharmSciTech, 2008, 9(2), 425-430.
[http://dx.doi.org/10.1208/s12249-008-9055-7] [PMID: 18431667]
[29]
Chowdary, K.P.R.; Srinivas, S.V. Influence of hydrophilic polymers on celecoxib complexation with hydroxypropyl β-cyclodextrin. AAPS PharmSciTech, 2006, 7(3), E184-E189.
[http://dx.doi.org/10.1208/pt070379] [PMID: 28290014]
[30]
He, Y.; Li, P.; Yalkowsky, S.H. Solubilization of fluasterone in cosolvent/cyclodextrin combinations. Int. J. Pharm., 2003, 264(1-2), 25-34.
[http://dx.doi.org/10.1016/S0378-5173(03)00389-2] [PMID: 12972333]
[31]
Fenyvesi, E.; Vikmon, M.; Szeman, J.; Redenti, E.; Delcanale, M.; Ventura, P.; Szejtli, J. Interaction of hydroxy acids with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 1999, 33(3), 339-344.
[http://dx.doi.org/10.1023/A:1008094702632]
[32]
Messner, M.; Kurkov, S.V.; Jansook, P.; Loftsson, T. Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm., 2010, 387(1-2), 199-208.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.035] [PMID: 19963052]
[33]
Messner, M.; Kurkov, S.V.; Flavià-Piera, R.; Brewster, M.E.; Loftsson, T. Self-assembly of cyclodextrins: The effect of the guest molecule. Int. J. Pharm., 2011, 408(1-2), 235-247.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.008] [PMID: 21316429]
[34]
Loh, G.O.K.; Tan, Y.T.F.; Peh, K-K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. asian. J. Pharm. Sci., 2016, 11(4), 536-546.
[35]
Ross, D.L.; Riley, C.M. Physicochemical properties of the fluoroquinolone antimicrobials. III. complexation of lomefloxacin with various metal ions and the effect of metal ion complexation on aqueous solubility. Int. J. Pharm., 1992, 87, 203-213.
[http://dx.doi.org/10.1016/0378-5173(92)90244-V]
[36]
Okimoto, K.; Rajewski, R.A.; Uekama, K.; Jona, J.A.; Stella, V.J. The interaction of charged and uncharged drugs with neutral (HP-β-CD) and anionically charged (SBE7-β-CD) β-cyclodextrins. Pharm. Res., 1996, 13(2), 256-264.
[http://dx.doi.org/10.1023/A:1016047215907] [PMID: 8932446]
[37]
Kim, Y.; Oksanen, D.A.; Massefski, W., Jr; Blake, J.F.; Duffy, E.M.; Chrunyk, B. Inclusion complexation of ziprasidone mesylate with beta-cyclodextrin sulfobutyl ether. J. Pharm. Sci., 1998, 87(12), 1560-1567.
[http://dx.doi.org/10.1021/js980109t] [PMID: 10189267]
[38]
Budhwar, V. Cyclodextrin complexes: an approach to improve the physicochemical properties of drugs and applications of cyclodextrin complexes. Asian J. Pharm. Asian J. Pharm., 2018, 12(02)
[39]
Pereva, S.; Sarafska, T.; Bogdanova, S.; Spassov, T. Efficiency of “Cyclodextrin-Ibuprofen” inclusion complex formation. J. Drug Deliv. Sci. Technol., 2016, 35, 34-39.
[http://dx.doi.org/10.1016/j.jddst.2016.04.006]
[40]
Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2014, 59(1), 247-255.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[41]
Ünlüsayin, M.; Hădărugă, N.G.; Rusu, G.; Gruia, A.T.; Păunescu, V.; Hădărugă, D.I. Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and karl fischer water titration for european anchovy (Engraulis Encrasicolus L.) oil/β-cyclodextrin complexes. Lebensm. Wiss. Technol., 2016, 68, 135-144.
[http://dx.doi.org/10.1016/j.lwt.2015.12.017]
[42]
Hirayama, F.; Uekama, K. Methods of investigating and preparing inclusion compounds. Chem. Inform., 1990.
[43]
Duchěne, D.; Wouessidjewe, D. Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev. Ind. Pharm., 1990, 16(17), 2487-2499.
[http://dx.doi.org/10.3109/03639049009058543]
[44]
Mennini, N.; Maestrelli, F.; Cirri, M.; Mura, P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility. J. Pharm. Biomed. Anal., 2016, 129, 350-358.
[http://dx.doi.org/10.1016/j.jpba.2016.07.024] [PMID: 27454086]
[45]
Cao, H.; Jiang, Y.; Zhang, H.; Nie, K.; Lei, M.; Deng, L.; Wang, F.; Tan, T. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzyme Microb. Technol., 2017, 96, 157-162.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.007] [PMID: 27871377]
[46]
Bratu, I.; Hernanz, A.; Gavira, J.M.; Bora, G.H. FT-IR Spectroscopy of inclusion complexes of beta-cyclodextrin with fenbufen and ibuprofen. Rom. J. Phys., 2005, 50(9/10), 1063.
[47]
Shrestha, M.; Ho, T.M.; Bhandari, B.R. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem., 2017, 221, 1474-1483.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.003] [PMID: 27979118]
[48]
Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J., Jr; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S., Jr; Nunes, P.S. Interaction of p-cymene with β-cyclodextrin. J. Therm. Anal. Calorim., 2001.
[49]
Junco, S.; Casimiro, T.; Ribeiro, N.; Da Ponte, M.N.; Marques, H.C. A Comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem., 2002, 44(1-4), 117-121.
[http://dx.doi.org/10.1023/A:1023022008337]
[50]
Aiassa, V.; Zoppi, A.; Becerra, M.C.; Albesa, I.; Longhi, M.R. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol: β-cyclodextrin: N-acetylcysteine complex. Carbohydr. Polym., 2016, 152, 672-678.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.013] [PMID: 27516318]
[51]
Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem., 2004, 39(9), 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[52]
Miletic, T.; Kyriakos, K.; Graovac, A.; Ibric, S. Spray-dried voriconazole-cyclodextrin complexes: Solubility, dissolution rate and chemical stability. Carbohydr. Polym., 2013, 98(1), 122-131.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.084] [PMID: 23987325]
[53]
Cheirsilp, B.; Rakmai, J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol. Eng. Med., 2016, 2(1), 1-6.
[54]
Thiry, J.; Krier, F.; Ratwatte, S.; Thomassin, J-M.; Jerome, C.; Evrard, B. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur. J. Pharm. Sci., 2017, 96, 590-597.
[http://dx.doi.org/10.1016/j.ejps.2016.09.032] [PMID: 27687637]
[55]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[56]
Lipinski, C.A. Avoiding investment in doomed drugs. Curr Drug Discov, 2001, 1, 17-19.
[57]
Prentis, R.A.; Lis, Y.; Walker, S.R. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br. J. Clin. Pharmacol., 1988, 25(3), 387-396.
[http://dx.doi.org/10.1111/j.1365-2125.1988.tb03318.x] [PMID: 3358900]
[58]
Vromans, H.; Pauletti, G. Product Design. Practical Pharmaceutics; Springer, 2015, pp. 347-356.
[http://dx.doi.org/10.1007/978-3-319-15814-3_17]
[59]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[60]
Higuchi, T. A phase solubility technique. Adv. Anal. Chem. Instrum., 1965, 4, 117-211.
[61]
Loftsson, T. Drug permeation through biomembranes: Cyclodextrins and the unstirred water layer. Pharmazie, 2012, 67(5), 363-370.
[PMID: 22764564]
[62]
Loftsson, T.; Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Concheiro, A. Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J. Pharm. Pharmacol., 2016, 68(5), 544-555.
[http://dx.doi.org/10.1111/jphp.12427] [PMID: 26059798]
[63]
Leong, N.J.; Prankerd, R.J.; Shackleford, D.M.; Mcintosh, M.P. The effect of intravenous sulfobutylether7 -β-cyclodextrin on the pharmacokinetics of a series of adamantane-containing compounds. J. Pharm. Sci., 2015, 104(4), 1492-1498.
[http://dx.doi.org/10.1002/jps.24331] [PMID: 25573540]
[64]
Naguib, M.; Brull, S.J. Sugammadex: A novel selective relaxant binding agent. Expert Rev. Clin. Pharmacol., 2009, 2(1), 37-53.
[http://dx.doi.org/10.1586/17512433.2.1.37] [PMID: 24422770]
[65]
Brewster, M.E.; Simpkins, J.W.; Hora, M.S.; Stern, W.C.; Bodor, N. The potential use of cyclodextrins in parenteral formulations. J. Parenter. Sci. Technol., 1989, 43(5), 231-240.
[PMID: 2681643]
[66]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol., 2010, 62(11), 1607-1621.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01030.x] [PMID: 21039545]
[68]
Loftsson, T.; Stefánsson, E. Cyclodextrins in eye drop formulations: Enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol. Scand., 2002, 80(2), 144-150.
[http://dx.doi.org/10.1034/j.1600-0420.2002.800205.x] [PMID: 11952479]
[69]
Ventura, C.A.; Giannone, I.; Musumeci, T.; Pignatello, R.; Ragni, L.; Landolfi, C.; Milanese, C.; Paolino, D.; Puglisi, G. Physico- chemical characterization of disoxaril-dimethyl-β-cyclodextrin inclusion complex and in vitro permeation studies. Eur. J. Med. Chem., 2006, 41(2), 233-240.
[http://dx.doi.org/10.1016/j.ejmech.2005.11.002] [PMID: 16387393]
[70]
Irie, T.; Otagiri, M.; Sunada, M.; Uekama, K.; Ohtani, Y.; Yamada, Y.; Sugiyama, Y. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn., 1982, 5(9), 741-744.
[http://dx.doi.org/10.1248/bpb1978.5.741] [PMID: 7153847]
[71]
Fauvelle, F.; Debouzy, J.C.; Crouzy, S.; Göschl, M.; Chapron, Y. Mechanism of α-cyclodextrin-induced hemolysis. 1. The two-step extraction of phosphatidylinositol from the membrane. J. Pharm. Sci., 1997, 86(8), 935-943.
[http://dx.doi.org/10.1021/js9602453] [PMID: 9269872]
[72]
Szejtli, J. Past, present and futute of cyclodextrin research. Pure Appl. Chem., 2004, 76(10), 1825-1845.
[http://dx.doi.org/10.1351/pac200476101825]
[73]
Gniadecki, R. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem. Biophys. Res. Commun., 2004, 320(1), 165-169.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.145] [PMID: 15207716]
[74]
Onodera, R.; Motoyama, K.; Okamatsu, A.; Higashi, T.; Kariya, R.; Okada, S.; Arima, H. Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin. Int. J. Pharm., 2013, 452(1-2), 116-123.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.071] [PMID: 23684659]
[75]
Motoyama, K.; Kameyama, K.; Onodera, R.; Araki, N.; Hirayama, F.; Uekama, K.; Arima, H. Involvement of PI3K-Akt-Bad pathway in apoptosis induced by 2,6-di-O-methyl-β-cyclodextrin, not 2,6-di-O-methyl-α-cyclodextrin, through cholesterol depletion from lipid rafts on plasma membranes in cells. Eur. J. Pharm. Sci., 2009, 38(3), 249-261.
[http://dx.doi.org/10.1016/j.ejps.2009.07.010] [PMID: 19664706]
[76]
Grosse, P.Y.; Bressolle, F.; Pinguet, F. Antiproliferative effect of methyl-β-cyclodextrin in vitro and in human tumour xenografted athymic nude mice. Br. J. Cancer, 1998, 78(9), 1165-1169.
[http://dx.doi.org/10.1038/bjc.1998.648] [PMID: 9820174]
[77]
Onodera, R.; Motoyama, K.; Arima, H. Design and evaluation of folate-appended Methyl-β-Cyclodextrin as a new antitumor agent. J. Incl. Phenom. Macrocycl. Chem., 2011, 70(3-4), 321-326.
[http://dx.doi.org/10.1007/s10847-010-9843-z]
[78]
Onodera, R.; Motoyama, K.; Okamatsu, A.; Higashi, T.; Arima, H. Potential use of folate-appended methyl-β-cyclodextrin as an anticancer agent. Sci. Rep., 2013, 3, 1104.
[http://dx.doi.org/10.1038/srep01104] [PMID: 23346361]
[79]
Yokoo, M.; Kubota, Y.; Motoyama, K.; Higashi, T.; Taniyoshi, M.; Tokumaru, H.; Nishiyama, R.; Tabe, Y.; Mochinaga, S.; Sato, A.; Sueoka-Aragane, N.; Sueoka, E.; Arima, H.; Irie, T.; Kimura, S. 2-hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. PLoS One, 2015, 10(11), e0141946.
[http://dx.doi.org/10.1371/journal.pone.0141946] [PMID: 26535909]
[80]
Frömming, K-H.; Szejtli, J. Pharmacokinetics and toxicology of cyclodextrins. Cyclodextrins in Pharmacy; Springer, 1994, pp. 33-44.
[http://dx.doi.org/10.1007/978-94-015-8277-3_3]
[81]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. In Cyclodextrins in Pharmacy; Springer, 2015, 33-44.
[http://dx.doi.org/10.1155/2015/198268]
[82]
Shahiwala, A. Cyclodextrin conjugates for colon drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101448.
[http://dx.doi.org/10.1016/j.jddst.2019.101448]
[83]
Popiołek, I.; Niziołek, A.; Kamiński, K.; Kwolek, U.; Nowakowska, M.; Szczubiałka, K. Cellular delivery and enhanced anticancer activity of berberine complexed with a cationic derivative of γ-cyclodextrin. Bioorg. Med. Chem., 2019, 27(7), 1414-1420.
[http://dx.doi.org/10.1016/j.bmc.2019.02.042] [PMID: 30808605]
[84]
Kim, C.; Jeong, D.; Kim, S.; Kim, Y.; Jung, S. Cyclodextrin functionalized agarose gel with low gelling temperature for controlled drug delivery systems. Carbohydr. Polym., 2019, 222, 115011.
[http://dx.doi.org/10.1016/j.carbpol.2019.115011] [PMID: 31320040]
[85]
Gazzano, E.; Rolando, B.; Chegaev, K.; Salaroglio, I.C.; Kopecka, J.; Pedrini, I.; Saponara, S.; Sorge, M.; Buondonno, I.; Stella, B.; Marengo, A.; Valoti, M.; Brancaccio, M.; Fruttero, R.; Gasco, A.; Arpicco, S.; Riganti, C. Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J. Control. Release, 2018, 270, 37-52.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.042] [PMID: 29191785]
[86]
Yan, C.; Liang, N.; Li, Q.; Yan, P.; Sun, S. Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr. Polym., 2019, 216, 129-139.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.024] [PMID: 31047049]
[87]
Salústio, P.J.; Cabral-Marques, H.M.; Costa, P.C.; Pinto, J.F. Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-cyclodextrin complex. Eur. J. Pharm. Biopharm., 2011, 78(1), 58-66.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.022] [PMID: 21195175]
[88]
Bonelli, P.; Tuccillo, F.M.; Calemma, R.; Pezzetti, F.; Borrelli, A.; Martinelli, R.; De Rosa, A.; Esposito, D.; Palaia, R.; Castello, G. Changes in the gene expression profile of gastric cancer cells in response to ibuprofen: A gene pathway analysis. Pharmacogenom. J., 2011, 11(6), 412-428.
[http://dx.doi.org/10.1038/tpj.2010.55] [PMID: 20548326]
[89]
Praphakar, R.A.; Jeyaraj, M.; Mehnath, S.; Higuchi, A.; Ponnamma, D.; Sadasivuni, K.K.; Rajan, M. A pH-sensitive guar gum- grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J. Mater. Chem. B. Mater. Biol. Med., 2018, 6(10), 1519-1530.
[http://dx.doi.org/10.1039/C7TB02551C] [PMID: 32254216]
[90]
Erdoğar, N.; Esendağlı, G.; Nielsen, T.T.; Esendağlı-Yılmaz, G.; Yöyen-Ermiş, D.; Erdoğdu, B.; Sargon, M.F.; Eroğlu, H.; Bilensoy, E. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J. Drug Target., 2018, 26(1), 66-74.
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[91]
Elamin, K.M.; Yamashita, Y.; Motoyama, K.; Higashi, T.; Arima, H. Involvement of mitophagy-mediated cell death in colon cancer cells by folate-appended methyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2017, 89(3-4), 333-342.
[http://dx.doi.org/10.1007/s10847-017-0757-x]
[92]
Fan, W.; Xu, Y.; Li, Z.; Li, Q. Folic acid-modified β-cyclodextrin nanoparticles as drug delivery to load dox for liver cancer therapeutics. Soft Mater., 2019, 17(4), 437-447.
[http://dx.doi.org/10.1080/1539445X.2019.1624265]
[93]
Hsu, Y-H.; Hsieh, H-L.; Viswanathan, G.; Voon, S.H.; Kue, C.S.; Saw, W.S.; Yeong, C.H.; Azlan, C.A.; Imae, T.; Kiew, L.V. Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. J. Nanopart. Res., 2017, 19(11), 359.
[http://dx.doi.org/10.1007/s11051-017-4054-9]
[94]
Tan, J.; Meng, N.; Fan, Y.; Su, Y.; Zhang, M.; Xiao, Y.; Zhou, N. Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: Carriers for anti-cancer drugs. Mater. Sci. Eng. C, 2016, 61, 681-687.
[http://dx.doi.org/10.1016/j.msec.2015.12.098] [PMID: 26838897]
[95]
Liu, T.; Xue, W.; Ke, B.; Xie, M-Q.; Ma, D. Star-shaped cyclodextrin-poly(l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials, 2014, 35(12), 3865-3872.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.040] [PMID: 24486215]
[96]
Siriviriyanun, A.; Tsai, Y-J.; Voon, S.H.; Kiew, S.F.; Imae, T.; Kiew, L.V.; Looi, C.Y.; Wong, W.F.; Lee, H.B.; Chung, L.Y. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater. Sci. Eng. C, 2018, 89, 307-315.
[http://dx.doi.org/10.1016/j.msec.2018.04.020] [PMID: 29752102]
[97]
Lee, S.Y.; Ko, S-H.; Shim, J-S.; Kim, D-D.; Cho, H-J. Tumor targeting and lipid rafts disrupting hyaluronic acid-cyclodextrin-based nanoassembled structure for cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(43), 36628-36640.
[http://dx.doi.org/10.1021/acsami.8b08243] [PMID: 30298719]
[98]
Reis, C.A.; Rodrigues, C.F.; Moreira, A.F.; Jacinto, T.A.; Ferreira, P.; Correia, I.J. Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline and β-cyclodextrin aimed for cancer therapy. Mater. Sci. Eng. C, 2019, 98, 960-968.
[http://dx.doi.org/10.1016/j.msec.2019.01.068] [PMID: 30813103]
[99]
Shelley, H.; Babu, R.J. Role of cyclodextrins in nanoparticle-based drug delivery systems. J. Pharm. Sci., 2018, 107(7), 1741-1753.
[http://dx.doi.org/10.1016/j.xphs.2018.03.021] [PMID: 29625157]
[100]
Lakkakula, J.R.; Maçedo, K.R.W. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond.), 2014, 9(6), 877-894.
[http://dx.doi.org/10.2217/nnm.14.41] [PMID: 24981652]
[101]
Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des., 2016, 22(10), 1371-1390.
[http://dx.doi.org/10.2174/1381612822666160125114900] [PMID: 26806342]
[102]
Nishida, K.; Tamura, A.; Kang, T.W.; Masuda, H.; Yui, N. An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated β-cyclodextrin-threaded polyrotaxanes. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6975-6987.
[http://dx.doi.org/10.1039/D0TB00575D] [PMID: 32573639]
[103]
Thiabaud, G.; Harden-Bull, L.; Ghang, Y-J.; Sen, S.; Chi, X.; Bachman, J.L.; Lynch, V.M.; Siddik, Z.H.; Sessler, J.L. Platinum(IV)-ferrocene conjugates and their cyclodextrin host-guest complexes. Inorg. Chem., 2019, 58(12), 7886-7894.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00570] [PMID: 31125214]
[104]
Banfić, J.; Legin, A.A.; Jakupec, M.A.; Galanski, M.; Keppler, B.K. Platinum (IV) complexes featuring one or two axial ferrocene bearing ligands-synthesis, characterization, and cytotoxicity. Eur. J. Inorg. Chem., 2014, 2014(3), 484-492.
[http://dx.doi.org/10.1002/ejic.201301282]
[105]
Jana, B.; Mohapatra, S.; Mondal, P.; Barman, S.; Pradhan, K.; Saha, A.; Ghosh, S. α-cyclodextrin interacts close to vinblastine site of tubulin and delivers curcumin preferentially to the tubulin surface of cancer cell. ACS Appl. Mater. Interfaces, 2016, 8(22), 13793-13803.
[http://dx.doi.org/10.1021/acsami.6b03474] [PMID: 27228201]
[106]
Dandawate, P.R.; Vyas, A.; Ahmad, A.; Banerjee, S.; Deshpande, J.; Swamy, K.V.; Jamadar, A.; Dumhe-Klaire, A.C.; Padhye, S.; Sarkar, F.H. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm. Res., 2012, 29(7), 1775-1786.
[http://dx.doi.org/10.1007/s11095-012-0700-1] [PMID: 22322899]
[107]
Ndong Ntoutoume, G.M.A.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Lequart, V.; Joly, N.; Liagre, B.; Chaleix, V.; Sol, V. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg. Med. Chem. Lett., 2016, 26(3), 941-945.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060] [PMID: 26739777]
[108]
Rahman, S.; Cao, S.; Steadman, K.J.; Wei, M.; Parekh, H.S. Native and β-cyclodextrin-enclosed curcumin: Entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv., 2012, 19(7), 346-353.
[http://dx.doi.org/10.3109/10717544.2012.721143] [PMID: 23030405]
[109]
Zhang, L.; Man, S.; Qiu, H.; Liu, Z.; Zhang, M.; Ma, L.; Gao, W. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol., 2016, 48, 31-38.https://doi.org/https://doi.org/10.1016/j.etap.2016.09.021
[http://dx.doi.org/10.1016/j.etap.2016.09.021] [PMID: 27716533]
[110]
Patel, H.; Trivedi, M.; Maniar, M.; Ren, C.; Dave, R. Effect of β- cyclodextrin and hydroxypropyl β-cyclodextrin on aqueous stability, solubility and dissolution of novel anti-cancer drug rigosertib. J. Pharm. Res. Int., 2018, 21(3), 1-20.
[http://dx.doi.org/10.9734/JPRI/2018/39890]
[111]
Granet, R.; Faure, R.; Ndong Ntoutoume, G.M.A.; Mbakidi, J.P.; Leger, D.Y.; Liagre, B.; Sol, V. Enhanced cytotoxicity of gold porphyrin complexes after inclusion in cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles. Bioorg. Med. Chem. Lett., 2019, 29(9), 1065-1068.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.003] [PMID: 30852085]
[112]
Lu, S.; Wang, A.; Ma, Y.J.; Xuan, H.Y.; Zhao, B.; Li, X.D.; Zhou, J.H.; Zhou, L.; Wei, S.H. Cyclodextrin type dependent host-guest interaction mode with phthalocyanine and their influence on photodynamic activity to cancer. Carbohydr. Polym., 2016, 148, 236-242.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.062] [PMID: 27185136]
[113]
Shen, Q.; Shen, Y.; Jin, F.; Du, Y.Z.; Ying, X.Y. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J. Liposome Res., 2020, 30(1), 12-20.
[http://dx.doi.org/10.1080/08982104.2019.1579838] [PMID: 30741058]
[114]
Bilensoy, E.; Cırpanlı, Y.; Şen, M.; Doğan, A.L.; Çalış, S. Thermosensitive Mucoadhesive Gel Formulation Loaded with 5-Fu: Cyclodextrin complex for hpv-induced cervical cancer. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1-4), 363-370.
[http://dx.doi.org/10.1007/s10847-006-9259-y]
[115]
Gidwani, B.; Vyas, A. Formulation, characterization and evaluation of cyclodextrin-complexed bendamustine-encapsulated PLGA nanospheres for sustained delivery in cancer treatment. Pharm. Dev. Technol., 2016, 21(2), 161-171.
[http://dx.doi.org/10.3109/10837450.2014.979945] [PMID: 25391288]
[116]
Vaidya, B.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Damon, J.K.; Sarode, A.; Kanabar, D.; Garcia, J.V.; Mitragotri, S.; Muth, A.; Gupta, V. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2019, 122, 338-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.181] [PMID: 30401652]
[117]
Marslin, G.; Sheeba, C.J.; Kalaichelvan, V.K.; Manavalan, R.; Reddy, P.N.; Franklin, G. Poly(D,L-lactic-co-glycolic acid) nanoencapsulation reduces Erlotinib-induced subacute toxicity in rat. J. Biomed. Nanotechnol., 2009, 5(5), 464-471.
[http://dx.doi.org/10.1166/jbn.2009.1075] [PMID: 20201419]
[118]
Gupta, V.; Rawat, A.; Ahsan, F. Feasibility study of aerosolized prostaglandin E1 microspheres as a noninvasive therapy for pulmonary arterial hypertension. J. Pharm. Sci., 2010, 99(4), 1774-1789.
[http://dx.doi.org/10.1002/jps.21946] [PMID: 19894275]
[119]
Guimaraes, P.P.G.; Tan, M.; Tammela, T.; Wu, K.; Chung, A.; Oberli, M.; Wang, K.; Spektor, R.; Riley, R.S.; Viana, C.T.R.; Jacks, T.; Langer, R.; Mitchell, M.J. Potent in vivo lung cancer Wnt signaling inhibitionvia cyclodextrin-LGK974 inclusion complexes. J. Control. Release, 2018, 290, 75-87.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.025] [PMID: 30290244]
[120]
Hu, S.C-S.; Lai, Y-C.; Lin, C-L.; Tzeng, W-S.; Yen, F-L. Inclusion complex of saikosaponin-d with hydroxypropyl-β-cyclodextrin: Improved physicochemical properties and anti-skin cancer activity. Phytomedicine, 2019, 57, 174-182.
[http://dx.doi.org/10.1016/j.phymed.2018.11.012] [PMID: 30776588]
[121]
Catchpole, O.; Mitchell, K.; Bloor, S.; Davis, P.; Suddes, A. Anti- gastrointestinal cancer activity of cyclodextrin-encapsulated propolis. J. Funct. Foods, 2018, 41, 1-8.
[http://dx.doi.org/10.1016/j.jff.2017.12.023]
[122]
Trindade, G.G.G.; Thrivikraman, G.; Menezes, P.P.; França, C.M.; Lima, B.S.; Carvalho, Y.M.B.G.; Souza, E.P.B.S.S.; Duarte, M.C.; Shanmugam, S.; Quintans-Júnior, L.J.; Bezerra, D.P.; Bertassoni, L.E.; Araújo, A.A.S. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem. Toxicol., 2019, 125, 198-209.
[http://dx.doi.org/10.1016/j.fct.2019.01.003] [PMID: 30615955]
[123]
Enoch, I.V.M.V.; Ramasamy, S.; Mohiyuddin, S.; Gopinath, P.; Manoharan, R. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Appl. Nanosci., 2018, 8(3), 273-284.
[http://dx.doi.org/10.1007/s13204-018-0798-5]
[124]
Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Ramazani, A.; Amanlou, M.; Khoobi, M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr. Polym., 2019, 213, 70-78.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.075] [PMID: 30879691]
[125]
Liang, W.; Yang, C.; Zhou, D.; Haneoka, H.; Nishijima, M.; Fukuhara, G.; Mori, T.; Castiglione, F.; Mele, A.; Caldera, F.; Trotta, F.; Inoue, Y. Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem. Commun. (Camb.), 2013, 49(34), 3510-3512.
[http://dx.doi.org/10.1039/c3cc40542g] [PMID: 23435387]
[126]
Bai, Y.; Liu, C.P.; Xie, F.Y.; Ma, R.; Zhuo, L.H.; Li, N.; Tian, W. Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB2-type macromonomer and their application in the drug delivery field. Carbohydr. Polym., 2019, 213, 411-418.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.017] [PMID: 30879686]
[127]
Huan, X.; Wang, D.; Dong, R.; Tu, C.; Zhu, B.; Yan, D.; Zhu, X. Supramolecular ABC miktoarm star terpolymer based on host-guest inclusion complexation. Macromolecules, 2012, 45(15), 5941-5947.
[http://dx.doi.org/10.1021/ma300693h]
[128]
Durmaz, Y.Y.; Lin, Y.; ElSayed, M.E.H. Development of Degradable, PH‐sensitive star vectors for enhancing the cytoplasmic delivery of nucleic acids. Adv. Funct. Mater., 2013, 23(31), 3885-3895.
[http://dx.doi.org/10.1002/adfm.201203762]
[129]
Iannazzo, D.; Mazzaglia, A.; Scala, A.; Pistone, A.; Galvagno, S.; Lanza, M.; Riccucci, C.; Ingo, G.M.; Colao, I.; Sciortino, M.T.; Valle, F.; Piperno, A.; Grassi, G. β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs. Colloids Surf. B Biointerfaces, 2014, 123, 264-270.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.025] [PMID: 25300473]
[130]
Liu, H.; Chen, J.; Li, X.; Deng, Z.; Gao, P.; Li, J.; Ren, T.; Huang, L.; Yang, Y.; Zhong, S. Amphipathic β-cyclodextrin nanocarriers serve as intelligent delivery platform for anticancer drug. Colloids Surf. B Biointerfaces, 2019, 180, 429-440.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.011] [PMID: 31085461]
[131]
Xue, Q.; Ye, C.; Zhang, M.; Hu, X.; Cai, T. Glutathione responsive cubic gel particles cyclodextrin metal-organic frameworks for intracellular drug delivery. J. Colloid Interface Sci., 2019, 551, 39-46.
[http://dx.doi.org/10.1016/j.jcis.2019.04.096] [PMID: 31075632]
[132]
Gu, W-X.; Zhu, M.; Song, N.; Du, X.; Yang, Y-W.; Gao, H. Reverse micelles based on biocompatible β-cyclodextrin conjugated polyethylene glycol block polylactide for protein delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(2), 316-322.
[http://dx.doi.org/10.1039/C4TB01351D] [PMID: 32261952]
[133]
Bai, S.; Hou, M.; Shi, X.; Chen, J.; Ma, X.; Gao, Y-E.; Wang, Y.; Xue, P.; Kang, Y.; Xu, Z. Reduction-active polymeric prodrug micelles based on α-cyclodextrin polyrotaxanes for triggered drug release and enhanced cancer therapy. Carbohydr. Polym., 2018, 193, 153-162.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.097] [PMID: 29773367]
[134]
Cui, X.; Wang, N.; Wang, H.; Li, G.; Tao, Q. PH sensitive supramolecular vesicles from cyclodextrin graft copolymer and benzimidazole ended block copolymer as dual drug carriers. Int. J. Polym. Mater. Polym. Biomater., 2019, 68(12), 733-740.
[http://dx.doi.org/10.1080/00914037.2018.1493686]
[135]
Yang, T.; Du, G.; Cui, Y.; Yu, R.; Hua, C.; Tian, W.; Zhang, Y. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int. J. Nanomed., 2019, 14, 1997-2010.
[http://dx.doi.org/10.2147/IJN.S193170] [PMID: 30962684]
[136]
Correia, A.; Shahbazi, M-A.; Mäkilä, E.; Almeida, S.; Salonen, J.; Hirvonen, J.; Santos, H.A. Cyclodextrin-modified porous silicon nanoparticles for efficient sustained drug delivery and proliferation inhibition of breast cancer cells. ACS Appl. Mater. Interfaces, 2015, 7(41), 23197-23204.
[http://dx.doi.org/10.1021/acsami.5b07033] [PMID: 26440739]
[137]
Qiu, J.; Kong, L.; Cao, X.; Li, A.; Tan, H.; Shi, X. Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Advances, 2016, 6(31), 25633-25640.
[http://dx.doi.org/10.1039/C6RA03839E]
[138]
Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci., 1997, 86(2), 147-162.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[139]
Background Review for Cyclodextrins Used as Excipients; European Medicines Agency: United Kingdom, 2014.
[140]
Flourié, B.; Molis, C.; Achour, L.; Dupas, H.; Hatat, C.; Rambaud, J.C. Fate of β-cyclodextrin in the human intestine. J. Nutr., 1993, 123(4), 676-680.
[http://dx.doi.org/10.1093/jn/123.4.676] [PMID: 8463868]
[141]
Hoover, R.K.; Alcorn, H., Jr; Lawrence, L.; Paulson, S.K.; Quintas, M.; Luke, D.R.; Cammarata, S.K. Clinical pharmacokinetics of sulfobutylether-β-cyclodextrin in patients with varying degrees of renal impairment. J. Clin. Pharmacol., 2018, 58(6), 814-822.
[http://dx.doi.org/10.1002/jcph.1077] [PMID: 29578585]
[142]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007] [PMID: 16018907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy