Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

淀粉样蛋白阳性与淀粉样蛋白阴性临床诊断为阿尔茨海默病和遗忘性轻度认知障碍患者的临床、神经心理学和神经影像学特征

卷 18, 期 6, 2021

发表于: 01 October, 2021

页: [523 - 532] 页: 10

弟呕挨: 10.2174/1567205018666211001113349

open access plus

摘要

背景:临床诊断为阿尔茨海默病 (AD) 的很大一部分患者和更高比例的遗忘型轻度认知障碍 (aMCI) 患者在使用淀粉样蛋白结合示踪剂的正电子发射断层扫描 (PET) 上未显示淀粉样蛋白沉积的证据,例如作为 11C 标记的匹兹堡化合物 B (PiB)。 目的:本研究旨在确定可能提示临床疑似 AD 或 aMCI 患者出现淀粉样蛋白神经病理学的临床、神经心理学和神经影像学因素。 方法:包括在我们的记忆诊所临床诊断并进行 PiB PET 扫描的 40 名轻度至中度 AD 患者和 23 名 aMCI 患者。比较 PiB 阳性和阴性 PET 结果患者的临床、神经心理学和影像学特征,例如 MRI 上的内侧颞叶萎缩 (MTA) 和白质高信号 (WMH) 以及 18F 标记的氟脱氧葡萄糖 (FDG) PET 上的代谢模式分别用于 AD、aMCI 和所有科目的组合。 结果:与 PiB 阳性患者相比,PiB 阴性患者有更高的高血压病史,在简易精神状态检查、Rey 听觉语言学习测试和线路定向判断方面的表现更好,MTA 得分较低,并且在 FDG PET 上不太可能出现颞顶为主的低代谢。在诊断为 AD 的 PiB 阴性患者中,情感症状不太常见,而在诊断为 aMCI 的 PiB 阴性患者中,动物流畅性测试得分较高。 结论:在临床诊断为 AD 或 aMCI 的患者中,没有高血压病史、语言学习和记忆缺陷、视觉空间功能、语义语言流畅性、情感症状的存在、MRI 上的 MTA 和 FDG PET 上的颞顶代谢减退提示淀粉样蛋白沉积在大脑中。

关键词: 阿尔茨海默病、遗忘性轻度认知障碍、淀粉样蛋白 PET、PiB、认知功能、神经精神症状、内侧颞叶萎缩、FDG PET。

« Previous
[1]
GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s Disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2016; 18: 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4]
[2]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[3]
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 2014; 13(6): 614-29.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[4]
Nordberg A, Carter SF, Rinne J, et al. A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2013; 40(1): 104-14.
[http://dx.doi.org/10.1007/s00259-012-2237-2] [PMID: 22961445]
[5]
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55(3): 306-19.
[http://dx.doi.org/10.1002/ana.20009] [PMID: 14991808]
[6]
Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes: A meta-analysis. JAMA 2015; 313(19): 1939-49.
[http://dx.doi.org/10.1001/jama.2015.4669] [PMID: 25988463]
[7]
Jagust WJ, Bandy D, Chen K, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement 2010; 6(3): 221-9.
[http://dx.doi.org/10.1016/j.jalz.2010.03.003] [PMID: 20451870]
[8]
Chételat G, Ossenkoppele R, Villemagne VL, et al. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer’s disease. Brain 2016; 139(Pt 9): 2528-39.
[http://dx.doi.org/10.1093/brain/aww159] [PMID: 27357349]
[9]
Ossenkoppele R, Prins ND, Pijnenburg YA, et al. Impact of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement 2013; 9(4): 414-21.
[http://dx.doi.org/10.1016/j.jalz.2012.07.003] [PMID: 23164552]
[10]
Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 2009; 65(5): 557-68.
[http://dx.doi.org/10.1002/ana.21598] [PMID: 19475670]
[11]
Rabinovici GD, Gatsonis C, Apgar C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA 2019; 321(13): 1286-94.
[http://dx.doi.org/10.1001/jama.2019.2000] [PMID: 30938796]
[12]
Boccardi M, Altomare D, Ferrari C, et al. Assessment of the incremental diagnostic value of florbetapir F 18 imaging in patients with cognitive impairment: The incremental diagnostic value of amyloid PET with [18F]-Florbetapir (INDIA-FBP) study. JAMA Neurol 2016; 73(12): 1417-24.
[http://dx.doi.org/10.1001/jamaneurol.2016.3751] [PMID: 27802513]
[13]
Whitwell JL, Przybelski SA, Weigand SD, et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 2007; 130(Pt 7): 1777-86.
[http://dx.doi.org/10.1093/brain/awm112] [PMID: 17533169]
[14]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[15]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183-94.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x] [PMID: 15324362]
[16]
Wang Y, Shi Z, Zhang N, et al. Spatial patterns of hypometabolism and amyloid deposition in variants of Alzheimer’s disease corresponding to brain networks: A prospective cohort study. Mol Imaging Biol 2019; 21(1): 140-8.
[http://dx.doi.org/10.1007/s11307-018-1219-6] [PMID: 29869063]
[17]
Zhang N, Zhang L, Li Y, et al. Urine AD7c-NTP predicts amyloid deposition and symptom of agitation in patients with Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 2017; 60(1): 87-95.
[http://dx.doi.org/10.3233/JAD-170383] [PMID: 28777752]
[18]
Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 2016; 30: 73-84.
[http://dx.doi.org/10.1016/j.arr.2016.02.003] [PMID: 26876244]
[19]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[20]
Rey A. L’examen clinique in psychologie. Paris: Presses Universitaire de France 1964.
[21]
Benton AL, Varney NR, Hamsher KD. Visuospatial judgment. A clinical test. Arch Neurol 1978; 35(6): 364-7.
[http://dx.doi.org/10.1001/archneur.1978.00500300038006] [PMID: 655909]
[22]
Rosen WG. Verbal fluency in aging and dementia. J Clin Neuropsychol 1980; 2: 135-46.
[http://dx.doi.org/10.1080/01688638008403788]
[23]
Kaplan EF, Goodglass H, Weintraub S. The Boston Naming Test. 2nd ed. Philadelphia: Lea & Febiger 1983.
[24]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14.
[http://dx.doi.org/10.1212/WNL.44.12.2308] [PMID: 7991117]
[25]
Liew TM. Symptom clusters of neuropsychiatric symptoms in mild cognitive impairment and their comparative risks of dementia: A cohort study of 8530 older persons. J Am Med Dir Assoc 2019; 20(8): 1054.e1-9.
[http://dx.doi.org/10.1016/j.jamda.2019.02.012] [PMID: 30926409]
[26]
Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55(10): 967-72.
[http://dx.doi.org/10.1136/jnnp.55.10.967] [PMID: 1431963]
[27]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[28]
Landau SM, Horng A, Fero A, Jagust WJ. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 2016; 86(15): 1377-85.
[http://dx.doi.org/10.1212/WNL.0000000000002576] [PMID: 26968515]
[29]
Gottesman RF, Albert MS, Alonso A, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the atherosclerosis risk in communities (ARIC) cohort. JAMA Neurol 2017; 74(10): 1246-54.
[http://dx.doi.org/10.1001/jamaneurol.2017.1658] [PMID: 28783817]
[30]
Javanshiri K, Waldö ML, Friberg N, et al. Atherosclerosis, hypertension, and diabetes in Alzheimer’s disease, vascular dementia, and mixed dementia: Prevalence and presentation. J Alzheimers Dis 2018; 65(4): 1247-58.
[http://dx.doi.org/10.3233/JAD-180644] [PMID: 30149459]
[31]
Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in Hypertension. Circ Res 2019; 124(7): 1025-44.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313260] [PMID: 30920929]
[32]
Gottesman RF, Schneider AL, Zhou Y, et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 2017; 317(14): 1443-50.
[http://dx.doi.org/10.1001/jama.2017.3090] [PMID: 28399252]
[33]
Zhao Q, Guo Q, Liang X, et al. Auditory verbal learning test is superior to rey-osterrieth complex figure memory for predicting mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res 2015; 12(6): 520-6.
[http://dx.doi.org/10.2174/1567205012666150530202729] [PMID: 26027810]
[34]
Estévez-González A, Kulisevsky J, Boltes A, Otermín P, García-Sánchez C. Rey verbal learning test is a useful tool for differential diagnosis in the preclinical phase of Alzheimer’s disease: Comparison with mild cognitive impairment and normal aging. Int J Geriatr Psychiatry 2003; 18(11): 1021-8.
[http://dx.doi.org/10.1002/gps.1010] [PMID: 14618554]
[35]
Balthazar ML, Yasuda CL, Cendes F, Damasceno BP. Learning, retrieval, and recognition are compromised in aMCI and mild AD: Are distinct episodic memory processes mediated by the same anatomical structures? J Int Neuropsychol Soc 2010; 16(1): 205-9.
[http://dx.doi.org/10.1017/S1355617709990956] [PMID: 19835661]
[36]
Putcha D, Brickhouse M, Wolk DA, Dickerson BC. Fractionating the rey auditory verbal learning test: Distinct roles of large-scale cortical networks in prodromal Alzheimer’s disease. Neuropsychologia 2019; 129: 83-92.
[http://dx.doi.org/10.1016/j.neuropsychologia.2019.03.015] [PMID: 30930301]
[37]
Ricci M, Graef S, Blundo C, Miller LA. Using the rey auditory verbal learning test (RAVLT) to differentiate Alzheimer’s dementia and behavioural variant fronto-temporal dementia. Clin Neuropsychol 2012; 26(6): 926-41.
[http://dx.doi.org/10.1080/13854046.2012.704073] [PMID: 22809061]
[38]
Wolk DA, Dickerson BC. Fractionating verbal episodic memory in Alzheimer’s disease. Neuroimage 2011; 54(2): 1530-9.
[http://dx.doi.org/10.1016/j.neuroimage.2010.09.005] [PMID: 20832485]
[39]
Sutin AR, Stephan Y, Terracciano A. Verbal fluency and risk of dementia. Int J Geriatr Psychiatry 2019; 34(6): 863-7.
[http://dx.doi.org/10.1002/gps.5081] [PMID: 30729575]
[40]
Ska B, Poissant A, Joanette Y. Line orientation judgment in normal elderly and subjects with dementia of Alzheimer’s type. J Clin Exp Neuropsychol 1990; 12(5): 695-702.
[http://dx.doi.org/10.1080/01688639008401012] [PMID: 2258431]
[41]
Ismail Z, Smith EE, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement 2016; 12(2): 195-202.
[http://dx.doi.org/10.1016/j.jalz.2015.05.017] [PMID: 26096665]
[42]
Ruthirakuhan M, Herrmann N, Vieira D, Gallagher D, Lanctôt KL. The roles of apathy and depression in predicting Alzheimer disease: A longitudinal analysis in older adults with mild cognitive impairment. Am J Geriatr Psychiatry 2019; 27(8): 873-82.
[http://dx.doi.org/10.1016/j.jagp.2019.02.003] [PMID: 30910421]
[43]
Sugarman MA, Alosco ML, Tripodis Y, Steinberg EG, Stern RA. Neuropsychiatric symptoms and the diagnostic stability of mild cognitive impairment. J Alzheimers Dis 2018; 62(4): 1841-55.
[http://dx.doi.org/10.3233/JAD-170527] [PMID: 29614641]
[44]
Mori T, Shimada H, Shinotoh H, et al. Apathy correlates with prefrontal amyloid β deposition in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2014; 85(4): 449-55.
[http://dx.doi.org/10.1136/jnnp-2013-306110] [PMID: 24133289]
[45]
Johnson DK, Watts AS, Chapin BA, Anderson R, Burns JM. Neuropsychiatric profiles in dementia. Alzheimer Dis Assoc Disord 2011; 25(4): 326-32.
[http://dx.doi.org/10.1097/WAD.0b013e31820d89b6] [PMID: 22086220]
[46]
Tsuno N, Homma A. What is the association between depression and Alzheimer’s disease? Expert Rev Neurother 2009; 9(11): 1667-76.
[http://dx.doi.org/10.1586/ern.09.106] [PMID: 19903025]
[47]
Squire LR, Wixted JT. The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 2011; 34: 259-88.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113720] [PMID: 21456960]
[48]
Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734-46.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[49]
Harper L, Fumagalli GG, Barkhof F, et al. MRI visual rating scales in the diagnosis of dementia: Evaluation in 184 post-mortem confirmed cases. Brain 2016; 139(Pt 4): 1211-25.
[http://dx.doi.org/10.1093/brain/aww005] [PMID: 26936938]
[50]
Biesbroek JM, Weaver NA, Biessels GJ. Lesion location and cognitive impact of cerebral small vessel disease. Clin Sci (Lond) 2017; 131(8): 715-28.
[http://dx.doi.org/10.1042/CS20160452] [PMID: 28385827]
[51]
Lee S, Viqar F, Zimmerman ME, et al. White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network. Ann Neurol 2016; 79(6): 929-39.
[http://dx.doi.org/10.1002/ana.24647] [PMID: 27016429]
[52]
Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000; 41(11): 1920-8.
[PMID: 11079505]
[53]
Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 2001; 286(17): 2120-7.
[http://dx.doi.org/10.1001/jama.286.17.2120] [PMID: 11694153]
[54]
Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005; 46(10): 1625-32.
[PMID: 16204712]

© 2024 Bentham Science Publishers | Privacy Policy