Review Article

恩曲替尼:一种新的选择性酪氨酸激酶抑制剂,批准用于治疗患有NTRK融合阳性,复发性或晚期实体瘤的儿科和成人患者

卷 29, 期 15, 2022

发表于: 01 April, 2022

页: [2602 - 2616] 页: 15

弟呕挨: 10.2174/0929867328666210914121324

价格: $65

摘要

背景:恩曲替尼是一种高效的ATP竞争性和选择性酪氨酸激酶抑制剂 - Trk ABC,ALK和ROS1。它由罗氏公司开发,并于2019年在日本首次获得批准,用于治疗NTRK融合阳性,复发性或晚期实体瘤的儿科和成人患者。2019年8月,恩曲替尼加速获得美国FDA对这一适应症的批准。它也是第一个FDA批准的药物,旨在同时针对NTRK和ROS1。 目的:总结近期新批准的选择性酪氨酸激酶抑制剂恩曲替尼的合成、作用机制及临床试验。 方法:对新型高效小分子恩曲替尼的研究进行文献综述。 结论:基于三项临床研究(ALKA,STARTRK-1和STARTRK-2)的Entrectinib耐受性良好, 全性可控。它在与 NTRK 融合阳性或 ROS1+ NSCLC 相关的复发性或晚期实体瘤中诱导了具有临床意义的反应。而且它对中枢神经系统转移患者显示出实质性的疗效。

关键词: 恩曲替尼,茚达唑苯甲酰胺,Trk ABC,ALK,ROS1抑制剂,NTRK融合阳性肿瘤。

[1]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[2]
McDonell, L.M.; Kernohan, K.D.; Boycott, K.M.; Sawyer, S.L. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin. Hum. Mol. Genet., 2015, 24(R1), R60-R66.
[http://dx.doi.org/10.1093/hmg/ddv254] [PMID: 26152202]
[3]
Forbes, S.A.; Tang, G.; Bindal, N.; Bamford, S.; Dawson, E.; Cole, C.; Kok, C.Y.; Jia, M.; Ewing, R.; Menzies, A.; Teague, J.W.; Stratton, M.R.; Futreal, P.A. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res., 2010, 38(Database issue), D652-D657.
[http://dx.doi.org/10.1093/nar/gkp995] [PMID: 19906727]
[4]
Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther. Clin. Risk Manag., 2018, 14, 1247-1252.
[http://dx.doi.org/10.2147/TCRM.S147381] [PMID: 30050303]
[5]
Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol., 2019, 32(1), 147-153.
[http://dx.doi.org/10.1038/s41379-018-0118-3] [PMID: 30171197]
[6]
Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol., 2018, 15(12), 731-747.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[7]
Shaw, A.T.; Gandhi, L.; Gadgeel, S.; Riely, G.J.; Cetnar, J.; West, H.; Camidge, D.R.; Socinski, M.A.; Chiappori, A.; Mekhail, T.; Chao, B.H.; Borghaei, H.; Gold, K.A.; Zeaiter, A.; Bordogna, W.; Balas, B.; Puig, O.; Henschel, V.; Ou, S.I. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol., 2016, 17(2), 234-242.
[http://dx.doi.org/10.1016/S1470-2045(15)00488-X] [PMID: 26708155]
[8]
Aisner, D.L.; Nguyen, T.T.; Paskulin, D.D.; Le, A.T.; Haney, J.; Schulte, N.; Chionh, F.; Hardingham, J.; Mariadason, J.; Tebbutt, N.; Doebele, R.C.; Weickhardt, A.J.; Varella-Garcia, M. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res., 2014, 12(1), 111-118.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0479-T] [PMID: 24296758]
[9]
Uguen, A.; De Braekeleer, M. ROS1 fusions in cancer: a review. Future Oncol., 2016, 12(16), 1911-1928.
[http://dx.doi.org/10.2217/fon-2016-0050] [PMID: 27256160]
[10]
Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov., 2015, 5(1), 25-34.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0765] [PMID: 25527197]
[11]
Jiang, T.; Wang, G.; Liu, Y.; Feng, L.; Wang, M.; Liu, J.; Chen, Y.; Ouyang, L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B, 2021, 11(2), 355-372.
[http://dx.doi.org/10.1016/j.apsb.2020.05.004] [PMID: 33643817]
[12]
Ducray, S.P.; Natarajan, K.; Garland, G.D.; Turner, S.D.; Egger, G. The transcriptional roles of ALK fusion proteins in tumorigenesis. Cancers (Basel), 2019, 11(8), 1-23.
[http://dx.doi.org/10.3390/cancers11081074] [PMID: 31366041]
[13]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[14]
Drilon, A.; Jenkins, C.; Iyer, S.; Schoenfeld, A.; Keddy, C.; Davare, M.A. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat. Rev. Clin. Oncol., 2021, 18(1), 35-55.
[15]
Davare, M.A.; Saborowski, A.; Eide, C.A.; Tognon, C.; Smith, R.L.; Elferich, J.; Agarwal, A.; Tyner, J.W.; Shinde, U.P.; Lowe, S.W.; Druker, B.J. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19519-19524.
[http://dx.doi.org/10.1073/pnas.1319583110] [PMID: 24218589]
[16]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID: 22285168]
[17]
Sequist, L.V.; Yang, J.C.H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schuler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[http://dx.doi.org/10.1200/JCO.2012.44.2806] [PMID: 23816960]
[18]
Yan, W.; Lakkaniga, N.R.; Carlomagno, F.; Santoro, M.; McDonald, N.Q.; Lv, F.; Gunaganti, N.; Frett, B.; Li, H.Y. Insights into current tropomyosin receptor kinase (TRK) inhibitors: Development and clinical application. J. Med. Chem., 2019, 62(4), 1731-1760.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01092] [PMID: 30188734]
[19]
Cui, S.; Wang, Y.; Wang, Y.; Tang, X.; Ren, X.; Zhang, L.; Xu, Y.; Zhang, Z.; Zhang, Z.M.; Lu, X.; Ding, K. Design, synthesis and biological evaluation of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methylbenzamides as potent and selective pan-tropomyosin receptor kinase (TRK) inhibitors. Eur. J. Med. Chem., 2019, 179, 470-482.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.064] [PMID: 31271959]
[20]
Smith, B.D.; Kaufman, M.D.; Leary, C.B.; Turner, B.A.; Wise, S.C.; Ahn, Y.M.; Booth, R.J.; Caldwell, T.M.; Ensinger, C.L.; Hood, M.M.; Lu, W.P.; Patt, T.W.; Patt, W.C.; Rutkoski, T.J.; Samarakoon, T.; Telikepalli, H.; Vogeti, L.; Vogeti, S.; Yates, K.M.; Chun, L.; Stewart, L.J.; Clare, M.; Flynn, D.L. Altiratinib inhibits tumor growth, invasion, angiogenesis, and microenvironment-mediated drug resistance via balanced inhibition of MET, TIE2, and VEGFR2. Mol. Cancer Ther., 2015, 14(9), 2023-2034.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1105] [PMID: 26285778]
[21]
Patwardhan, P.P.; Ivy, K.S.; Musi, E.; de Stanchina, E.; Schwartz, G.K. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget, 2016, 7(4), 4093-4109.
[http://dx.doi.org/10.18632/oncotarget.6547] [PMID: 26675259]
[22]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[23]
Bernard-Gauthier, V.; Mossine, A.V.; Mahringer, A.; Aliaga, A.; Bailey, J.J.; Shao, X.; Stauff, J.; Arteaga, J.; Sherman, P.; Grand’Maison, M.; Rochon, P.L.; Wängler, B.; Wängler, C.; Bartenstein, P.; Kostikov, A.; Kaplan, D.R.; Fricker, G.; Rosa-Neto, P.; Scott, P.J.H.; Schirrmacher, R. Identification of [18F]TRACK, a Fluorine-18-Labeled Tropomyosin Receptor Kinase (Trk) Inhibitor for PET Imaging. J. Med. Chem., 2018, 61(4), 1737-1743.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01607] [PMID: 29257860]
[24]
Bernard-Gauthier, V.; Bailey, J.J.; Mossine, A.V.; Lindner, S.; Vomacka, L.; Aliaga, A.; Shao, X.; Quesada, C.A.; Sherman, P.; Mahringer, A.; Kostikov, A.; Grand’Maison, M.; Rosa-Neto, P.; Soucy, J.P.; Thiel, A.; Kaplan, D.R.; Fricker, G.; Wängler, B.; Bartenstein, P.; Schirrmacher, R.; Scott, P.J.H. A kinome-wide selective radiolabeled TrkB/C inhibitor for in vitro and in vivo neuroimaging: Synthesis, preclinical evaluation, and first-in-human. J. Med. Chem., 2017, 60(16), 6897-6910.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00396] [PMID: 28696690]
[25]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[26]
Zage, P.E.; Graham, T.C.; Zeng, L.; Fang, W.; Pien, C.; Thress, K.; Omer, C.; Brown, J.L.; Zweidler-McKay, P.A. The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer, 2011, 117(6), 1321-1391.
[http://dx.doi.org/10.1002/cncr.25674] [PMID: 20960503]
[27]
Shaw, A.T.; Yasothan, U.; Kirkpatrick, P. Crizotinib. Nat. Rev. Drug Discov., 2011, 10(12), 897-898.
[http://dx.doi.org/10.1038/nrd3600] [PMID: 22129984]
[28]
Dhillon, S.; Clark, M. Ceritinib: first global approval. Drugs, 2014, 74(11), 1285-1291.
[http://dx.doi.org/10.1007/s40265-014-0251-3] [PMID: 24980964]
[29]
Hida, T.; Nokihara, H.; Kondo, M.; Kim, Y.H.; Azuma, K.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; Imamura, F.; Hotta, K.; Watanabe, S.; Goto, K.; Satouchi, M.; Kozuki, T.; Shukuya, T.; Nakagawa, K.; Mitsudomi, T.; Yamamoto, N.; Asakawa, T.; Asabe, R.; Tanaka, T.; Tamura, T. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet, 2017, 390(10089), 29-39.
[http://dx.doi.org/10.1016/S0140-6736(17)30565-2] [PMID: 28501140]
[30]
Markham, A. Brigatinib: First Global Approval. Drugs, 2017, 77(10), 1131-1135.
[http://dx.doi.org/10.1007/s40265-017-0776-3] [PMID: 28597393]
[31]
Syed, Y.Y. Lorlatinib: First Global Approval. Drugs, 2019, 79(1), 93-98.
[http://dx.doi.org/10.1007/s40265-018-1041-0] [PMID: 30604291]
[32]
Han, S.Y. Trk inhibitors: Tissue-agnostic anti-cancer drugs. Pharmaceuticals (Basel), 2021, 14(7), 632.
[http://dx.doi.org/10.3390/ph14070632] [PMID: 34209967]
[33]
Roche. Japan becomes the first country to approve Roche’s personalised medicine Rozlytrek. 2019. Available from: https://www.roche.com/media/relea ses/med-cor-2019-06-18.htm
[34]
Lee, J.; Park, S.; Jung, H.A.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Evaluating entrectinib as a treatment option for non-small cell lung cancer. Expert Opin. Pharmacother., 2020, 21(16), 1935-1942.
[http://dx.doi.org/10.1080/14656566.2020.1798932] [PMID: 32736487]
[35]
FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC. 2019. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc
[36]
Scott, L.J. Larotrectinib: First Global Approval. Drugs, 2019, 79(2), 201-206.
[http://dx.doi.org/10.1007/s40265-018-1044-x] [PMID: 30635837]
[37]
Marcus, L.; Donoghue, M.; Aungst, S.; Myers, C.E.; Helms, W.S.; Shen, G.; Zhao, H.; Stephens, O.; Keegan, P.; Pazdur, R. FDA approval summary: entrectinib for the treatment of NTRK gene fusion solid tumors. Clin. Cancer Res., 2021, 27(4), 928-932.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2771] [PMID: 32967940]
[38]
Ardini, E.; Siena, S. Entrectinib approval by EMA reinforces options for ROS1 and tumour agnostic NTRK targeted cancer therapies., 2020.
[http://dx.doi.org/10.1136/esmoopen-2020-000867]
[39]
Al-Salama, Z.T.; Keam, S.J. Entrectinib: First Global Approval. Drugs, 2019, 79(13), 1477-1483.
[http://dx.doi.org/10.1007/s40265-019-01177-y] [PMID: 31372957]
[40]
Delgado, J.; Pean, E.; Melchiorri, D.; Migali, C.; Josephson, F.; Enzmann, H.; Pignatti, F. The European Medicines Agency review of entrectinib for the treatment of adult or paediatric patients with solid tumours who have a neurotrophic tyrosine receptor kinase gene fusions and adult patients with non-small-cell lung cancer harbouring ROS1 rearrangements. ESMO Open, 2021, 6(2)100087
[http://dx.doi.org/10.1016/j.esmoop.2021.100087] [PMID: 33735800]
[41]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[42]
Antonysamy, S.; Hirst, G.; Park, F.; Sprengeler, P.; Stappenbeck, F.; Steensma, R.; Wilson, M.; Wong, M. Fragment-based discovery of JAK-2 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(1), 279-282.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.064] [PMID: 19019674]
[43]
Orsini, P.; Menichincheri, M.; Vanotti, E.; Panzeri, A. Highly efficient synthesis of 5-benzyl-3-aminoindazoles. Tetrahedron Lett., 2009, 50(25), 3098-3100.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.024]
[44]
Kuwano, R.; Yokogi, M. Suzuki-Miyaura cross-coupling of benzylic carbonates with arylboronic acids. Org. Lett., 2005, 7(5), 945-947.
[http://dx.doi.org/10.1021/ol050078q] [PMID: 15727481]
[45]
McLaughlin, M. Suzuki-Miyaura cross-coupling of benzylic phosphates with arylboronic acids. Org. Lett., 2005, 7(22), 4875-4878.
[http://dx.doi.org/10.1021/ol0517271] [PMID: 16235911]
[46]
Kuwano, R. Catalytic transformations of benzylic carboxylates and carbonates. Synthesis (Stuttg), 2009, 2009(7), 1049-1061.
[http://dx.doi.org/10.1055/s-0028-1088001]
[47]
Ardini, E.; Menichincheri, M.; Banfi, P.; Saccardo, M.B.; Rusconi, L.; Avanzi, N. In vitro and in vivo activity of NMS-E628 against ALK mutations resistant to Xalkori. Mol. Cancer Ther., 2011, 10(11), 10 [Suppl.].
[48]
De Braud, F.G.; Pilla, L.; Niger, M.; Damian, S.; Bardazza, B.; Martinetti, A. Phase 1 open label, dose escalation study of RXDX101, an oral pan-trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations. J. Clin. Oncol., 2014, 32(15), 2502-2502.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2502]
[49]
Doebele, R.; Ahn, M.; Siena, S.; Drilon, A.; Krebs, M.; Lin, C. OA02.01 OA02.01 efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC). J. Thorac. Oncol., 2018, 13(10), S321-S322.
[http://dx.doi.org/10.1016/j.jtho.2018.08.239]
[50]
John, T.; Chiu, C.H.; Cho, B.C.; Fakih, M.; Farago, A.F.; Demetri, G.D. 364O Intracranial efficacy of entrectinib in patients with NTRK fusion-positive solid tumours and baseline CNS metastases. Ann. Oncol., 2020, 31, S397-S398.
[http://dx.doi.org/10.1016/j.annonc.2020.08.473]
[51]
Aveic, S.; Pantile, M.; Seydel, A.; Esposito, M.R.; Zanon, C.; Li, G.; Tonini, G.P. Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells. Oncotarget, 2016, 7(5), 5646-5663.
[http://dx.doi.org/10.18632/oncotarget.6778] [PMID: 26735175]
[52]
Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M.B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J.M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther., 2016, 15(4), 628-639.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0758] [PMID: 26939704]
[53]
Ardini, E.; Menichincheri, M.; Banfi, P.; Casero, D.; Giorgini, M. L.; Saccardo, M. B. The ALK inhibitor NMS-E628 also potently inhibits ROS1 and induces tumor regression in ROS-driven models., 2013, 73(8), 2092-2092.
[54]
Anderson, D.; Ciomei, M.; Banfi, P.; Cribioli, S.; Ardini, E.; Galvani, A. Inhibition of Trk-driven tumors by the pan-Trk inhibitor RXDX-101. Eur. J. Cancer, 2014, 50, 101.
[http://dx.doi.org/10.1016/S0959-8049(14)70436-8]
[55]
Iyer, R.; Wehrmann, L.; Golden, R.L.; Naraparaju, K.; Croucher, J.L.; MacFarland, S.P.; Guan, P.; Kolla, V.; Wei, G.; Cam, N.; Li, G.; Hornby, Z.; Brodeur, G.M. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett., 2016, 372(2), 179-186.
[http://dx.doi.org/10.1016/j.canlet.2016.01.018] [PMID: 26797418]
[56]
Roskoski, R., Jr ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol. Res., 2017, 121, 202-212.
[http://dx.doi.org/10.1016/j.phrs.2017.04.022] [PMID: 28465216]
[57]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res., 2020, 152(152)104609
[http://dx.doi.org/10.1016/j.phrs.2019.104609] [PMID: 31862477]
[58]
Rozlytrek (entrectinib) capsules: Japanese prescribing information. 2019. Available from: http://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/450045_42910
[59]
Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[60]
Meneses-Lorente, G.; Bentley, D.; Guerini, E.; Kowalski, K.; Chow-Maneval, E.; Yu, L.; Brink, A.; Djebli, N.; Mercier, F.; Buchheit, V.; Phipps, A. Characterization of the pharmacokinetics of entrectinib and its active M5 metabolite in healthy volunteers and patients with solid tumors. Invest. New Drugs, 2021, 39(3), 803-811.
[http://dx.doi.org/10.1007/s10637-020-01047-5] [PMID: 33462752]
[61]
Parrott, N.; Stillhart, C.; Lindenberg, M.; Wagner, B.; Kowalski, K.; Guerini, E.; Djebli, N.; Meneses-Lorente, G. Physiologically based absorption modelling to explore the impact of food and gastric pH changes on the pharmacokinetics of entrectinib. AAPS J., 2020, 22(4), 78.
[http://dx.doi.org/10.1208/s12248-020-00463-y] [PMID: 32458089]
[62]
Tan, D.; Antoniou, M.; Zerbini, C.H. PRO41 the economic and quality of life impact of entrectinib on CNS metastasis control. Value Health, 2021, 24, 204-205.
[63]
Fischer, H.; Ullah, M.; de la Cruz, C.C.; Hunsaker, T.; Senn, C.; Wirz, T.; Wagner, B.; Draganov, D.; Vazvaei, F.; Donzelli, M.; Paehler, A.; Merchant, M.; Yu, L. Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro-oncol., 2020, 22(6), 819-829.
[http://dx.doi.org/10.1093/neuonc/noaa052] [PMID: 32383735]
[64]
Cruz, C.C.; Hunsaker, T.; Vazvaei, F.; Draganov, D.; Yu, L.; Merchant, M. Abstract 3894: Determination of the efficacious Entrectinib exposures required for pathway inhibition and anti-tumor activity in a subcutaneous and intracranial TPM3-NTRK1 mutant tumor model. Cancer Res., 2019, 79(13), 3894-3894.
[65]
Frampton, J.E. Entrectinib: A Review in NTRK+ Solid Tumours and ROS1+ NSCLC. Drugs, 2021, 81(6), 697-708.
[http://dx.doi.org/10.1007/s40265-021-01503-3] [PMID: 33871816]
[66]
Chu, P.; Batson, S.; Hodgson, M.; Mitchell, C.R.; Steenrod, A. Systematic review of neurotrophic tropomyosin-related kinase inhibition as a tumor-agnostic management strategy. Future Oncol., 2020, 16(4), 61-74.
[http://dx.doi.org/10.2217/fon-2019-0534] [PMID: 31942815]
[67]
Chu, P.; Antoniou, M.; Bhutani, M.K.; Aziez, A.; Daigl, M. Matching-adjusted indirect comparison: entrectinib versus crizotinib in ROS1 fusion-positive non-small cell lung cancer. J. Comp. Eff. Res., 2020, 9(12), 861-876.
[http://dx.doi.org/10.2217/cer-2020-0063] [PMID: 32648475]
[68]
Doebele, R.; Perez, L.; Trinh, H.; Martinec, M.; Martina, R.; Riehl, T. P1.01-83 comparative efficacy analysis between entrectinib trial and crizotinib Real-World ROS1 fusion-positive (ROS1+) NSCLC patients. J. Thorac. Oncol., 2019, 14(10), S392.
[http://dx.doi.org/10.1016/j.jtho.2019.08.798]
[69]
Attwa, M.W.; Darwish, H.W.; Alhazmi, H.A.; Kadi, A.A. Investigation of metabolic degradation of new ALK inhibitor: Entrectinib by LC-MS/MS. Clin. Chim. Acta, 2018, 485, 298-304.
[http://dx.doi.org/10.1016/j.cca.2018.07.009] [PMID: 30006284]
[70]
Attwa, M.W.; Kadi, A.A.; Alrabiah, H.; Darwish, H.W. LC-MS/MS reveals the formation of iminium and quinone methide reactive intermediates in entrectinib metabolism: In vivo and in vitro metabolic investigation. J. Pharm. Biomed. Anal., 2018, 160, 19-30.
[http://dx.doi.org/10.1016/j.jpba.2018.07.032] [PMID: 30055343]
[71]
Ma, S.; Zhu, M. Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites. Chem. Biol. Interact., 2009, 179(1), 25-37.
[http://dx.doi.org/10.1016/j.cbi.2008.09.014] [PMID: 18848531]
[72]
KK S.; SV, L. STARTRK-2: A global phase 2, open-label, basket study of entrectinib in patients with locally advanced or metastatic solid tumors harboring TRK, ROS1, or ALK gene fusions. Cancer Res., 2017, 77(615)
[73]
Demetri, G.D.; Paz-Ares, L.; Farago, A.F.; Liu, S.V.; Chawla, S.P.; Tosi, D. Efficacy and safety of entrectinib in patients with NTRK fusion- positive (NTRK-fp) Tumors: Pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann. Oncol., 2018, 29(Suppl. 8), 424-017.
[74]
Abdulla, D.; Doebele, R.; Ahn, M.; Siena, S.; Drilon, A.; Krebs, M. ENCORE: Efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC). Pneumologie, 2019, 73(01), 623.
[75]
Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.J.; Wolf, J.; Seto, T.; Cho, B.C.; Patel, M.R.; Chiu, C.H.; John, T.; Goto, K.; Karapetis, C.S.; Arkenau, H.T.; Kim, S.W.; Ohe, Y.; Li, Y.C.; Chae, Y.K.; Chung, C.H.; Otterson, G.A.; Murakami, H.; Lin, C.C.; Tan, D.S.W.; Prenen, H.; Riehl, T.; Chow-Maneval, E.; Simmons, B.; Cui, N.; Johnson, A.; Eng, S.; Wilson, T.R.; Doebele, R.C. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol., 2020, 21(2), 261-270.
[http://dx.doi.org/10.1016/S1470-2045(19)30690-4] [PMID: 31838015]
[76]
Rolfo, C.D.; De Braud, F.G.; Doebele, R.C.; Drilon, A.E.; Siena, S.; Patel, M. Efficacy and safety of entrectinib in patients (pts) with NTRK-fusion positive (NTRK-fp) solid tumors: An updated integrated analysis. J. Clin. Oncol., 2020, 38(15), 3605.
[77]
Desai, A.V.; Brodeur, G.M.; Foster, J.; Berg, S.L.; Basu, E.M.; Shusterman, S. Phase 1 study of entrectinib (RXDX-101), a TRK, ROS1, and ALK inhibitor, in children, adolescents, and young adults with recurrent or refractory solid tumors. J. Clin. Oncol., 2018, 36(15), 10536.
[78]
Robinson, G.W.; Gajjar, A.J.; Gauvain, K.M.; Basu, E.M.; Macy, M.E.; Maese, L.D. Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J. Clin. Oncol., 2019, 37(15), 1009.
[79]
Desai, A.V.; Robinson, G.W.; Basu, E.M.; Foster, J.; Gauvain, K.; Sabnis, A. Updated entrectinib data in children and adolescents with recurrent or refractory solid tumors, including primary CNS tumors. J. Clin. Oncol., 2020, 38(15), 107.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.107]
[80]
ClinicalTrials.gov. A study to evaluate efficacy and safety of multiple targeted therapies as treatments for participants with non-small cell lung cancer (NSCLC) (B-FAST). 2017. Available from: https://www.clinicaltrials. gov/ct2/show/NCT03178552?id=NCT03178552&draw=2&rank=1# moreinfo
[81]
ClinicalTrials.gov. A study to investigate the relative bioavailability of entrectinib capsule formulations F1 and F06 under fed conditions in healthy participants. 2019. Available from: https://www.clinicaltrials.gov/ct2/show/NCT037
[82]
ClinicalTrials.gov. A performance and bioavailability study of entrectinib in healthy volunteers. 2019. Available from: https://www.clinicaltrials.gov/ct2/show/NCT0396 11 00? id=NCT03961100&draw=2&rank=1
[83]
Dziadziuszko, R.; Krebs, M.G.; De Braud, F.; Siena, S.; Drilon, A.; Doebele, R.C.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Farago, A.F.; Lin, C.C.; Karapetis, C.S.; Li, Y.C.; Day, B.M.; Chen, D.; Wilson, T.R.; Barlesi, F. Updated integrated analysis of the efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small-cell lung cancer. J. Clin. Oncol., 2021, 39(11), 1253-1263.
[http://dx.doi.org/10.1200/JCO.20.03025] [PMID: 33646820]
[84]
Russo, M.; Misale, S.; Wei, G.; Siravegna, G.; Crisafulli, G.; Lazzari, L.; Corti, G.; Rospo, G.; Novara, L.; Mussolin, B.; Bartolini, A.; Cam, N.; Patel, R.; Yan, S.; Shoemaker, R.; Wild, R.; Di Nicolantonio, F.; Bianchi, A.S.; Li, G.; Siena, S.; Bardelli, A. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov., 2016, 6(1), 36-44.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0940] [PMID: 26546295]
[85]
Zou, H.Y.; Friboulet, L.; Kodack, D.P.; Engstrom, L.D.; Li, Q.; West, M.; Tang, R.W.; Wang, H.; Tsaparikos, K.; Wang, J.; Timofeevski, S.; Katayama, R.; Dinh, D.M.; Lam, H.; Lam, J.L.; Yamazaki, S.; Hu, W.; Patel, B.; Bezwada, D.; Frias, R.L.; Lifshits, E.; Mahmood, S.; Gainor, J.F.; Affolter, T.; Lappin, P.B.; Gukasyan, H.; Lee, N.; Deng, S.; Jain, R.K.; Johnson, T.W.; Shaw, A.T.; Fantin, V.R.; Smeal, T. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell, 2015, 28(1), 70-81.
[http://dx.doi.org/10.1016/j.ccell.2015.05.010] [PMID: 26144315]
[86]
Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; Pferdekamper, A.C.; Li, J.; Kasibhatla, S.; Sun, F.; Sun, X.; Hua, S.; McNamara, P.; Mahmood, S.; Lockerman, E.L.; Fujita, N.; Nishio, M.; Harris, J.L.; Shaw, A.T.; Engelman, J.A. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov., 2014, 4(6), 662-673.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0846] [PMID: 24675041]
[87]
Katayama, R.; Friboulet, L.; Koike, S.; Lockerman, E.L.; Khan, T.M.; Gainor, J.F.; Iafrate, A.J.; Takeuchi, K.; Taiji, M.; Okuno, Y.; Fujita, N.; Engelman, J.A.; Shaw, A.T. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res., 2014, 20(22), 5686-5696.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1511] [PMID: 25228534]
[88]
Ku, B.M.; Bae, Y.H.; Lee, K.Y.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Entrectinib resistance mechanisms in ROS1-rearranged non-small cell lung cancer. Invest. New Drugs, 2020, 38(2), 360-368.
[http://dx.doi.org/10.1007/s10637-019-00795-3] [PMID: 31124056]
[89]
Doebele, R.C.; Dziadziuszko, R.; Drilon, A.; Shaw, A.; Wolf, J.; Farago, A.F. Genomic landscape of entrectinib resistance from ctDNA analysis in STARTRK-2. Ann. Oncol., 2019, 30(October), v865.
[http://dx.doi.org/10.1093/annonc/mdz394.017]
[90]
Gainor, J.F.; Tseng, D.; Yoda, S.; Dagogo-Jack, I.; Friboulet, L.; Lin, J.J. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol., 2017, 2017(1), 1-13.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy