Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Antibacterial Activities of Amidine Substituted Monocyclic β-Lactams

Author(s): Lijuan Zhai, Lili He, Yuanbai Liu, Ko Ko Myo, Zafar Iqbal, Jian Sun, Jinbo Ji, Jingwen Ji, Yangxiu Mu, Yuanyu Gao, Dong Tang, Haikang Yang* and Zhixiang Yang*

Volume 18, Issue 5, 2022

Published on: 10 January, 2022

Page: [574 - 588] Pages: 15

DOI: 10.2174/1573406417666210830122954

Price: $65

Abstract

Background: Mononcyclic β-lactams are regarded as the most resistant class of β-lactams against a series of β-lactamases, although they possess limited antibacterial activity. Aztreonam, being the first clinically approved monobactam, needs broad-spectrum efficacy through structural modification.

Objective: We strive to synthesize a number of monocyclic β-lactams by varying the substituents at N1, C3, and C4 positions of azetidinone ring and study the antimicrobial effect on variable bacterial strains.

Methods: Seven new monobactam derivatives 23a-g, containing substituted-amidine moieties linked to the azetidinone ring via thiazole linker, were synthesized through multistep synthesis. The final compounds were investigated for their in vitro antibacterial activities using the broth microdilution method against ten bacterial strains of clinical interest. The minimum inhibitory concentrations (MICs) of newly synthesized derivatives were compared with aztreonam, ceftazidime, and meropenem, existing clinical antibiotics.

Results: All compounds 23a-g showed higher antibacterial activities (MIC 0.25 μg/mL to 64 μg/mL) against tested strains as compared to aztreonam (MIC 16 μg/mL to >64 μg/mL) and ceftazidime (MIC >64 μg/mL). However, all compounds, except 23d, exhibited lower antibacterial activity against all tested bacterial strains compared to meropenem.

Conclusion: Compound 23d showed comparable or improved antibacterial activity (MIC 0.25 μg/mL to 2 μg/mL) to meropenem (MIC 1 μg/mL to 2 μg/mL) in the case of seven bacterial species. Therefore, compound 23d may be a valuable lead target for further investigations against multi-drug resistant Gram-negative bacteria.

Keywords: Monobactams, synthesis, anitbacterial resistance, antibiotics, β-lactams, aztreonam.

Graphical Abstract

[1]
Wang, P.; Hu, F.; Xiong, Z.; Ye, X.; Zhu, D.; Wang, Y.F.; Wang, M. Susceptibility of extended-spectrum-β-lactamase-producing Entero-bacteriaceae according to the new CLSI breakpoints. J. Clin. Microbiol., 2011, 49(9), 3127-3131.
[http://dx.doi.org/10.1128/JCM.00222-11] [PMID: 21752977]
[2]
Bush, K. Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[3]
Leite, T.H.O.; Saraiva, M.F.; Pinheiro, A.C.; de Souza, M.V.N. Monocyclic β-lactam: A review on synthesis and potential biological activi-ties of a multitarget core. Mini Rev. Med. Chem., 2020, 20(16), 1653-1682.
[http://dx.doi.org/10.2174/1389557520666200619114820] [PMID: 32560602]
[4]
Decuyper, L.; Jukič, M.; Sosič, I.; Žula, A.; D’hooghe, M.; Gobec, S. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev., 2018, 38(2), 426-503.
[http://dx.doi.org/10.1002/med.21443] [PMID: 28815732]
[5]
Groman, R.P. Miscellaneous antibiotics. In: Small Animal Critical Care Medicine; Second Edition; Silverstein, D.C.; Hopper, K., Eds., 2015; pp. 944-949.
[http://dx.doi.org/10.1016/B978-1-4557-0306-7.00181-1]
[6]
Page, M.G.P. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin. Infect. Dis., 2019, 69(Suppl. 7), S529-S537.
[http://dx.doi.org/10.1093/cid/ciz825] [PMID: 31724044]
[7]
Page, M.G.P. Siderophore conjugates. Ann. N. Y. Acad. Sci., 2013, 1277, 115-126.
[http://dx.doi.org/10.1111/nyas.12024] [PMID: 23346861]
[8]
Kong, H.; Cheng, W.; Wei, H.; Yuan, Y.; Yang, Z.; Zhang, X. An overview of recent progress in siderophore-antibiotic conjugates. Eur. J. Med. Chem., 2019, 182, 111615-111630.
[http://dx.doi.org/10.1016/j.ejmech.2019.111615] [PMID: 31434038]
[9]
Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Lynch Iii, J.P.; Karlowsky, J.A. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs, 2019, 79(3), 271-289.
[http://dx.doi.org/10.1007/s40265-019-1055-2] [PMID: 30712199]
[10]
Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-antibiotic conjugate design: New drugs for bad bugs? Molecules, 2019, 24(18), 3314-3329.
[http://dx.doi.org/10.3390/molecules24183314] [PMID: 31514464]
[11]
Kou, Q.; Wang, T.; Zou, F.; Zhang, S.; Chen, Q.; Yang, Y. Design, synthesis and biological evaluation of C(4) substituted monobactams as antibacterial agents against multidrug-resistant Gram-negative bacteria. Eur. J. Med. Chem., 2018, 151, 98-109.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.058] [PMID: 29605810]
[12]
Tan, L.; Tao, Y.; Wang, T.; Zou, F.; Zhang, S.; Kou, Q.; Niu, A.; Chen, Q.; Chu, W.; Chen, X.; Wang, H.; Yang, Y. Discovery of novel pyridone-conjugated monosulfactams as potent and broad-spectrum antibiotics for multidrug-resistant gram-negative infections. J. Med. Chem., 2017, 60(7), 2669-2684.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01261] [PMID: 28287720]
[13]
Reck, F.; Bermingham, A.; Blais, J.; Capka, V.; Cariaga, T.; Casarez, A.; Colvin, R.; Dean, C.R.; Fekete, A.; Gong, W.; Growcott, E.; Guo, H.; Jones, A.K.; Li, C.; Li, F.; Lin, X.; Lindvall, M.; Lopez, S.; McKenney, D.; Metzger, L.; Moser, H.E.; Prathapam, R.; Rasper, D.; Rudewicz, P.; Sethuraman, V.; Shen, X.; Shaul, J.; Simmons, R.L.; Tashiro, K.; Tang, D.; Tjandra, M.; Turner, N.; Uehara, T.; Vitt, C.; Whitebread, S.; Yifru, A.; Zang, X.; Zhu, Q. Optimization of novel monobactams with activity against carbapenem-resistant Enterobacteri-aceae - Identification of LYS228. Bioorg. Med. Chem. Lett., 2018, 28(4), 748-755.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.006] [PMID: 29336873]
[14]
Thu, Z.M.; Sun, J.; Ji, J.; He, L.; Ji, J.; Iqbal, Z.; Myo, K.K.; Gao, Y.; Zhai, L.; Mu, Y.; Tang, D.; Vidari, G.; Yang, H.; Yang, Z. Synthesis and antibacterial evaluation of new monobactams. Bioorg. Med. Chem. Lett., 2021, 39, 127878.
[http://dx.doi.org/10.1016/j.bmcl.2021.127878] [PMID: 33636305]
[15]
Wikler, M.A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard; Wikler, M.A., Ed.; Clinical and Laboratory Standards Institute Wayne: Pa., USA, 2009, p. 29.
[16]
Joseph, M. Ready; Jacobsen, E. N.: Asymmetric catalytic synthesis of r-aryloxy alcohols kinetic resolution of terminal epoxides via highly enantioselective ring-opening with phenols. J. Am. Chem. Soc., 1999, 121, 6086-6087.
[http://dx.doi.org/10.1021/ja9910917]
[17]
Hansen, K.B.; Rabbat, P.; Springfield, S.A.; Devine, P.N.; Grabowski, E.J.J.; Reider, P.J. Asymmetric synthesis of cis-aminochromanol. Tetrahedron Lett., 2001, 42, 8743-8745.
[http://dx.doi.org/10.1016/S0040-4039(01)01907-4]
[18]
Hashiyama, T.; Watanabe, A.; Inoue, H.; Kona, M.; Takeda, M.; Murata, S.; Nagao, T. Reaction of 3-phenylglycidic esters IV: Reaction of methyl 3-(4-methoxyphenyl)glycidate with 2-nitrophenol and synthesis of 1,5-benzoxazepine derivative. Chem. Pharm. Bull. (Tokyo), 1985, 33, 8.
[19]
Yamawaki, K.; Nomura, T.; Yasukata, T.; Uotani, K.; Miwa, H.; Takeda, K.; Nishitani, Y. A novel series of parenteral cephalosporins exhibiting potent activities against Pseudomonas aeruginosa and other Gram-negative pathogens: synthesis and structure-activity relation-ships. Bioorg. Med. Chem., 2007, 15(21), 6716-6732.
[http://dx.doi.org/10.1016/j.bmc.2007.08.001] [PMID: 17723304]
[20]
Tang, H.; Liu, W.; Tang, F.; Sun, W.; Zhang, Y.; Pan, W.; Ogawa, A.; Brockunier, L.; Huang, X.; Wang, H.; Mai, R.; Biftu, T.; Park, M.; Gao, Y.; Jiang, J.; Chen, H.; Christopher, W. P. W. P. Patent, WO2017/106064, 2017.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy