Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of a Series of Novel 2-Amino-5-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole Derivatives as Potential Anticancer, Antifungal and Antibacterial Agents

Author(s): Em Canh Pham*, Tuyen Ngoc Truong*, Nguyen Hanh Dong, Duy Duc Vo and Tuoi Thi Hong Do

Volume 18, Issue 5, 2022

Published on: 11 January, 2022

Page: [558 - 573] Pages: 16

DOI: 10.2174/1573406417666210803170637

Price: $65

Abstract

Background: Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities.

Objective: The objective of the present study was to prepare the 5-substituted 2-amino-1,3,4- oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities.

Methods: Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay.

Results: Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities.

Conclusion: Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC value ranging between 4 to 64 μg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 μg/mL) and Aspergillus niger (64 μg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 μM) which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds have also been reported.

Keywords: 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, antibacterial, antifungal, anticancer, molecular docking.

Graphical Abstract

[1]
Matin, A.; Gavande, N.; Kim, M.S.; Yang, N.X.; Salam, N.K.; Hanrahan, J.R.; Roubin, R.H.; Hibbs, D.E. 7-Hydroxy-benzopyran-4-one derivatives: A novel pharmacophore of peroxisome proliferator-activated receptor α and -γ (PPARalpha and γ) dual agonists. J. Med. Chem., 2009, 52(21), 6835-6850.
[http://dx.doi.org/10.1021/jm900964r] [PMID: 19807106]
[2]
Priego, E.M.; von Frijtag Drabbe Kuenzel, J.; IJzerman, A.P.; Camarasa, M.J.; Pérez-Pérez, M.J. Pyri-do[2,1-f]purine-2,4-dione derivatives as a novel class of highly potent human A(3) adenosine receptor antagonists. J. Med. Chem., 2002, 45(16), 3337-3344.
[http://dx.doi.org/10.1021/jm0208469] [PMID: 12139445]
[3]
Galal, S.A.; Abd El-All, A.S.; Abdallah, M.M.; El-Diwani, H.I. Synthesis of potent antitumor and an-tiviral benzofuran derivatives. Bioorg. Med. Chem. Lett., 2009, 19(9), 2420-2428.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.069] [PMID: 19345581]
[4]
Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Cordova, D.; Flexner, L.; Bellin, C.A.; Dubas, C.M.; Smith, B.K.; Hughes, K.A.; Hollingshaus, J.G.; Clark, C.E.; Benner, E.A. Rynaxypyr: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg. Med. Chem. Lett., 2007, 17(22), 6274-6279.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.012] [PMID: 17884492]
[5]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[6]
Kumar, C.T.K.; Keshavayya, J.; Rajesh, T.N.; Peethambar, S.K.; Ali, A.R.S. Synthesis, characteriza-tion, and biological activity of 5-phenyl-1,3,4-thiadiazole-2-amine incorporated azo dye derivatives. Org. Chem. Int., 2013, 2013, 370626.
[7]
Siddiqui, S.M.; Salahuddin, A.; Azam, A. Mannich base derivatives of 1,3,4-oxadiazole: Synthesis and screening against Entamoeba histolytica. Med. Chem. Res., 2013, 22, 1305.
[http://dx.doi.org/10.1007/s00044-012-0107-x]
[8]
Siddiqui, N.; Ahuja, P.; Malik, S.; Arya, S.K. Design of benzothiazole-1,3,4-thiadiazole conjugates: Synthesis and anticonvulsant evaluation. Arch. Pharm. (Weinheim), 2013, 346(11), 819-831.
[http://dx.doi.org/10.1002/ardp.201300083] [PMID: 24081512]
[9]
Juszczak, M.; Walczak, K.; Langner, E. Karpińska, M.; Matysiak, J.; Rzeski, W. Neuroprotective activ-ity of 2-amino-1,3,4-thiadiazole derivative 4BrABT-an in vitro study. Ann. Agric. Environ. Med., 2013, 20(3), 575-579.
[PMID: 24069868]
[10]
Hou, Z.; Nakanishi, I.; Kinoshita, T.; Takei, Y.; Yasue, M.; Misu, R.; Suzuki, Y.; Nakamura, S.; Kure, T.; Ohno, H.; Murata, K.; Kitaura, K.; Hirasawa, A.; Tsujimoto, G.; Oishi, S.; Fujii, N. Structure-based design of novel potent protein kinase CK2 (CK2) inhibitors with phenyl-azole scaffolds. J. Med. Chem., 2012, 55(6), 2899-2903.
[http://dx.doi.org/10.1021/jm2015167] [PMID: 22339433]
[11]
Ferrari, S.; Morandi, F.; Motiejunas, D.; Nerini, E.; Henrich, S.; Luciani, R.; Venturelli, A.; Lazzari, S.; Calò, S.; Gupta, S.; Hannaert, V.; Michels, P.A.M.; Wade, R.C.; Costi, M.P. Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteri-dine reductase. J. Med. Chem., 2011, 54(1), 211-221.
[http://dx.doi.org/10.1021/jm1010572] [PMID: 21126022]
[12]
Fulop, F.; Semega, E.; Dombi, G.; Bernath, G. Saturated heterocycles, part 161 [1]. Synthesis of 2‐hydroxycycloalkyl‐substituted 1,3,4‐oxadiazoles, 1,3,4‐thi -adiazoles and 1,2,4‐triazoles. J. Heterocycl. Chem., 1990, 27, 951.
[http://dx.doi.org/10.1002/jhet.5570270424]
[13]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Ozalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones contain-ing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[14]
Al-Omar, M.; Al-Deeb, O.A.; Al-Khamees, H.A.; El-Emam, A.A. 1,3,4-thiadiazoles. regioselective o-demethylation on dehydrative cyclization of 1-(3,4,5-trimethoxybenzoyl)-4-substituted thiosemi-carbazides with sulfuric acid. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 2509.
[http://dx.doi.org/10.1080/10426500490485525]
[15]
Zeevaart, J.G.; Wang, L.; Thakur, V.V.; Leung, C.S.; Tirado-Rives, J.; Bailey, C.M.; Domaoal, R.A.; Anderson, K.S.; Jorgensen, W.L. Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc., 2008, 130(29), 9492-9499.
[http://dx.doi.org/10.1021/ja8019214] [PMID: 18588301]
[16]
Patel, N.B.; Patel, J.C. Synthesis and antimicrobial activity of 3-(1,3,4-Oxadiazol-2-yl)quinazolin-4(3H)-ones. Sci. Pharm., 2010, 78(2), 171-193.
[http://dx.doi.org/10.3797/scipharm.0912-16] [PMID: 21179342]
[17]
Yang, R.Y.; Dai, L.X. Hypervalent iodine oxidation of N-acylhydrazones and N-phenylsemicarbazone: An efficient method for the synthesis of derivatives of 1,3,4-oxadiazoles and. DELTA.3-1,3,4-oxadiazolines. J. Org. Chem., 1993, 58, 3381.
[http://dx.doi.org/10.1021/jo00064a027]
[18]
Rao, V.S.; Sekhar, K. Iodobenzene diacetate mediated solid‐state synthesis of heterocyclyl‐1,3,4‐oxadiazoles. Synth. Commun., 2004, 34, 2153.
[http://dx.doi.org/10.1081/SCC-120038493]
[19]
Dobrota, C.; Paraschivescu, C.C.; Dumitru, I.; Matache, M.; Baciu, I.; Ruta, L.L. Convenient prepara-tion of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles promoted by Dess-Martin reagent. Tetrahedron Lett., 2009, 50, 1886.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.054]
[20]
Joseph, J.; Kim, J.Y.; Chang, S. A metal-free route to 2-aminooxazoles by taking advantage of the unique ring opening of benzoxazoles and oxadiazoles with secondary amines. Chemistry, 2011, 17(30), 8294-8298.
[http://dx.doi.org/10.1002/chem.201100910] [PMID: 21656592]
[21]
Prabhu, G.; Sureshbabu, V.V. Hypervalent iodine(V) mediated mild and convenient synthesis of sub-stituted 2-amino-1,3,4-oxadiazoles. Tetrahedron Lett., 2012, 53, 4232.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.154]
[22]
Shinde, V.N.; Ugarkar, B.G.; Ghorpade, S.R. A convenient synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles from corresponding acylthiosemicarbazides using iodine and oxone®. J. Chem. Res., 2013, 37, 53.
[http://dx.doi.org/10.3184/174751912X13551638283701]
[23]
Guda, D.R.; Cho, H.M.; Lee, M.E. Mild and convenient one-pot synthesis of 2-amino-1,3,4-oxadiazoles promoted by trimethylsilyl isothiocyanate (TMSNCS). RSC Advances, 2013, 3, 7684.
[http://dx.doi.org/10.1039/c3ra41044g]
[24]
Geeta, S.M.; Kavitha, D.; Nagula, S.; Ahmed, K. Molecular iodine-catalysed oxidative CO-C(alkyl) bond cleavage of aryl/heteroaryl alkyl ketones: An efficient strategy to access fused polyheterocycles. New J. Chem., 2019, 43, 15999.
[25]
Ertong, L.; Manman, W.; Zhen, W.; Wenquan, Y.; Junbiao, C. NBS-mediated practical cyclization of N-acyl amidines to 1,2,4-oxadiazoles via oxidative N-O bond formation. Tetrahedron, 2018, 74, 4613-4618.
[http://dx.doi.org/10.1016/j.tet.2018.07.036]
[26]
Ana, F.B.; Mateus, E.C.; Kenia, P.; Fernanda, S.M.; Luiz, A.B.; Diógenes, S.S.; Pablo, M. Ultra-sound-assisted synthesis of 2-amino-1,3,4-oxadiazoles through NBS-mediated oxidative cyclization of semicarbazones. Synth. Commun., 2017, 47(14), 1319-1325.
[http://dx.doi.org/10.1080/00397911.2017.1324626]
[27]
Tokumaru, K.; Johnston, J.N. A convergent synthesis of 1,3,4-oxadiazoles from acyl hydrazides un-der semiaqueous conditions. Chem. Sci. (Camb.), 2017, 8(4), 3187-3191.
[http://dx.doi.org/10.1039/C7SC00195A] [PMID: 28507694]
[28]
Abdu Musad, E.; Mohamed, R.; Saeed, B.A.; Vishwanath, B.S.; Rai, K.M.L. Synthesis and evalua-tion of antioxidant and antibacterial activities of new substituted bis(1,3,4-oxadiazoles), 3,5-bis(substituted) pyrazoles and isoxazoles. Bioorg. Med. Chem. Lett., 2011, 21(12), 3536-3540.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.142] [PMID: 21612921]
[29]
Chawla, R.; Arora, A.; Parameswaran, M.K.; Chan, P.; Sharma, D.; Michael, S.; Ravi, T.K. Synthesis of novel 1,3,4-oxadiazole derivatives as potential antimicrobial agents. Acta Pol. Pharm., 2010, 67(3), 247-253.
[PMID: 20524426]
[30]
Mruthyunjayaswamy, B.H.M.; Shanthaveerappa, B.K. Synthesis and pharmacological activity of malonoyl oxaloyl hydrazones of 5-substituted indole-3-carboxaldehydes, 3-terephthaloyl bis-1-(5′-substituted-2′-phenyl inbol-3′-yl)-3-thioureas and their derivatives. Indian J. Heterocycl. Chem., 1998, 8, 31.
[31]
Wang, J.; Hou, J.T.; Wen, J.; Zhang, J.; Yu, X.Q. Iron-catalyzed direct amination of azoles using formamides or amines as nitrogen sources in air. Chem. Commun. (Camb.), 2011, 47(12), 3652-3654.
[http://dx.doi.org/10.1039/c0cc05811d] [PMID: 21327194]
[32]
Rajak, H.; Kharya, M.D.; Mishra, P. Synthesis and local anesthetic activity of some novel N-[5-(4-substituted)phenyl-1,3,4-oxadiazol-2-yl]-2-(substituted)-acetamides. Arch. Pharm. (Weinheim), 2008, 341(4), 247-261.
[http://dx.doi.org/10.1002/ardp.200700146] [PMID: 18293435]
[33]
Rostamizadeh, S.; Housaini, S.A.G. Microwave assisted syntheses of 2,5-disubstituted 1,3,4-oxadiazoles. Tetrahedron Lett., 2004, 45, 8753.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.095]
[34]
Flidallah, H.M.; Sharshira, E.M.; Basaif, S.A. A-Ba-Oum, A.E.K. Synthesis and spectral characteri-zation of novel 1,3,4-oxadiazole and 1,2,4-triazole derivatives: Synthesis for potential pharmacologi-cal activities. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177, 67-79.
[http://dx.doi.org/10.1080/10426500210235]
[35]
Guin, S.; Ghosh, T.; Rout, S.K.; Banerjee, A.; Patel, B.K. Cu(II) catalyzed imine C-H functionaliza-tion leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org. Lett., 2011, 13(22), 5976-5979.
[http://dx.doi.org/10.1021/ol202409r] [PMID: 22007797]
[36]
Liu, L.; Feng, S. Ligand-free Cu(ii)-mediated aerobic oxidations of aldehyde hydrazones leading to N,N′-diacylhydrazines and 1,3,4-oxadiazoles. Org. Biomol. Chem., 2017, 15(12), 2585-2592.
[http://dx.doi.org/10.1039/C7OB00042A] [PMID: 28266668]
[37]
El-Emam, A.A.; Al-Deeb, O.A.; Al-Omar, M.; Lehmann, J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg. Med. Chem., 2004, 12(19), 5107-5113.
[http://dx.doi.org/10.1016/j.bmc.2004.07.033] [PMID: 15351394]
[38]
Dogan, H.N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M.K.; Gülen, D. Synthesis of new 2,5-disubstituted-1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and antimicrobial activi-ties. Bioorg. Med. Chem., 2002, 10(9), 2893-2898.
[http://dx.doi.org/10.1016/S0968-0896(02)00143-8] [PMID: 12110309]
[39]
Kumar, D.; Maruthi Kumar, N.; Chang, K.H.; Shah, K. Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(10), 4664-4668.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.023] [PMID: 20692741]
[40]
Mullican, M.D.; Wilson, M.W.; Connor, D.T.; Kostlan, C.R.; Schrier, D.J.; Dyer, R.D. Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as oral-ly-active, nonulcerogenic antiinflammatory agents. J. Med. Chem., 1993, 36(8), 1090-1099.
[http://dx.doi.org/10.1021/jm00060a017] [PMID: 8478906]
[41]
Song, Y.; Connor, D.T.; Sercel, A.D.; Sorenson, R.J.; Doubleday, R.; Unangst, P.C.; Roth, B.D.; Beylin, V.G.; Gilbertsen, R.B.; Chan, K.; Schrier, D.J.; Guglietta, A.; Bornemeier, D.A.; Dyer, R.D. Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 2. 1,3,4- and 1,2,4-thiadiazole series. J. Med. Chem., 1999, 42(7), 1161-1169.
[http://dx.doi.org/10.1021/jm980570y] [PMID: 10197960]
[42]
Boschelli, D.H.; Connor, D.T.; Bornemeier, D.A.; Dyer, R.D.; Kennedy, J.A.; Kuipers, P.J.; Okonk-wo, G.C.; Schrier, D.J.; Wright, C.D. 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: In vitro inhibition of cyclooxygenase and 5-lipoxygenase activities. J. Med. Chem., 1993, 36(13), 1802-1810.
[http://dx.doi.org/10.1021/jm00065a002] [PMID: 8515419]
[43]
Chapleo, C.B.; Myers, M.; Myers, P.L.; Saville, J.F.; Smith, A.C.B.; Stillings, M.R.; Tulloch, I.F.; Walter, D.S.; Welbourn, A.P. Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 1. Hydra-zines. J. Med. Chem., 1986, 29(11), 2273-2280.
[http://dx.doi.org/10.1021/jm00161a024] [PMID: 3783589]
[44]
Chapleo, C.B.; Myers, P.L.; Smith, A.C.; Stillings, M.R.; Tulloch, I.F.; Walter, D.S. Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 4. Amidines. J. Med. Chem., 1988, 31(1), 7-11.
[http://dx.doi.org/10.1021/jm00396a004] [PMID: 3336034]
[45]
Turner, S.; Myers, M.; Gadie, B.; Nelson, A.J.; Pape, R.; Saville, J.F.; Doxey, J.C.; Berridge, T.L. An-tihypertensive thiadiazoles. 1. Synthesis of some 2-aryl-5-hydrazino-1,3,4-thiadiazoles with vasodila-tor activity. J. Med. Chem., 1988, 31(5), 902-906.
[http://dx.doi.org/10.1021/jm00400a003] [PMID: 3361578]
[46]
Turner, S.; Myers, M.; Gadie, B.; Hale, S.A.; Horsley, A.; Nelson, A.J.; Pape, R.; Saville, J.F.; Doxey, J.C.; Berridge, T.L. Antihypertensive thiadiazoles. 2. Vasodilator activity of some 2-aryl-5-guanidino-1,3,4-thiadiazoles. J. Med. Chem., 1988, 31(5), 906-913.
[http://dx.doi.org/10.1021/jm00400a004] [PMID: 3361579]
[47]
Tyagi, M.; Kumar, A. Synthesis of 2-[2′-carbonyl-5′-(heteroarylinomethylene)-1′, 3‘4’-thiadiazol-2′-yl/oxadiazol-2′-yl)]-4, 5-dihydroimidazolines as hypotensive agents. Orient. J. Chem., 2002, 18(1), 125.
[48]
Mishra, P.; Rajak, H.; Mehta, A. Synthesis of Schiff bases of 2-amino-5-aryl-1,3,4-oxadiazoles and their evaluation for antimicrobial activities. J. Gen. Appl. Microbiol., 2005, 51(2), 133-141.
[http://dx.doi.org/10.2323/jgam.51.133] [PMID: 15942874]
[49]
Kashaw, S.K.; Gupta, V.; Kashaw, V.; Mishra, P.; Stables, J.P.; Jain, N.K. Anticonvulsant and seda-tive-hypnotic activity of some novel 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2-yl]-2-styrylquinazoline-4(3H)-ones. Med. Chem. Res., 2010, 19(3), 250.
[http://dx.doi.org/10.1007/s00044-009-9188-6]
[50]
Rajak, H.; Singh Thakur, B.; Singh, A.; Raghuvanshi, K.; Sah, A.K.; Veerasamy, R.; Sharma, P.C.; Singh Pawar, R.; Kharya, M.D. Novel limonene and citral based 2,5-disubstituted-1,3,4-oxadiazoles: A natural product coupled approach to semicarbazones for antiepileptic activity. Bioorg. Med. Chem. Lett., 2013, 23(3), 864-868.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.051] [PMID: 23265873]
[51]
Sonia, G.; Kochupappy, R.T. Oxadiazolo pyrrolidine carboxamides as enoyl-ACP reductase inhibi-tors: Design, synthesis and antitubercular activity screenin. Med. Chem. Res., 2013, 22, 3428.
[http://dx.doi.org/10.1007/s00044-012-0340-3]
[52]
Rai, K.M.L.; Linganna, N. Synthesis and evaluation of antimitotic activity of alkylated 2-amino-1,3,4-oxadiazole derivatives. Farmaco, 2000, 55(5), 389-392.
[http://dx.doi.org/10.1016/S0014-827X(00)00056-2] [PMID: 10983285]
[53]
Yale, H.L.; Losee, K. 2-amino-5-substituted 1,3,4-oxadiazoles and 5-imino-2-substituted delta-2-1,3,4-oxadiazolines. A group of novel muscle relaxants. J. Med. Chem., 1966, 9(4), 478-483.
[http://dx.doi.org/10.1021/jm00322a007] [PMID: 5968010]
[54]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[55]
Zender, M.; Klein, T.; Henn, C.; Kirsch, B.; Maurer, C.K.; Kail, D.; Ritter, C.; Dolezal, O.; Steinbach, A.; Hartmann, R.W. Discovery and biophysical characterization of 2-amino-oxadiazoles as novel an-tagonists of PqsR, an important regulator of Pseudomonas aeruginosa virulence. J. Med. Chem., 2013, 56(17), 6761-6774.
[http://dx.doi.org/10.1021/jm400830r] [PMID: 23919758]
[56]
Pilger, C.; Bartolucci, C.; Lamba, D.; Tropsha, A.; Fels, G. Accurate prediction of the bound confor-mation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking. J. Mol. Graph. Model., 2001, 19(3-4), 288-296, 374-378.
[http://dx.doi.org/10.1016/S1093-3263(00)00056-5] [PMID: 11449566]
[57]
Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.; Chang, J. I2-mediated oxidative C-O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem., 2013, 78(20), 10337-10343.
[http://dx.doi.org/10.1021/jo401751h] [PMID: 24059837]
[58]
Yang, S.J.; Lee, S.H.; Kwak, H.J.; Gong, Y.D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide inter-mediate. J. Org. Chem., 2013, 78(2), 438-444.
[http://dx.doi.org/10.1021/jo302324r] [PMID: 23215154]
[59]
Sheelavanth, S.; Bodke, Y.D.; Sundar, S.M. Synthesis, antioxidant, and antibacterial studies of phe-nolic esters and amides of 2-(1-benzofuran-2-yl)quinoline-4-carboxylic acid. Med. Chem. Res., 2013, 22, 1163-1171.
[http://dx.doi.org/10.1007/s00044-012-0117-8]
[60]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S. Automated docking using a Lamarckian genetic algo-rithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[61]
Morgan, D.M.L. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol. Biol., 1998, 79, 179-183.
[PMID: 9463833]
[62]
Alley, M.C.; Scudiere, D.A.; Monks, A.; Czerwinski, M.; Shoemaker, R.; Boyd, M.R. Validation of an automated microculture tetrazolium assay (MTA) to assess growth and drug sensitivity of human tumor cell lines. Proc. Am. Assoc. Cancer Res., 1986, 27, 389-391.
[63]
Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev., 2005, 11, 127-152.
[http://dx.doi.org/10.1016/S1387-2656(05)11004-7] [PMID: 16216776]
[64]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[65]
Banerjee, A.K.; Vera, W.; Mora, H.; Laya, M.S.; Bedoya, L.; Cabrera, E.V. Iodine in organic synthe-sis. JSIR, 2006, 65(4), 299.
[66]
Ren, Y.M.; Cai, C.; Yang, R.C. Molecular iodine-catalyzed multicomponent reactions: An efficient catalyst for organic synthesis. RSC Advances, 2013, 3, 7182.
[http://dx.doi.org/10.1039/c3ra23461d]
[67]
He, Z.; Li, H.; Li, Z. Iodine-mediated synthesis of 3H-indoles via intramolecular cyclization of enamines. J. Org. Chem., 2010, 75(13), 4636-4639.
[http://dx.doi.org/10.1021/jo100796s] [PMID: 20524670]
[68]
He, Z.; Liu, W.; Li, Z. I2-catalyzed indole formation via oxidative cyclization of N-aryl enamines. Chem. Asian J., 2011, 6(6), 1340-1343.
[http://dx.doi.org/10.1002/asia.201100045] [PMID: 21506283]
[69]
Gao, W.C.; Jiang, S.; Wang, R.L.; Zhang, C. Iodine-mediated intramolecular amination of ketones: The synthesis of 2-acylindoles and 2-acylindolines by tuning N-protecting groups. Chem. Commun. (Camb.), 2013, 49(43), 4890-4892.
[http://dx.doi.org/10.1039/c3cc40797g] [PMID: 23486861]
[70]
Jiang, H.; Huang, H.; Cao, H.; Qi, C. TBHP/I2-mediated domino oxidative cyclization for one-pot synthesis of polysubstituted oxazoles. Org. Lett., 2010, 12(23), 5561-5563.
[http://dx.doi.org/10.1021/ol1023085] [PMID: 21058706]
[71]
Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization. Org. Lett., 2010, 12(17), 3902-3905.
[http://dx.doi.org/10.1021/ol101596s] [PMID: 20681600]
[72]
Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization. Org. Lett., 2010, 12(10), 2338-2341.
[http://dx.doi.org/10.1021/ol100688c] [PMID: 20394433]
[73]
Joshi, R.S.; Mandhane, P.G.; Khan, W.; Gill, C.H. Synthesis and antibacterial activity of novel series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline. J. Heterocycl. Chem., 2011, 48, 872.
[http://dx.doi.org/10.1002/jhet.653]
[74]
Niu, P.; Kang, J.; Tian, X.; Song, L.; Liu, H.; Wu, J.; Yu, W.; Chang, J. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation. J. Org. Chem., 2015, 80(2), 1018-1024.
[http://dx.doi.org/10.1021/jo502518c] [PMID: 25506709]
[75]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[76]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[77]
Hu, B.; Zhao, H.; Chen, Z.; Xu, C.; Zhao, J.; Zhao, W. Efficient synthesis and bioactivity of novel triazole derivatives. Molecules, 2018, 23(4), 709.
[http://dx.doi.org/10.3390/molecules23040709] [PMID: 29561766]
[78]
Rajasekaran, A.; Sivakumar, K.K.; Krishnan Sureshkumar, K.; Manjushree, M. Design, synthesis, characterisation and in-vitro antimicrobial activity of some hybridized triazole scaffolds. Future J. Pharm. Sci., 2017, 3(1), 1-10.
[http://dx.doi.org/10.1016/j.fjps.2016.09.003]
[79]
Milewski, S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. Biochim. Biophys. Acta, 2002, 1597(2), 173-192.
[http://dx.doi.org/10.1016/S0167-4838(02)00318-7] [PMID: 12044898]
[80]
Borowski, E. Novel approaches in the rational design of antifungal agents of low toxicity. Farmaco, 2000, 55(3), 206-208.
[http://dx.doi.org/10.1016/S0014-827X(00)00024-0] [PMID: 10919084]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy