Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Bio-evaluation of 2-Alkyl Substituted Fluorinated Genistein Analogues against Breast Cancer

Author(s): Yingli Zhu, Fan Zheng, Can Xiao, Xiaohe Liu, Xu Yao* and Wenbin Zeng*

Volume 18, Issue 5, 2022

Published on: 11 January, 2022

Page: [589 - 601] Pages: 13

DOI: 10.2174/1573406417666210830114715

Price: $65

conference banner
Abstract

Background: Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed.

Objective: This study aimed to design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity.

Methods: Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 was evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma.

Results: A series of 2-alkyl substituted fluorinated genistein analogues was designed, synthesized, and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared to tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15, and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17, and I- 33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects.

Conclusion: Most of the newly synthesized compounds could highly, selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.

Keywords: Genistein, isoflavone, analogues, breast cancer, chemotherapeutics, estrogen receptors.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Klöting, N.; Kern, M.; Moruzzi, M.; Stumvoll, M.; Blüher, M. Tamoxifen treatment causes early hepatic insulin resistance. Acta Diabetol., 2020, 57(4), 495-498.
[http://dx.doi.org/10.1007/s00592-019-01468-6] [PMID: 31909433]
[4]
Morales-Conde, M.; López-Ibáñez, N.; Calvete-Candenas, J.; Mendonça, F.M.I. Fulvestrant-induced toxic epidermal necrolysis. An. Bras. Dermatol., 2019, 94(2), 218-220.
[http://dx.doi.org/10.1590/abd1806-4841.20197964] [PMID: 31090829]
[5]
Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[6]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[7]
Waldmann, S.; Almukainzi, M.; Bou-Chacra, N.A.; Amidon, G.L.; Lee, B.J.; Feng, J.; Kanfer, I.; Zuo, J.Z.; Wei, H.; Bolger, M.B.; Lö-benberg, R. Provisional biopharmaceutical classification of some common herbs used in Western medicine. Mol. Pharm., 2012, 9(4), 815-822.
[http://dx.doi.org/10.1021/mp200162b] [PMID: 22352942]
[8]
Dastidar, S.G.; Manna, A.; Kumar, K.A.; Mazumdar, K.; Dutta, N.K.; Chakrabarty, A.N.; Motohashi, N.; Shirataki, Y. Studies on the anti-bacterial potentiality of isoflavones. Int. J. Antimicrob. Agents, 2004, 23(1), 99-102.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.06.003] [PMID: 14732323]
[9]
Li, H.Q.; Xue, J.Y.; Shi, L.; Gui, S.Y.; Zhu, H.L. Synthesis, crystal structure and antimicrobial activity of deoxybenzoin derivatives from genistein. Eur. J. Med. Chem., 2008, 43(3), 662-667.
[http://dx.doi.org/10.1016/j.ejmech.2007.05.013] [PMID: 17624635]
[10]
Wang, T.; Liu, Y.; Li, X.; Xu, Q.; Feng, Y.; Yang, S. Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities. J. Sci. Food Agric., 2018, 98(5), 2043-2047.
[http://dx.doi.org/10.1002/jsfa.8663] [PMID: 28885710]
[11]
da Silva, B.; Kupski, L.; Badiale-Furlong, E. Central Composite Design-Desirability Function Approach for optimum ultrasound-assisted extraction of daidzein and genistein from soybean and their antimycotoxigenic potential. Food Anal. Methods, 2019, 12(1), 258-270.
[http://dx.doi.org/10.1007/s12161-018-1357-0]
[12]
Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother., 2016, 82, 379-392.
[http://dx.doi.org/10.1016/j.biopha.2016.05.023] [PMID: 27470376]
[13]
Paniagua-Perez, R.; Reyes-Cadena, S.; Martinez-Canseco, C.; Reyes-Legorreta, C.; Martinez-Castro, J.; Madrigal-Santillan, E.O.; Morales-Gonzalez, J.A.; Cristobal-Luna, J.M.; Alvarez-Gonzalez, I.; Madrigal-Bujaidar, E. Cellular protection induced by genistein in mouse and its antioxidant capacity. Pharmacogn. Mag., 2019, 15(66), 520-526.
[http://dx.doi.org/10.4103/pm.pm_78_19]
[14]
Danciu, C.; Avram, S.; Pavel, I.Z.; Ghiulai, R.; Dehelean, C.A.; Ersilia, A.; Minda, D.; Petrescu, C.; Moaca, E.A.; Soica, C. Main isofla-vones found in dietary sources as natural anti-inflammatory agents. Curr. Drug Targets, 2018, 19(7), 841-853.
[http://dx.doi.org/10.2174/1389450118666171109150731] [PMID: 29141545]
[15]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[16]
Sureda, A.; Sanches Silva, A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Hypotensive effects of genistein: From chemistry to medicine. Chem. Biol. Interact., 2017, 268, 37-46.
[http://dx.doi.org/10.1016/j.cbi.2017.02.012] [PMID: 28242380]
[17]
Kuriyama, S.; Morio, Y.; Toba, M.; Nagaoka, T.; Takahashi, F.; Iwakami, S.; Seyama, K.; Takahashi, K. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system. Am. J. Physiol. Lung Cell. Mol. Physiol., 2014, 306(11), L996-L1005.
[http://dx.doi.org/10.1152/ajplung.00276.2013] [PMID: 24705719]
[18]
Zhang, M.; Wu, Y.; Wang, M.; Wang, Y.; Tausif, R.; Yang, Y. Genistein rescues hypoxia-induced pulmonary arterial hypertension through estrogen receptor and β-adrenoceptor signaling. J. Nutr. Biochem., 2018, 58, 110-118.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.016] [PMID: 29886191]
[19]
Miao, Q.; Li, J.G.; Miao, S.; Hu, N.; Zhang, J.; Zhang, S.; Xie, Y.H.; Wang, J.B.; Wang, S.W. The bone-protective effect of genistein in the animal model of bilateral ovariectomy: roles of phytoestrogens and PTH/PTHR1 against post-menopausal osteoporosis. Int. J. Mol. Sci., 2012, 13(1), 56-70.
[http://dx.doi.org/10.3390/ijms13010056] [PMID: 22312238]
[20]
Bitto, A.; Burnett, B.P.; Polito, F.; Levy, R.M.; Marini, H.; Di Stefano, V.; Irrera, N.; Armbruster, M.A.; Minutoli, L.; Altavilla, D.; Squadrito, F. Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: A compara-tive study with alendronate. Br. J. Pharmacol., 2009, 156(8), 1287-1295.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00100.x] [PMID: 19302595]
[21]
Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[22]
Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 95(3), 270-276.
[http://dx.doi.org/10.1016/j.nlm.2010.12.001] [PMID: 21144907]
[23]
Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; Lloret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s dis-ease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[24]
Mukund, V.; Mukund, D.; Sharma, V.; Mannarapu, M.; Alam, A. Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. Hematol., 2017, 119, 13-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.09.004] [PMID: 29065980]
[25]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[26]
Dixon, R.A.; Sumner, L.W. Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol., 2003, 131(3), 878-885.
[http://dx.doi.org/10.1104/pp.102.017319] [PMID: 12644640]
[27]
Filip, K.; Kleczkowska-Plichta, E.; Arazny, Z.; Grynkiewicz, G.; Polowczyk, M.; Gabarsld, K.; Trzcinska, K. Technical process for prepa-ration of genistein. Org. Process Res. Dev., 2016, 20(7), 1354-1362.
[http://dx.doi.org/10.1021/acs.oprd.5b00425]
[28]
Zhao, H.L.; Song, X.; Zhang, Y.M.; Sheng, X. Molecular interaction between MeOH and genistein during soy extraction. RSC Advances, 2019, 9(67), 39170-39179.
[http://dx.doi.org/10.1039/C9RA05976H]
[29]
Barkhem, T.; Carlsson, B.; Nilsson, Y.; Enmark, E.; Gustafsson, J.; Nilsson, S. Differential response of estrogen receptor alpha and estro-gen receptor beta to partial estrogen agonists/antagonists. Mol. Pharmacol., 1998, 54(1), 105-112.
[http://dx.doi.org/10.1124/mol.54.1.105] [PMID: 9658195]
[30]
Kuiper, G.G.; Carlsson, B.; Grandien, K.; Enmark, E.; Häggblad, J.; Nilsson, S.; Gustafsson, J.A. Comparison of the ligand binding speci-ficity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 1997, 138(3), 863-870.
[http://dx.doi.org/10.1210/endo.138.3.4979] [PMID: 9048584]
[31]
Basu, P.; Maier, C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed. Pharmacother., 2018, 107, 1648-1666.
[http://dx.doi.org/10.1016/j.biopha.2018.08.100] [PMID: 30257383]
[32]
Gu, H.F.; Mao, X.Y.; Du, M. Prevention of breast cancer by dietary polyphenols-role of cancer stem cells. Crit. Rev. Food Sci. Nutr., 2020, 60(5), 810-825.
[http://dx.doi.org/10.1080/10408398.2018.1551778] [PMID: 30632783]
[33]
Qiu, S.; Jiang, C. Soy and isoflavones consumption and breast cancer survival and recurrence: A systematic review and meta-analysis. Eur. J. Nutr., 2019, 58(8), 3079-3090.
[http://dx.doi.org/10.1007/s00394-018-1853-4] [PMID: 30382332]
[34]
Chae, H.S.; Xu, R.; Won, J.Y.; Chin, Y.W.; Yim, H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int. J. Mol. Sci., 2019, 20(10), 2420.
[http://dx.doi.org/10.3390/ijms20102420] [PMID: 31100782]
[35]
Mukund, V. Genistein: Its role in breast cancer growth and metastasis. Curr. Drug Metab., 2020, 21(1), 6-10.
[http://dx.doi.org/10.2174/1389200221666200120121919] [PMID: 31987018]
[36]
Tang, H.; Wang, S.; Li, X.; Zou, T.; Huang, X.; Zhang, W.; Chen, Y.; Yang, C.; Pan, Q.; Liu, H.F. Prospects of and limitations to the clini-cal applications of genistein. Discov. Med., 2019, 27(149), 177-188.
[PMID: 31361980]
[37]
Motlekar, N.; Khan, M.A.; Youan, B.B.C. Preparation and characterization of genistein containing poly(ethylene glycol) microparticles. J. Appl. Polym. Sci., 2006, 101(3), 2070-2078.
[http://dx.doi.org/10.1002/app.23827]
[38]
Grynkiewicz, G.; Zegrocka-Stendel, O.; Pucko, W.; Ramza, J.; Koscielecka, A.; Kolodziejski, W.; Wozniak, K. X-ray and C-13 CP MAS investigations of structure of two genistein derivatives. J. Mol. Struct., 2004, 694(1-3), 121-129.
[http://dx.doi.org/10.1016/j.molstruc.2004.03.015]
[39]
Singh, H.; Singh, S.; Srivastava, A.; Tandon, P.; Bharti, P.; Kumar, S.; Dev, K.; Maurya, R. Study of hydrogen-bonding, vibrational dy-namics and structure activity relationship of genistein using spectroscopic techniques coupled with DFT. J. Mol. Struct., 2017, 1130, 929-939.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.077]
[40]
Nan, G.J.; Shi, J.; Huang, Y.R.; Sun, J.; Lv, J.H.; Yang, G.D.; Li, Y.P. Dissociation constants and solubilities of daidzein and genistein in different solvents. J. Chem. Eng. Data, 2014, 59(4), 1304-1311.
[http://dx.doi.org/10.1021/je4010905]
[41]
Zhang, L.N.; Xiao, Z.P.; Ding, H.; Ge, H.M.; Xu, C.; Zhu, H.L.; Tan, R.X. Synthesis and cytotoxic evaluation of novel 7-O-modified genistein derivatives. Chem. Biodivers., 2007, 4(2), 248-255.
[http://dx.doi.org/10.1002/cbdv.200790030] [PMID: 17311236]
[42]
Badeau, M.; Tikkanen, M.J.; Appt, S.E.; Adlercreutz, H.; Clarkson, T.B.; Hoikkala, A.; Wähälä, K.; Mikkola, T.S. Determination of plasma genistein fatty acid esters following administration of genistein or genistein 4′7-O-dioleate in monkeys. Biochim. Biophys. Acta, 2005, 1738(1-3), 115-120.
[http://dx.doi.org/10.1016/j.bbalip.2005.10.005] [PMID: 16326136]
[43]
Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1280-1293.
[http://dx.doi.org/10.1080/10408398.2014.989958] [PMID: 26565435]
[44]
Hsieh, C-J.; Hsu, Y-L.; Huang, Y-F.; Tsai, E-M. Molecular mechanisms of anticancer effects of phytoestrogens in breast cancer. Curr. Protein Pept. Sci., 2018, 19(3), 323-332.
[http://dx.doi.org/10.2174/1389203718666170111121255] [PMID: 28079011]
[45]
Sheikh, I.; Sharma, V.; Tuli, H.S.; Aggarwal, D.; Sankhyan, A.; Vyas, P.; Sharma, A.K.; Bishayee, A. Cancer chemoprevention by flavo-noids, dietary polyphenols and terpenoids. Biointerface Res. Appl. Chem., 2021, 11(1), 8502-8537.
[46]
Yan, G.R.; Yin, X.F.; Xiao, C.L.; Tan, Z.L.; Xu, S.H.; He, Q.Y. Identification of novel signaling components in genistein-regulated signal-ing pathways by quantitative phosphoproteomics. J. Proteomics, 2011, 75(2), 695-707.
[http://dx.doi.org/10.1016/j.jprot.2011.09.008] [PMID: 21964256]
[47]
Kaushik, S.; Shyam, H.; Sharma, R.; Balapure, A.K. Dietary isoflavone daidzein synergizes centchroman action via induction of apoptosis and inhibition of PI3K/Akt pathway in MCF-7/MDA MB-231 human breast cancer cells. Phytomedicine, 2018, 40, 116-124.
[http://dx.doi.org/10.1016/j.phymed.2018.01.007] [PMID: 29496164]
[48]
Richman, J.; Dowsett, M. Beyond 5 years: enduring risk of recurrence in oestrogen receptor-positive breast cancer. Nat. Rev. Clin. Oncol., 2019, 16(5), 296-311.
[http://dx.doi.org/10.1038/s41571-018-0145-5] [PMID: 30563978]
[49]
Jiang, H.; Fan, J.; Cheng, L.; Hu, P.; Liu, R. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive breast cancer cells. OncoTargets Ther., 2018, 11, 8153-8163.
[http://dx.doi.org/10.2147/OTT.S182239] [PMID: 30532556]
[50]
Liu, R. Xu, X.; Liang, C.; Chen, X.; Yu, X.; Zhong, H.; Xu, W.; Cheng, Y.; Wang, W.; Wu, Y.; Yu, L.; Hu, X. ERβ modulates genistein’s cisplatin-enhancing activities in breast cancer MDA-MB-231 cells via P53-independent pathway. Mol. Cell. Biochem., 2019, 456(1-2), 205-216.
[http://dx.doi.org/10.1007/s11010-019-03505-y] [PMID: 30737644]
[51]
Mal, R.; Magner, A.; David, J.; Datta, J.; Vallabhaneni, M.; Kassem, M.; Manouchehri, J.; Willingham, N.; Stover, D.; Vandeusen, J.; Sar-desai, S.; Williams, N.; Wesolowski, R.; Lustberg, M.; Ganju, R.K.; Ramaswamy, B.; Cherian, M.A. Estrogen receptor beta (ER beta): A ligand activated tumor suppressor. Front. Oncol., 2020, 10, 587386.
[http://dx.doi.org/10.3389/fonc.2020.587386] [PMID: 33194742]
[52]
Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Oliver, J.; Roca, P. The phytoestrogen genistein affects breast cancer cells treatment depending on the ER alpha/ER beta ratio. J. Cell. Biochem., 2016, 117(1), 218-229.
[http://dx.doi.org/10.1002/jcb.25268] [PMID: 26100284]
[53]
Russo, M.; Russo, G.L.; Daglia, M.; Kasi, P.D.; Ravi, S.; Nabavi, S.F.; Nabavi, S.M. Understanding genistein in cancer: The “good” and the “bad” effects: A review. Food Chem., 2016, 196, 589-600.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.085] [PMID: 26593532]
[54]
Gao, L.; Tu, Y.; Ågren, H.; Eriksson, L.A. Characterization of agonist binding to His524 in the estrogen receptor α ligand binding domain. J. Phys. Chem. B, 2012, 116(16), 4823-4830.
[http://dx.doi.org/10.1021/jp300895g] [PMID: 22482773]
[55]
Ertl, P.; Altmann, E.; McKenna, J.M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem., 2020, 63(15), 8408-8418.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00754] [PMID: 32663408]
[56]
Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-containing drugs approved by the FDA in 2018. Chemistry, 2019, 25(51), 11797-11819.
[http://dx.doi.org/10.1002/chem.201901840] [PMID: 31099931]
[57]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[58]
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
[59]
Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 443-470.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.443] [PMID: 11264465]
[60]
Yang, Y-Y.; Tsai, T-H. Enterohepatic circulation and pharmacokinetics of genistin and genistein in rats. ACS Omega, 2019, 4(19), 18428-18433.
[http://dx.doi.org/10.1021/acsomega.9b02762] [PMID: 31720546]
[61]
Vajdos, F.F.; Hoth, L.R.; Geoghegan, K.F.; Simons, S.P.; LeMotte, P.K.; Danley, D.E.; Ammirati, M.J.; Pandit, J. The 2.0 A crystal struc-ture of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci., 2007, 16(5), 897-905.
[http://dx.doi.org/10.1110/ps.062729207] [PMID: 17456742]
[62]
Crawford, B.H.; Hussain, A.K.; Jideama, N.M. Evidence of a genomic biomarker in normal human epithelial mammary cell line, MCF-10A, that is absent in the human breast cancer cell line, MCF-7. J. Biomed. Biotechnol., 2006, 2006(2), 43181.
[http://dx.doi.org/10.1155/JBB/2006/43181] [PMID: 16883051]
[63]
Ciardiello, F.; McGeady, M.L.; Kim, N.; Basolo, F.; Hynes, N.; Langton, B.C.; Yokozaki, H.; Saeki, T.; Elliott, J.W.; Masui, H. Transform-ing growth factor-alpha expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras protooncogene but not by the c-neu protooncogene, and overexpression of the transforming growth factor-alpha complementary DNA leads to transfor-mation. Cell Growth Differ., 1990, 1(9), 407-420.
[PMID: 1981145]
[64]
Lee, A. V.; Oesterreich, S.; Davidson, N.E. MCF-7 cells-changing the course of breast cancer research and care for 45 years. JNIC-J. Nat. Cancer I., 2015, 107(7)
[65]
Cailleau, R.; Young, R.; Olivé, M.; Reeves, W.J., Jr Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst., 1974, 53(3), 661-674.
[http://dx.doi.org/10.1093/jnci/53.3.661] [PMID: 4412247]
[66]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[http://dx.doi.org/10.1186/bcr2889] [PMID: 21884641]
[67]
Korch, C.; Hall, E.M.; Dirks, W.G.; Ewing, M.; Faries, M.; Varella-Garcia, M.; Robinson, S.; Storts, D.; Turner, J.A.; Wang, Y.; Burnett, E.C.; Healy, L.; Kniss, D.; Neve, R.M.; Nims, R.W.; Reid, Y.A.; Robinson, W.A.; Capes-Davis, A. Authentication of M14 melanoma cell line proves misidentification of MDA-MB-435 breast cancer cell line. Int. J. Cancer, 2018, 142(3), 561-572.
[http://dx.doi.org/10.1002/ijc.31067] [PMID: 28940260]
[68]
Subik, K.; Lee, J-F.; Baxter, L.; Strzepek, T.; Costello, D.; Crowley, P.; Xing, L.; Hung, M-C.; Bonfiglio, T.; Hicks, D.G.; Tang, P. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl.), 2010, 4, 35-41.
[http://dx.doi.org/10.1177/117822341000400004] [PMID: 20697531]
[69]
Smith, S.E.; Mellor, P.; Ward, A.K.; Kendall, S.; McDonald, M.; Vizeacoumar, F.S.; Vizeacoumar, F.J.; Napper, S.; Anderson, D.H. Mo-lecular characterization of breast cancer cell lines through multiple omic approaches. Breast Cancer Res., 2017, 19(1), 65.
[http://dx.doi.org/10.1186/s13058-017-0855-0] [PMID: 28583138]
[70]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nab-avi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[71]
Zhang, J.; Su, H.; Li, Q.; Li, J.; Zhao, Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF 1α/VEGF and NF κB/COX 2 signaling pathways. Mol. Med. Rep., 2017, 15(4), 2296-2302.
[http://dx.doi.org/10.3892/mmr.2017.6260] [PMID: 28259980]
[72]
Smith, A.L.; D’Angelo, N.D.; Bo, Y.Y.; Booker, S.K.; Cee, V.J.; Herberich, B.; Hong, F.T.; Jackson, C.L.M.; Lanman, B.A.; Liu, L.; Nishimura, N.; Pettus, L.H.; Reed, A.B.; Tadesse, S.; Tamayo, N.A.; Wurz, R.P.; Yang, K.; Andrews, K.L.; Whittington, D.A.; McCarter, J.D.; Miguel, T.S.; Zalameda, L.; Jiang, J.; Subramanian, R.; Mullady, E.L.; Caenepeel, S.; Freeman, D.J.; Wang, L.; Zhang, N.; Wu, T.; Hughes, P.E.; Norman, M.H. Structure-based design of a novel series of potent, selective inhibitors of the class I phosphatidylinositol 3-kinases. J. Med. Chem., 2012, 55(11), 5188-5219.
[http://dx.doi.org/10.1021/jm300184s] [PMID: 22548365]
[73]
Park, C.; Cha, H.J.; Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Hong, S.H.; Jeong, J.W.; Han, M.H.; Choi, S.H.; Jin, C.Y.; Kim, G.Y.; Choi, Y.H. Induction of G2/M cell cycle arrest and apoptosis by genistein in human bladder cancer T24 cells through inhibition of the ROS-dependent PI3k/Akt signal transduction pathway. Antioxidants, 2019, 8(9), 327.
[http://dx.doi.org/10.3390/antiox8090327] [PMID: 31438633]
[74]
Song, S.M.; Cheng, D.; Wei, S.M.; Wang, X.F.; Niu, Y.B.; Qi, W.T.; Wang, C.L. Preventive effect of genistein on AOM/DSS-induced colon-ic neoplasm by modulating the PI3K/AKT/FOXO3 signaling pathway in mice fed a high-fat diet. J. Funct. Foods, 2018, 46, 237-242.
[http://dx.doi.org/10.1016/j.jff.2018.05.006]
[75]
Chan, K.K.L.; Siu, M.K.Y.; Jiang, Y.X.; Wang, J.J.; Leung, T.H.Y.; Ngan, H.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int., 2018, 18, 65.
[http://dx.doi.org/10.1186/s12935-018-0559-2] [PMID: 29743815]
[76]
Park, S.S.; Kim, Y.N.; Jeon, Y.K.; Kim, Y.A.; Kim, J.E.; Kim, H.; Kim, C.W. Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma. Cancer Chemother. Pharmacol., 2005, 56(3), 271-278.
[http://dx.doi.org/10.1007/s00280-004-0974-z] [PMID: 15883821]
[77]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy