Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Case Report

Combined Treatment with Laser Ablation and Tyrosine-Kinase Inhibitor as A Novel Multimodality Approach to Locally Advanced Thyroid Cancer: A Case Report

Author(s): Agnese Persichetti, Salvatore Monti, Carmela Coccaro, Federica Presciuttini, Maria Grazia Deiana, Giancarlo Bizzarri, Antonio Bianchini, Vincenzo Triggiani, Enrico Papini* and Rinaldo Guglielmi

Volume 22, Issue 3, 2022

Published on: 20 January, 2022

Page: [357 - 362] Pages: 6

DOI: 10.2174/1871530321666210830093522

Price: $65

Abstract

Background: Direct locoregional treatments were recently proposed for the local control of cervical and distant metastasis of thyroid cancer, but data on their use as part of a multimodality approach for primary thyroid tumors are poor. In this feasibility study, laser ablation (LTA) was successfully used for the initial debulking of unresectable radioiodine-refractory thyroid cancer in sequential therapy with Tyrosine-Kinase Inhibitors (TKI).

Case Presentation: A 69-year-old woman underwent partial resection of papillary thyroid cancer with extensive tracheal infiltration. Post-treatment whole-body scan (131I, 8140 MBq) showed the absence of cervical thyroid uptake. The patient experienced a rapid increase in her cervical mass associated with dysphonia, dyspnea, and dysphagia. Due to a concomitant severe hypertensive state and cardiac failure, the patient was treated with LTA after a multidisciplinary consultation. After local anesthesia, two 300 nm optic fibers were inserted into the lesion through 21G spinal needles. Two illuminations with 4-watt output power and 3600 Joules energy delivery were performed with a diode-laser source. LTA resulted in rapid cancer debulking, and mass volume decreased from 23.9 to 7.5 mL resulting in significant improvement of pressure symptoms. Three months later, the patient was started on lenvatinib due to the initial regrowth of the tumor mass. The cervical tumor burden was controlled by TKI for 20 months when a rapid disease progression occurred, and the patient died.

Discussion: Locally advanced, unresectable, and radioiodine-refractory thyroid tumors can be managed with a novel multimodality approach. The initial debulking with LTA of the locally aggressive disease results in rapid control of the tumor burden threatening patients’ life and is effectively followed by long-term control with TKI treatment.

Conclusion: Based on this experience, sequential multimodality treatment with an initial locally directed laser ablation procedure followed by TKI therapy may be considered as a salvage option in patients with unresectable and rapidly progressive RR thyroid tumors.

Keywords: Thyroid cancer, laser ablation, thermal ablation, locally advanced cancer, multimodality treatment, ultrasound- guided procedure.

Graphical Abstract

[1]
Olson, E.; Wintheiser, G.; Wolfe, K.M.; Droessler, J.; Silberstein, P.T. Epidemiology of thyroid cancer: a review of the national cancer database, 2000-2013. Cureus, 2019, 11(2), e4127.
[http://dx.doi.org/10.7759/cureus.4127] [PMID: 31049276]
[2]
Gruber, J.J.; Colevas, A.D. Differentiated thyroid cancer: focus on emerging treatments for radioactive iodine-refractory patients. Oncologist, 2015, 20(2), 113-126.
[http://dx.doi.org/10.1634/theoncologist.2014-0313] [PMID: 25616432]
[3]
Carrillo, J.F.; Flores, J.M.; Espinoza, G.; Vázquez-Romo, R.; Ramírez-Ortega, M.C.; Carrillo, L.C.; Cortés-García, B.Y.; Ochoa-Carrillo, F.J.; Oñate-Ocaña, L.F. Treatment of unresectable differentiated thyroid carcinoma with upfront external radiotherapy and Salvage Surgery: A STROBE-Compliant Retrospective Cohort Study. Front Oncol, 2021, 19, 572958.
[http://dx.doi.org/10.3389/fonc.2020.572958]
[4]
Ibrahimpasic, T.; Ghossein, R.; Shah, J.P.; Ganly, I. Poorly differentiated carcinoma of the thyroid gland: current status and future prospects. Thyroid, 2019, 29(3), 311-321.
[http://dx.doi.org/10.1089/thy.2018.0509] [PMID: 30747050]
[5]
Roth, E.M.; Lubitz, C.C.; Swan, J.S.; James, B.C. Patient-reported quality-of-life outcome measures in the thyroid cancer population. Thyroid, 2020, 30(10), 1414-1431.
[http://dx.doi.org/10.1089/thy.2020.0038] [PMID: 32292128]
[6]
Haddad, R.I.; Nasr, C.; Bischoff, L.; Busaidy, N.L.; Byrd, D.; Callender, G.; Dickson, P.; Duh, Q.Y.; Ehya, H.; Goldner, W.; Haymart, M.; Hoh, C.; Hunt, J.P.; Iagaru, A.; Kandeel, F.; Kopp, P.; Lamonica, D.M.; McIver, B.; Raeburn, C.D.; Ridge, J.A.; Ringel, M.D.; Scheri, R.P.; Shah, J.P.; Sippel, R.; Smallridge, R.C.; Sturgeon, C.; Wang, T.N.; Wirth, L.J.; Wong, R.J.; Johnson-Chilla, A.; Hoffmann, K.G.; Gurski, L.A. NCCN guidelines insights: thyroid carcinoma, Version 2.2018. J. Natl. Compr. Canc. Netw., 2018, 16(12), 1429-1440.
[http://dx.doi.org/10.6004/jnccn.2018.0089] [PMID: 30545990]
[7]
Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; Sherman, S.I.; Smit, J.W.; Chung, J.; Kappeler, C.; Peña, C.; Molnár, I.; Schlumberger, M.J. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet, 2014, 384(9940), 319-328.
[http://dx.doi.org/10.1016/S0140-6736(14)60421-9] [PMID: 24768112]
[8]
Ito, Y.; Suzuki, S.; Ito, K.; Imai, T.; Okamoto, T.; Kitano, H.; Sugitani, I.; Sugino, K.; Tsutsui, H.; Hara, H.; Yoshida, A.; Shimizu, K. Tyrosine-kinase inhibitors to treat radioiodine-refracted, metastatic, or recurred and progressive differentiated thyroid carcinoma. Endocr. J., 2016, 63(7), 597-602.
[http://dx.doi.org/10.1507/endocrj.EJ16-0064] [PMID: 27210070]
[9]
Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; Taylor, M.H.; Kim, S.B.; Krzyzanowska, M.K.; Dutcus, C.E.; de las Heras, B.; Zhu, J.; Sherman, S.I. Lenvatinib Versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med., 2015, 372(7), 621-630.
[http://dx.doi.org/10.1056/NEJMoa1406470] [PMID: 25671254]
[10]
Berdelou, A.; Borget, I.; Godbert, Y.; Nguyen, T.; Garcia, M.E.; Chougnet, C.N.; Ferru, A.; Buffet, C.; Chabre, O.; Huillard, O.; Leboulleux, S.; Schlumberger, M. Lenvatinib for the treatment of radioiodine-refractory thyroid cancer in real-life practice. Thyroid, 2018, 28(1), 72-78.
[http://dx.doi.org/10.1089/thy.2017.0205] [PMID: 29048237]
[11]
Nervo, A.; Gallo, M.; Samà, M.T.; Felicetti, F.; Alfano, M.; Migliore, E.; Marchisio, F.; Berardelli, R.; Arvat, E.; Piovesan, A. Lenvatinib in advanced radioiodine-refractory thyroid cancer: A snapshot of real-life clinical practice. Anticancer Res., 2018, 38(3), 1643-1649.
[PMID: 29491097]
[12]
Locati, L.D.; Piovesan, A.; Durante, C.; Bregni, M.; Castagna, M.G.; Zovato, S.; Giusti, M.; Ibrahim, T.; Puxeddu, E.; Fedele, G.; Pellegriti, G.; Rinaldi, G.; Giuffrida, D.; Verderame, F.; Bertolini, F.; Bergamini, C.; Nervo, A.; Grani, G.; Rizzati, S.; Morelli, S.; Puliafito, I.; Elisei, R. Real-world efficacy and safety of lenvatinib: data from a compassionate use in the treatment of radioactive iodine-refractory differentiated thyroid cancer patients in Italy. Eur. J. Cancer, 2019, 118, 35-40.
[http://dx.doi.org/10.1016/j.ejca.2019.05.031] [PMID: 31299580]
[13]
Aydemirli, M.D.; Kapiteijn, E.; Ferrier, K.R.M.; Ottevanger, P.B.; Links, T.P.; van der Horst-Schrivers, A.N.A.; Broekman, K.E.; Groenwold, R.H.H.; Zwaveling, J. Effectiveness and toxicity of lenvatinib in refractory thyroid cancer: Dutch real-life data. Eur. J. Endocrinol., 2020, 182(2), 131-138.
[http://dx.doi.org/10.1530/EJE-19-0763] [PMID: 31751307]
[14]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[15]
Kiess, A.P.; Agrawal, N.; Brierley, J.D.; Duvvuri, U.; Ferris, R.L.; Genden, E.; Wong, R.J.; Tuttle, R.M.; Lee, N.Y.; Randolph, G.W. External-beam radiotherapy for differentiated thyroid cancer locoregional control: A statement of the American Head and Neck Society. Head Neck, 2016, 38(4), 493-498.
[http://dx.doi.org/10.1002/hed.24357] [PMID: 26716601]
[16]
Yang, Z.; Flores, J.; Katz, S.; Nathan, C.A.; Mehta, V. Comparison of survival outcomes following postsurgical radioactive iodine versus external beam radiation in stage IV differentiated thyroid carcinoma. Thyroid, 2017, 27(7), 944-952.
[http://dx.doi.org/10.1089/thy.2016.0650] [PMID: 28446057]
[17]
Papini, E.; Bianchini, A.; Guglielmi, R.; Pacella, C.M.; Misischi, I.; Bizzarri, G. Image-guided mini-invasive ablation of thyroid tumors and distant metastases. Thyroid Cancer; Carpi, A.; Mechanick, J.L., Eds.; Taylor and Francis, Meltan Parh, 2011, pp. 213-230.
[http://dx.doi.org/10.1201/b10945-14]
[18]
Mauri, G.; Cova, L.; Ierace, T.; Baroli, A.; Di Mauro, E.; Pacella, C.M.; Goldberg, S.N.; Solbiati, L. Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc. Intervent. Radiol., 2016, 39(7), 1023-1030.
[http://dx.doi.org/10.1007/s00270-016-1313-6] [PMID: 26911732]
[19]
Park, K.W.; Shin, J.H.; Han, B.K.; Ko, E.Y.; Chung, J.H. Inoperable symptomatic recurrent thyroid cancers: preliminary result of radiofrequency ablation. Ann. Surg. Oncol., 2011, 18(9), 2564-2568.
[http://dx.doi.org/10.1245/s10434-011-1619-1] [PMID: 21347777]
[20]
Baek, J.H.; Kim, Y.S.; Sung, J.Y.; Choi, H.; Lee, J.H. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. AJR Am. J. Roentgenol., 2011, 197(2), W331-6.
[http://dx.doi.org/10.2214/AJR.10.5345] [PMID: 21785061]
[21]
Papini, E.; Bizzarri, G.; Bianchini, A.; Valle, D.; Misischi, I.; Guglielmi, R.; Salvatori, M.; Solbiati, L.; Crescenzi, A.; Pacella, C.M.; Gharib, H. Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer. J. Clin. Endocrinol. Metab., 2013, 98(1), E92-E97.
[http://dx.doi.org/10.1210/jc.2012-2991] [PMID: 23150695]
[22]
Persichetti, A.; Bizzarri, G.; Guglielmi, R.; Barnabei, A.; Bianchini, A.; Coccaro, C.; Appetecchia, M.; Papini, E. Ultrasound-guided laser ablation for local control of neck recurrences of medullary thyroid cancer. A feasibility study. Int. J. Hyperthermia, 2018, 35(1), 480-492.
[http://dx.doi.org/10.1080/02656736.2018.1508759] [PMID: 30204004]
[23]
Pacella, C.M.; Di Stasio, E.; Guglielmi, R.; Baroli, A.; Pedrazzini, L.; Misischi, I.; Persichetti, A.; Papini, E. Role of laser ablation in multimodal treatment of radioiodine- refractory bone metastases of thyroid cancer: A retrospective study. Endocrine, 2020, 70(2), 338-347.
[http://dx.doi.org/10.1007/s12020-020-02314-4] [PMID: 32378155]
[24]
Rogers, S.N.; Lowe, D. The University of Washington quality of life (UW- QoL) scale for "Handbook of Disease Burdens and Quality of Life Measures". 2010. Available from: http://refworks.springer.com/DiseaseBurdens/
[25]
Na, D.G.; Lee, J.H.; Jung, S.L.; Kim, J.H.; Sung, J.Y.; Shin, J.H.; Kim, E.K.; Lee, J.H.; Kim, D.W.; Park, J.S.; Kim, K.S.; Baek, S.M.; Lee, Y.; Chong, S.; Sim, J.S.; Huh, J.Y.; Bae, J.I.; Kim, K.T.; Han, S.Y.; Bae, M.Y.; Kim, Y.S.; Baek, J.H. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J. Radiol., 2012, 13(2), 117-125.
[http://dx.doi.org/10.3348/kjr.2012.13.2.117] [PMID: 22438678]
[26]
Papini, E.; Monpeyssen, H.; Frasoldati, A.; Hegedüs, L. European thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur. Thyroid J., 2020, 9(4), 172-185.
[http://dx.doi.org/10.1159/000508484] [PMID: 32903999]
[27]
Choi, Y.; Jung, S.L. Efficacy and safety of thermal ablation techniques for the treatment of primary papillary thyroid microcarcinoma: a systematic review and meta-analysis. Thyroid, 2020, 30(5), 720-731.
[http://dx.doi.org/10.1089/thy.2019.0707] [PMID: 31801432]
[28]
Tong, M.; Li, S.; Li, Y.; Li, Y.; Feng, Y.; Che, Y. Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: A systematic review and meta-analysis. Int. J. Hyperthermia, 2019, 36(1), 1278-1286.
[http://dx.doi.org/10.1080/02656736.2019.1700559] [PMID: 31826684]
[29]
Mauri, G.; Hegedüs, L.; Bandula, S.; Cazzato, R.L.; Czarniecka, A.; Dudeck, O.; Fugazzola, L.; Netea-Maier, R.; Russ, G.; Wallin, G.; Papini, E. European thyroid association and cardiovascular and interventional radiological society of europe 2021 clinical practice guideline for the use of minimally invasive treatments in malignant thyroid lesions. Eur. Thyroid J., 2021, 10(3), 185-197.
[http://dx.doi.org/10.1159/000516469] [PMID: 34178704]
[30]
Mauri, G.; Hegedüs, L.; Cazzato, R.L.; Papini, E. Minimally invasive treatment procedures have come of age for thyroid malignancy: the 2021 clinical practice guideline for the use of minimally invasive treatments in malignant thyroid lesions. Cardiovasc. Intervent. Radiol., 2021, 27(9), 1481-1484.
[http://dx.doi.org/10.1007/s00270-021-02870-w] [PMID: 34121141]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy