Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

An Intracellular Tripeptide Arg-His-Trp of Serum Origin Detected in MCF-7 Cells is a Possible Agonist to β2 Adrenoceptor

Author(s): Hritik Chandore, Ajay Kumar Raj, Kiran Bharat Lokhande, Krishna Venkateswara Swamy, Jayanta Kumar Pal and Nilesh Kumar Sharma*

Volume 28, Issue 10, 2021

Published on: 16 August, 2021

Page: [1191 - 1202] Pages: 12

DOI: 10.2174/0929866528666210816114901

Price: $65

Abstract

Background: The need for agonists and antagonists of β2 adrenoceptor (β2AR) is warranted in various human disease conditions, including cancer, cardiovascular and other metabolic disorders. However, the sources of agonists of β2AR are diverse in nature. Interestingly, there is a complete gap in the exploration of agonists of β2AR from serum that is a well-known component of culture media that supports growth and proliferation of normal and cancer cells in vitro.

Methods: In this paper, we employed a novel vertical tube gel electrophoresis (VTGE)-assisted purification of intracellular metabolites of MCF-7 cells grown in vitro in complete media with fetal bovine serum (FBS). Intracellular metabolites of MCF-7 cells were then analyzed by LC-HRMS. Identified intracellular tripeptides of FBS origin were evaluated for their molecular interactions with various extracellular and intracellular receptors, including β2AR (PDB ID: 2RH1) by employing molecular docking and molecular dynamics simulations (MDS). A known agonist of β2AR, isoproterenol was used as a positive control in molecular docking and MDS analyses.

Results: We report here the identification of a few novel intracellular tripeptides, namely Arg-His- Trp, (PubChem CID-145453842), Pro-Ile-Glu, (PubChem CID-145457492), Cys-Gln-Gln, (PubChem CID-71471965), Glu-Glu-Lys, (PubChem CID-11441068) and Gly-Cys-Leu (PubChem CID-145455600) of FBS origin in MCF-7 cells. Molecular docking and MDS analyses revealed that among these molecules, the tripeptide Arg-His-Trp shows a favorable binding affinity with β2AR (-9.8 Kcal/mol). The agonistic effect of Arg-His-Trp is significant and comparable with that of a known agonist of β2AR, isoproterenol.

Conclusion: In conclusion, we identified a unique Arg-His-Trp tripeptide of FBS origin in MCF-7 cells by employing a novel approach. This unique tripeptide Arg-His-Trp is suggested to be a potential agonist of β2AR and it may have applications in the context of various human diseases like bronchial asthma and chronic obstructive pulmonary disease (COPD).

Keywords: Metabolites, serum, tripeptides, breast cancer cells, agonists, adrenergic receptor, molecular dynamic simulations.

« Previous
Graphical Abstract

[1]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Sci., 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[2]
Tennant, D.A.; Durán, R.V.; Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer, 2010, 10(4), 267-277.
[http://dx.doi.org/10.1038/nrc2817] [PMID: 20300106]
[3]
Sullivan, L.B.; Gui, D.Y.; Vander Heiden, M.G. Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer, 2016, 16(11), 680-693.
[http://dx.doi.org/10.1038/nrc.2016.85] [PMID: 27658530]
[4]
Li, H.; Ning, S.; Ghandi, M.; Kryukov, G.V.; Gopal, S.; Deik, A.; Souza, A.; Pierce, K.; Keskula, P.; Hernandez, D.; Ann, J.; Shkoza, D.; Apfel, V.; Zou, Y.; Vazquez, F.; Barretina, J.; Pagliarini, R.A.; Galli, G.G.; Root, D.E.; Hahn, W.C.; Tsherniak, A.; Giannakis, M.; Schreiber, S.L.; Clish, C.B.; Garraway, L.A.; Sellers, W.R. The landscape of cancer cell line metabolism. Nat. Med., 2019, 25(5), 850-860.
[http://dx.doi.org/10.1038/s41591-019-0404-8] [PMID: 31068703]
[5]
Crujeiras, A.B.; Diaz-Lagares, A.; Stefansson, O.A.; Macias-Gonzalez, M.; Sandoval, J.; Cueva, J.; Lopez-Lopez, R.; Moran, S.; Jonasson, J.G.; Tryggvadottir, L.; Olafsdottir, E.; Tinahones, F.J.; Carreira, M.C.; Casanueva, F.F.; Esteller, M. Obesity and menopause modify the epigenomic profile of breast cancer. Endocr. Relat. Cancer, 2017, 24(7), 351-363.
[http://dx.doi.org/10.1530/ERC-16-0565] [PMID: 28442560]
[6]
Mitruka, M.; Gore, C.R.; Kumar, A.; Sarode, S.C.; Sharma, N.K. Undetectable free aromatic amino acids in nails of breast carcinoma: Biomarker discovery by a novel metabolite purification VTGE system. Front. Oncol., 2020, 10, 908.
[http://dx.doi.org/10.3389/fonc.2020.00908] [PMID: 32695662]
[7]
Pickart, L.; Thaler, M.M. Growth-modulating human plasma tripeptide: Relationship between molecular structure and DNA synthesis in hepatoma cells. FEBS Lett., 1979, 104(1), 119-122.
[http://dx.doi.org/10.1016/0014-5793(79)81096-0] [PMID: 556547]
[8]
Congote, L.F. Isolation from fetal bovine serum of a peptide similar to the alpha chain of thrombin by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 1986, 357(1), 155-160.
[http://dx.doi.org/10.1016/S0021-9673(01)95817-0] [PMID: 3711182]
[9]
Hsu, C.H.; Chen, C.; Jou, M.L.; Lee, A.Y.L.; Lin, Y.C.; Yu, Y.P.; Huang, W.T.; Wu, S.H. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res., 2005, 33(13), 4053-4064.
[http://dx.doi.org/10.1093/nar/gki725] [PMID: 16034027]
[10]
Turpeinen, A.M.; Ehlers, P.I.; Kivimäki, A.S.; Järvenpää, S.; Filler, I.; Wiegert, E.; Jähnchen, E.; Vapaatalo, H.; Korpela, R.; Wagner, F. Ile-Pro-Pro and Val-Pro-Pro tripeptide-containing milk product has acute blood pressure lowering effects in mildly hypertensive subjects. Clin. Exp. Hypertens., 2011, 33(6), 388-396.
[http://dx.doi.org/10.3109/10641963.2010.549267] [PMID: 21649532]
[11]
Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem., 2012, 32, 1-14.
[http://dx.doi.org/10.1016/j.trac.2011.08.009] [PMID: 22345829]
[12]
Fang, C.Y.; Wu, C.C.; Fang, C.L.; Chen, W.Y.; Chen, C.L. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS One, 2017, 12(6), e0178960.
[http://dx.doi.org/10.1371/journal.pone.0178960] [PMID: 28591207]
[13]
Daskalaki, E.; Pillon, N.J.; Krook, A.; Wheelock, C.E.; Checa, A. The influence of culture media upon observed cell secretome metabolite profiles: The balance between cell viability and data interpretability. Anal. Chim. Acta, 2018, 1037, 338-350.
[http://dx.doi.org/10.1016/j.aca.2018.04.034] [PMID: 30292310]
[14]
Vandewalle, B.; Revillion, F.; Lefebvre, J. Functional beta-adrenergic receptors in breast cancer cells. J. Cancer Res. Clin. Oncol., 1990, 116(3), 303-306.
[http://dx.doi.org/10.1007/BF01612908] [PMID: 2164516]
[15]
Pérez Piñero, C.; Bruzzone, A.; Sarappa, M.G.; Castillo, L.F.; Lüthy, I.A. Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br. J. Pharmacol., 2012, 166(2), 721-736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01791.x] [PMID: 22122228]
[16]
Szpunar, M.J.; Burke, K.A.; Dawes, R.P.; Brown, E.B.; Madden, K.S. The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Res. (Phila.), 2013, 6(12), 1262-1272.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0079] [PMID: 24309563]
[17]
Liu, D.; Deng, Q.; Sun, L.; Wang, T.; Yang, Z.; Chen, H.; Guo, L.; Liu, Y.; Ma, Y.; Guo, N.; Shi, M. A Her2-let-7-β2-AR circuit affects prognosis in patients with Her2-positive breast cancer. BMC Cancer, 2015, 15, 832.
[http://dx.doi.org/10.1186/s12885-015-1869-6] [PMID: 26526356]
[18]
Kim, T.H.; Gill, N.K.; Nyberg, K.D.; Nguyen, A.V.; Hohlbauch, S.V.; Geisse, N.A.; Nowell, C.J.; Sloan, E.K.; Rowat, A.C. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J. Cell Sci., 2016, 129(24), 4563-4575.
[http://dx.doi.org/10.1242/jcs.194803] [PMID: 27875276]
[19]
Castillo, LF; Rivero, EM; Goffin, V; Lüthy, IA Alpha2-adrenoceptor agonists trigger prolactin signaling in breast cancer cells. Cell Signal, 2017, 34, 76-85.7.
[20]
Gargiulo, L.; May, M.; Rivero, E.M.; Copsel, S.; Lamb, C.; Lydon, J.; Davio, C.; Lanari, C.; Lüthy, I.A.; Bruzzone, A.; Bruzzone, A.; Bruzzone, A.; Bruzzone, A.; Bruzzone, A. A novel effect of β-adrenergic receptor on mammary branching morphogenesis and its possible implications in breast cancer. J. Mammary Gland Biol. Neoplasia, 2017, 22(1), 43-57.
[http://dx.doi.org/10.1007/s10911-017-9371-1] [PMID: 28074314]
[21]
He, J.J.; Zhang, W.H.; Liu, S.L.; Chen, Y.F.; Liao, C.X.; Shen, Q.Q.; Hu, P. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol. Lett., 2017, 14(3), 3846-3852.
[http://dx.doi.org/10.3892/ol.2017.6653] [PMID: 28927156]
[22]
Clément-Demange, L.; Mulcrone, P.L.; Tabarestani, T.Q.; Sterling, J.A.; Elefteriou, F. β2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1β and selectin-dependent manner. J. Bone Oncol., 2018, 13, 1-10.
[http://dx.doi.org/10.1016/j.jbo.2018.09.002] [PMID: 30245970]
[23]
Zhou, J.; Liu, Z.; Zhang, L.; Hu, X.; Wang, Z.; Ni, H.; Wang, Y.; Qin, J. Activation of β2-adrenergic receptor promotes growth and angiogenesis in breast cancer by down-regulating ppARγ. Cancer Res. Treat., 2020, 52(3), 830-847.
[http://dx.doi.org/10.4143/crt.2019.510] [PMID: 32138468]
[24]
Ahuja, S.; Smith, S.O. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol. Sci., 2009, 30(9), 494-502.
[http://dx.doi.org/10.1016/j.tips.2009.06.003] [PMID: 19732972]
[25]
Audet, M.; Bouvier, M. Insights into signaling from the beta2-adrenergic receptor structure. Nat. Chem. Biol., 2008, 4(7), 397-403.
[http://dx.doi.org/10.1038/nchembio.97] [PMID: 18560432]
[26]
Katritch, V.; Reynolds, K.A.; Cherezov, V.; Hanson, M.A.; Roth, C.B.; Yeager, M.; Abagyan, R. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J. Mol. Recognit., 2009, 22(4), 307-318.
[http://dx.doi.org/10.1002/jmr.949] [PMID: 19353579]
[27]
Dror, R.O.; Pan, A.C.; Arlow, D.H.; Borhani, D.W.; Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D.E. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2011, 108(32), 13118-13123.
[http://dx.doi.org/10.1073/pnas.1104614108] [PMID: 21778406]
[28]
Kahsai, A.W.; Xiao, K.; Rajagopal, S.; Ahn, S.; Shukla, A.K.; Sun, J.; Oas, T.G.; Lefkowitz, R.J. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol., 2011, 7(10), 692-700.
[http://dx.doi.org/10.1038/nchembio.634] [PMID: 21857662]
[29]
Rasmussen, S.G.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; Mathiesen, J.M.; Shah, S.T.; Lyons, J.A.; Caffrey, M.; Gellman, S.H.; Steyaert, J.; Skiniotis, G.; Weis, W.I.; Sunahara, R.K.; Kobilka, B.K. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 2011, 477(7366), 549-555.
[http://dx.doi.org/10.1038/nature10361] [PMID: 21772288]
[30]
Weiss, D.R.; Ahn, S.; Sassano, M.F.; Kleist, A.; Zhu, X.; Strachan, R.; Roth, B.L.; Lefkowitz, R.J.; Shoichet, B.K. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor. ACS Chem. Biol., 2013, 8(5), 1018-1026.
[http://dx.doi.org/10.1021/cb400103f] [PMID: 23485065]
[31]
Vanni, S.; Neri, M.; Tavernelli, I.; Rothlisberger, U. Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations. PLoS Comput. Biol., 2011, 7(1), e1001053.
[http://dx.doi.org/10.1371/journal.pcbi.1001053] [PMID: 21253557]
[32]
Lebon, G.; Warne, T.; Tate, C.G. Agonist-bound structures of G protein-coupled receptors. Curr. Opin. Struct. Biol., 2012, 22(4), 482-490.
[http://dx.doi.org/10.1016/j.sbi.2012.03.007] [PMID: 22480933]
[33]
Wieland, K.; Zuurmond, H.M.; Krasel, C.; Ijzerman, A.P.; Lohse, M.J. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9276-9281.
[http://dx.doi.org/10.1073/pnas.93.17.9276] [PMID: 8799191]
[34]
Dilcan, G.; Doruker, P.; Akten, E.D. Ligand-binding affinity of alternative conformers of human β2 -adrenergic receptor in the presence of intracellular loop 3 (ICL3) and their potential use in virtual screening studies. Chem. Biol. Drug Des., 2019, 93(5), 883-899.
[http://dx.doi.org/10.1111/cbdd.13478] [PMID: 30637937]
[35]
Rasmussen, S.G.; Choi, H.J.; Fung, J.J.; Pardon, E.; Casarosa, P.; Chae, P.S.; Devree, B.T.; Rosenbaum, D.M.; Thian, F.S.; Kobilka, T.S.; Schnapp, A.; Konetzki, I.; Sunahara, R.K.; Gellman, S.H.; Pautsch, A.; Steyaert, J.; Weis, W.I.; Kobilka, B.K. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature, 2011, 469(7329), 175-180.
[http://dx.doi.org/10.1038/nature09648] [PMID: 21228869]
[36]
Weichert, D.; Kruse, A.C.; Manglik, A.; Hiller, C.; Zhang, C.; Hübner, H.; Kobilka, B.K.; Gmeiner, P. Covalent agonists for studying G protein-coupled receptor activation. Proc. Natl. Acad. Sci. USA, 2014, 111(29), 10744-10748.
[http://dx.doi.org/10.1073/pnas.1410415111] [PMID: 25006259]
[37]
Zhang, Y.; Yang, F.; Ling, S.; Lv, P.; Zhou, Y.; Fang, W.; Sun, W.; Zhang, L.; Shi, P.; Tian, C. Single-particle cryo-EM structural studies of the β2AR-Gs complex bound with a full agonist formoterol. Cell Discov., 2020, 6, 45.
[http://dx.doi.org/10.1038/s41421-020-0176-9] [PMID: 32655881]
[38]
Kumar, A.; Patel, S.; Bhatkar, D.; Sarode, S.C.; Sharma, N.K. A novel method to detect intracellular metabolite alterations in MCF-7 cells by doxorubicin induced cell death. Metabolomics, 2021, 17(1), 3.
[http://dx.doi.org/10.1007/s11306-020-01755-2] [PMID: 33389242]
[39]
Sharma, N.K.; Kumar, A.; Waghmode, A. Design of vertical tube electrophoretic system and method to fractionate small molecular weight compounds using polyacrylamide gel matrix. Patent Application Number no: INA 201921000760, 2019, 9035.
[40]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[41]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[42]
DSV3. Discovery Studio Visualizer v3.0. Accelrys software Inc., 2010.
[43]
Schrödinger Release 2019-4: Desmond molecular dynamics system. D. E. Shaw Research: New York, NY, 2019.
[44]
Schrödinger Release 2019-4: Maestro. Schrödinger, LLC: New York, NY, 2019.
[45]
Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for admet predictions. Front. Pharmacol., 2017, 8, 889.
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[46]
Sensenbrenner, M.; Jaros, G.G.; Moonen, G.; Mandel, P. Effects of synthetic tripeptide on the differentiation of dissociated cerebral hemisphere nerve cells in culture. Neurobiology, 1975, 5(4), 207-213.
[PMID: 1178106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy