Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Free Convective Flow of Hamilton-Crosser Model Gold-water Nanofluid Through a Channel with Permeable Moving Walls

Author(s): Pradyumna Kumar Pattnaik, Munawwar Ali Abbas, Satyaranjan Mishra, Sami Ullah Khan and Muhammad Mubashir Bhatti*

Volume 25, Issue 7, 2022

Published on: 13 August, 2021

Page: [1103 - 1114] Pages: 12

DOI: 10.2174/1386207324666210813112323

Price: $65

Abstract

Background: The present manuscript analyzes the influence of buoyant forces of a conducting time-dependent nanofluid flow through porous moving walls. The medium is also filled with porous materials. In addition to that, uniform heat source and absorption parameters are considered that affect the nanofluid model.

Introduction: The model is based on the thermophysical properties of Hamilton-Crosser's nanofluid model, in which a gold nanoparticle is submerged into the base fluid water. Before simulation is obtained by a numerical method, suitable transformation is used to convert nonlinear coupled PDEs to ODEs.

Method: Runge-Kutta’s fourth-order scheme is applied successfully for the first-order ODEs in conjunction with the shooting technique.

Result: Computations for the coefficients of rate constants are presented through graphs, along with the behavior of several physical parameters augmented by the flow phenomena.

Conclusion: The present investigation may be compatible with the applications of biotechnology. It is seen that the inclusion of volume concentration and the fluid velocity enhances near the middle layer of the channel and retards near the permeable walls. Also, augmented values of the Reynolds number and both cooling and heating of the wall increase the rate of shear stress.

Keywords: Time-dependent, free convection, conducting liquid, MHD, Hamilton-Crosser’s model, Nanofluids.

Graphical Abstract

[1]
Das, S.K.; Choi, S.U.S. Nanofluid: science and technology; Wiley: New- Jersey, 2007.
[http://dx.doi.org/10.1002/9780470180693]
[2]
Choi, S. U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publication FED 231/MD, 1995, 66, 99-105.
[3]
Lomascolo, M.; Colangelo, G.; Milanese, M.; Risi, A. Review of heat transfer in nanofluid: conductive, convective and radiative experimental results. Renewable and Sustainable Energy, 2015, 43, 1182-1198.
[http://dx.doi.org/10.1016/j.rser.2014.11.086]
[4]
Faisal, Md.; Basir, Md.; Uddin, M.J. Ismail, Md A.I.; Anwar Bég, O. Nanofluid slip flow over a stretching cylinder with Schmidt and Péclet number effects. AIP Adv., 2016, 6, 055316.
[http://dx.doi.org/10.1063/1.4951675]
[5]
Bouakkaz, R.; Salhi, F.; Khalili, Y.; Quazzazi, M.; Talbi, K. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime. Arch. Thermodyn., 2017, 38(2), 3-20.
[http://dx.doi.org/10.1515/aoter-2017-0008]
[6]
Ali, F.H.; Hamzah, H.K.; Abdulkadhim, A. Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transf. Asian Res., 2019, 48, 343-360.
[http://dx.doi.org/10.1002/htj.21387]
[7]
SU Z. G.; Zheng, W.; Zhang, Z. D. study on diesel cylinder-head cooling using nanofluid Coolant with jet impingement. Therm. Sci., 2015, 19(6), 2025-2037.
[http://dx.doi.org/10.2298/TSCI140509118Z]
[8]
Dong, S.; Cao, B.; Guo, Z. Numerical investigation of nanofluid flow and heat transfer around a calabash-shaped body. Numer. Heat Transf. A, 2015, 68, 548-565.
[http://dx.doi.org/10.1080/10407782.2014.986397]
[9]
Pattnaik, P.K.; Mishra, S.R.; Mahanthesh, B.; Gireesha, B.J.; Gorji, M.R. Heat transport of nano-Micropolar fluid with an exponential heat source on a convectively heated elongated plate using Numerical computation. Multidiscip. Model. Mater. Struct., 2020.
[http://dx.doi.org/10.1108/MMMS-12-2018-0222]
[10]
Pattnaik, P.K.; Mishra, S.R.; Barik, A.K.; Mishra, A.K. Influence of chemical reaction on magnetohydrodynamic flow over an exponential stretching sheet: a numerical study. Int. J. Fluid Mech. Res., 2020, 47(2), 1-12.
[11]
Pattnaik, P.K.; Mishra, S.R.; Bhatti, M.M. Duan–Rach approach to study Al2O3-ethylene glycol C2H6O2 nanofluid flow-based upon KKL model. Inventions (Basel), 2020, 5, 45.
[http://dx.doi.org/10.3390/inventions5030045]
[12]
Kazi, S.N.; Togun, H. Heat transfer and nanofluid flow through different geometries. 2015, 295-312.
[http://dx.doi.org/10.5772/61075]
[13]
Alizadeh, R.; Karimi, N.; Arjmandzadeh, R.; Mehdizadeh, A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J. Therm. Anal. Calorim., 2019, 135, 489-506.
[http://dx.doi.org/10.1007/s10973-018-7071-8]
[14]
Mehmood, O.U.; Maskeenand, M.M.; Zeeshan, A. Electroma-gnetohydrodynamic transport of Al2O3 nanoparticles in ethylene glycol over a convectively heated stretching cylinder. Adv. Mech. Eng., 2017, 9(11), 1-8.
[http://dx.doi.org/10.1177/1687814017735282]
[15]
Salahuddin, T.; Malik, M.Y.; Hussain, A.; Awais, Md.; Khan, I.; Khan, M. Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point. Results Phys., 2017, 7, 426-434.
[http://dx.doi.org/10.1016/j.rinp.2016.12.033]
[16]
Wang, Y.; Xu, X.; Tian, T.; Fan, L.; Wang, W.; Yu, Z. Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity. J. Zhejiang Univ-Sci. A (Appl Phys & Eng), 2015, 16(6), 478-490.
[http://dx.doi.org/10.1631/jzus.A1400120]
[17]
Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption. PLoS One, 2017, 121(2), e0172518.
[http://dx.doi.org/10.1371/journal.pone.0172518]
[18]
Sharma, S.; Maiti, D.K.; Alam, Md. M.; Sharma, B. K. Nanofluid (H2O-Al2O3/CuO) flow over a heated square cylinder near a wall under the incident of Couette flow. J. Mech. Sci. Technol., 2018, 32(2), 659-670.
[http://dx.doi.org/10.1007/s12206-018-0113-5]
[19]
Vegad, M.; Satadia, S.; Pradip, P.; Chirag, P.; Bhargav, P. Heat transfer characteristics of low Reynolds number flow of nanofluid around a heated circular cylinder. Procedia Technology, 2014, 14, 348-356.
[http://dx.doi.org/10.1016/j.protcy.2014.08.045]
[20]
Shafeeurrahman, Md.; Srinivasacharya, D. Radiation effect on mixed convection flow of nanofluid between two concentric cylinders with Hall and Ion-slip effects. AAM: Intern. J., 2019, 4, 82-96.
[21]
Taher, Armaghani Rashad, A.M.; Omid, Vahidifar; Mishra, S.R.; Chamkha, A. J. Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity. Int. J. Numer. Methods Heat Fluid Flow, 2019, 29(4), 163-1377.
[22]
Mishra, S.R.; Rout, B.C. Analytical solution of electrical conducting water-based (KKL model) nanofluid flow over a linearly stretching sheet. Iranian J. Sci. Technol. Trans. A: Sci., 2019, 43(3), 1239-1247.
[23]
Wakif, A.; Boulahia, Z.; Mishra, S.R.; Rashidi, M.M.; Sehaqui, R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using a generalized buongiorno’s mathematical model. Eur. Phys. J. Plus, 2018, 133, 181.
[http://dx.doi.org/10.1140/epjp/i2018-12037-7]
[24]
Rout, B.C.; Mishra, S.R. Thermal energy transport on MHD nanofluid flow over a stretching surface: A comparative study. Eng. Sci. Technol. Int. J., 2018, 21(1), 60-69.
[25]
Rout, B.C.; Mishra, S.R. Analytical approach to metal and metallic oxide properties of Cu-water and TiO2-water nanofluids over a moving vertical plate. Pramana-J. Phy., 2019, 93(3), 41.
[http://dx.doi.org/10.1007/s12043-019-1797-0]
[26]
Barik, A.K.; Mishra, S.K.; Mishra, S.R.; Pattnaik, P.K. Multiple slip effects on MHD nanofluid flow over an inclined, radiative, and chemically reacting stretching sheet by means of FDM. Heat Transf. Asian Res., 2019.
[http://dx.doi.org/10.1002/htj.21622]
[27]
Bhatta, D.P.; Mishra, S.R.; Dash, J.K.; Makinde, O.D. A semi-analytical approach to time-dependent squeezing flow of Cu and Ag water-based nanofluids. Defect And Diffusion Forum, 2019, 393, pp. 121-137.
[28]
Mohapatra, D.K.; Mishra, S.R.; Jena, S. Cu-water and Cu-kerosene micropolar nanofluid flow over a permeable stretching sheet. Heat Transf. Asian Res., 2019, 48(6), 2478-2496.
[http://dx.doi.org/10.1002/htj.21505]
[29]
Bhatti, M.M.; Yousif, M.A.; Mishra, S.R.; Sahid, A. Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana, 2019, 93(6), 88.
[http://dx.doi.org/10.1007/s12043-019-1850-z]
[30]
Akbar, Md. Z.; Ashraf, M.; Iqbal, Md. F.; Ali, K. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium. AIP Adv., 2016, 6, 045222.
[http://dx.doi.org/10.1063/1.4945440]
[31]
Jhang, S.P.; Choi, S.U.S. Effects of various parameters on nanofluid thermal conductivity. J. Heat Transfer, 2006, 129, 617-623.
[http://dx.doi.org/10.1115/1.2712475]
[32]
Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluid. J. Heat Transfer, 2003, 125, 567-574.
[http://dx.doi.org/10.1115/1.1571080]
[33]
Brinkman, H.C. The viscosity of concentrated suspension and solutions. J. Chem. Phys., 1952, 20, 571-581.
[http://dx.doi.org/10.1063/1.1700493]
[34]
Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component system. E.C. Fundam., 1962, 1, 187-191.
[http://dx.doi.org/10.1021/i160003a005]
[35]
Uchida, S.; Aoki, H. Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid Mech., 1977, 82, 371-387.
[http://dx.doi.org/10.1017/S0022112077000718]
[36]
Majdalani, J.; Zhou, C.; Dawson, C.A. Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability. J. Biomech., 2002, 35(10), 1399-1403.
[http://dx.doi.org/10.1016/S0021-9290(02)00186-0] [PMID: 12231285]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy