Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

MHD Flow of a Newtonian Fluid in Symmetric Channel with ABC Fractional Model Containing Hybrid Nanoparticles

Author(s): Muhammad Danish Ikram, Muhammad Asjad Imran, Yu Ming Chu* and Ali Akgül

Volume 25, Issue 7, 2022

Published on: 12 April, 2021

Page: [1087 - 1102] Pages: 16

DOI: 10.2174/1386207324666210412122544

Price: $65

Abstract

Introduction: The nanofluid is the novelty of nanotechnology to overcome the difficulties of heat transfer in several manufacturing and engineering areas. Fractional calculus has many applications in nearly all fields of science and engineering, which include electrochemistry, dispersion and viscoelasticity.

Objectives: This paper focused on the heat transfer of a hybrid nanofluid in two vertical parallel plates and presented a comparison between fractional operators.

Methods: In this paper, the fractional viscous fluid model is considered along with physical initial and boundary conditions for the movement occurrences. The analytical solutions have been obtained via the Laplace transform method for the concentration, temperature and velocity fields. After that, we have presented a comparison between Atangana-Baleanu (ABC), Caputo (C) and Caputo-Fabrizio (CF) fractional operators.

Results: The comparison of different base fluids (Water, kerosene, Engine Oil) is discussed graphically with respect to temperature and velocity.

The results show that due to the high thermal conductivity of water, temperature and velocity are high. While engine oil has maximum viscosity than water and kerosene, thus temperature and velocity are very low. However, due to the improvement in the thermal conductivity with the enrichment of hybrid nanoparticles, the temperature increased, and since the viscosity also increased, the velocity got reduced.

Conclusion: Atangana-Baleanu (ABC) fractional operator provided better memory effect of concentration, temperature and velocity fields than Caputo (C) and Caputo-Fabrizio (CF). Temperature and velocity of water with hybridized nanoparticles were high in comparison to kerosene and engine oil.

Keywords: Hybrid nanofluid, heat generation, newtonian fluid model, fractional derivative, MHD flow, M-function.

Next »
Graphical Abstract

[1]
Wang, X.Q.; Mujumdar, A.S. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci., 2007, 46(1), 119.
[http://dx.doi.org/10.1016/j.ijthermalsci.2006.06.010]
[2]
Hussanan, A.; Salleh, M.Z.; Khan, I.; Shafie, S. Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil. J. Mol. Liq., 2017, 229, 482488.
[http://dx.doi.org/10.1016/j.molliq.2016.12.040]
[3]
Hussain, S.; Ahmed, S.E.; Akbar, T. Entropy generation analysis in mhd mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int. J. Heat Mass Transf., 2017, 114, 10541066.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.06.135]
[4]
Sheikholeslami, M.; Shamlooei, M.; Moradi, R. Numerical simulation for heat transfer intensification of nanofluid in a porous curved enclosure considering shape effect of fe3o4 nanoparticles. Chem. Eng. Process., 2018, 124, 7182.
[http://dx.doi.org/10.1016/j.cep.2017.12.005]
[5]
Bhattad, A.; Sarkar, J.; Ghosh, P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int. Commun. Heat Mass Transf., 2018, 91, 262273.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.12.020]
[6]
Farooq, U.; Afridi, M.I.; Qasim, M.; Lu, D.C. Transpiration and viscous dissipation effects on entropy generation in hybrid nanofluid flow over a nonlinear radially stretching disk. Entropy (Basel), 2018, 20(9), 668.
[http://dx.doi.org/10.3390/e20090668] [PMID: 33265757]
[7]
Goufo, E.F.D.; Morgan, K.P. Duplication in a model of rock fracture with fractional derivative without singular kernel. Cent. Eur. J. Math., 2015, 13(1), 839-846.
[8]
Alkahtani, B.S.T.; Atangana, A. Modeling the potential energy field caused by mass density distribution with eton approach. Open Phys., 2016, 14(1), 106113.
[http://dx.doi.org/10.1515/phys-2016-0008]
[9]
Zafar, A.A.; Fetecau, C. Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel. Alex. Eng. J., 2016, 55(3), 2789-2796.
[http://dx.doi.org/10.1016/j.aej.2016.07.022]
[10]
Sheikh, N.A.; Ali, F.; Khan, I.; Gohar, M.; Saqib, M. On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. Eur. Phys. J. Plus, 2017, 132(12)
[http://dx.doi.org/10.1140/epjp/i2017-11809-9]
[11]
Saqib, M.; Khan, I.; Shafie, S. Application of Atangana-Baleanu fractional derivative to mhd channel flow of cmc-based-cnts nanofluid through a porous medium. Chaos Solitons Fractals, 2018, 116, 79-85.
[http://dx.doi.org/10.1016/j.chaos.2018.09.007]
[12]
Sheikh, N.A.; Ali, F.; Khan, I.; Gohar, M. A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: AtanganaBaleanu fractional model. Chaos Solitons Fractals, 2018, 115, 135-142.
[http://dx.doi.org/10.1016/j.chaos.2018.08.020]
[13]
Imran, M.A.; Riaz, M.B.; Shah, N.A.; Zafar, A.A. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary. Res. Physics., 2018, 8, 1061-1067.
[http://dx.doi.org/10.1016/j.rinp.2018.01.036]
[14]
Imran, M.A.; Aleem, M.; Riaz, M.B.; Ali, R.; Khan, I. A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions. Chaos Solitons Fractals, 2019, 118, 274-289.
[http://dx.doi.org/10.1016/j.chaos.2018.12.001]
[15]
Ikram, M.D.; Imran, M.A.; Ahmadian, M.; Ferrara, M. A new fractional mathematical model of extraction nanofluids using clay nanoparticles for different based fluids. Math. Methods Appl. Sci., 2020, 114.
[16]
Ali, R.; Imran, M.A.; Akgul, A. An analysis of a mathematical fractional model of hybrid viscous nanofluids and its application in heat and mass transfer. Comput. Appl. Math., 2021, 383, 113096.
[http://dx.doi.org/10.1016/j.cam.2020.113096]
[17]
Saqib, M.; Khan, I.; Shafie, S. Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv. Differ. Equ., 2019, 52.
[http://dx.doi.org/10.1186/s13662-019-1988-5]
[18]
Ali, F.; Ahmad, Z.; Arif, M.; Khan, I.; Nisar, K.S. A Time Fractional Model of Generalized Couette Flow of Couple Stress Nanofluid with Heat and Mass Transfer: Applications in Engine Oil. IEEE Access, 2019, 146944-146966.
[http://dx.doi.org/10.1109/ACCESS.2019]
[19]
Shafie, S.; Saqib, M.; Khan, I.; Qushairi, A. Mixed convection flow of brinkman type hybrid nanofluid based on atangana-baleanu fractional model. J. Phys. Conf. Ser., 2019, 012041.
[http://dx.doi.org/10.1088/1742-6596/1366/1/012041]
[20]
Atangana, A. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci., 2016, 20(2), 763-769.
[http://dx.doi.org/10.2298/TSCI160111018A]
[21]
Atangana, A.; Koca, I. On the new fractional derivative and application to nonlinear Baggs and Freedman model. JNSAA, 2016, 9, 2476-2480.
[http://dx.doi.org/10.22436/jnsa.009.05.46]
[22]
Sakar, M.G. On solutions of fractional Riccati differential equations. Adv. Differ. Equ., 2017, 39.
[http://dx.doi.org/10.1186/s13662-017-1091-8]
[23]
Dokuyucu, M.A.; Baleanu, D.; Celik, E. Analysis of Keller-Segel model with atangana-baleanu fractional derivative. Filomat, 2018, 32(16), 5633-5643.
[http://dx.doi.org/10.2298/FIL1816633D]
[24]
Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput., 2018, 316, 504-515.
[http://dx.doi.org/10.1016/j.amc.2017.08.048]
[25]
Akgul, A. A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals, 2018, 114, 478-482.
[http://dx.doi.org/10.1016/j.chaos.2018.07.032]
[26]
Saqib, M.; Khan, I.; Shafie, S. New direction of atanganabaleanu fractional derivative with mittag-leffler kernel for non-newtonian channel flow. Fractional Derivatives with MittagLeffler Kernel; Springer: Basel, Switzerland, 2019, pp. 253-268.
[http://dx.doi.org/10.1007/978-3-030-11662-0_15]
[27]
Abro, K.A.; Khan, I.; Nisar, K.S.; Alsagri, A.S. Effects of carbon nanotubes on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Therm. Sci., 2019, 23(2B), 883-893.
[28]
Saqib, M.; Shafie, S.; Khan, I.; Chu, Y.M.; Nisar, K.S. Symmetric MHD channel flow of nonlocal fractional model of BTF containing hybrid nanoparticles. Symmetry (Basel), 2020, 12(4), 663.
[http://dx.doi.org/10.3390/sym12040663]
[29]
Imran, M.A.; Ikram, M.D.; Ali, R.; Baleanu, D.; Alshomarani, A.S. New analytical solutions of heat transfer flow of clay-water base nanoparticles with the application of novel hybrid fractional derivative. Therm. Sci., 2020, 24(1), S343-S350.
[30]
Imran, M.A. Application of fractal fractional derivative of power law kernel () to MHD viscous fluid flow between two plates. Chaos Solitons Fractals, 2020, 134, 109691.
[http://dx.doi.org/10.1016/j.chaos.2020.109691]
[31]
Singh, J.; Ahmadian, A.; Rathore, S.; Kumar, D.; Baleanu, D.; Salimi, M.; Salahshour, S. An efficient computational approach for local fractional Poisson equation in fractal media. Numerical Methods for Practical Differiental Equations, 2020, 1439-1448.
[http://dx.doi.org/10.1002/num.22589]
[32]
Wang, K.J. A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. Plus, 2020, 135, 871.
[http://dx.doi.org/10.1140/epjp/s13360-020-00891-x]
[33]
Imran, M.A.; Ikram, M.D.; Akgul, A. Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator. Phys. Scr., 2020, 95(11)
[http://dx.doi.org/10.1088/1402-4896/abbe4f]
[34]
Oudina, F.M.; Keerthi, N.R.; Sankar, M. Heat source location effects on buoyant convection of nanofluids in an annulus. Adv. Fluid Dynamics, 2020, 923-937.
[35]
Oudina, F.M.; Redouane, F.; Rajashekhar, C. Convection heat transfer of MgOAg /water magneto-hybrid nanoliquid flow into a special porous enclosure. AJRESD, 2020, 2(02)
[http://dx.doi.org/10.46657/ajresd.2020.2.2.1]
[36]
Marzougui, S.; Bouabid, M.; Oudina, F.M.; Abu-Hamdeh, N.; Magherbi, M.; Ramesh, K. A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. Int. J. Numer. Methods Heat Fluid Flow, 2020.
[http://dx.doi.org/10.1108/HFF-07-2020-0418]
[37]
Zaim, A.; Aissa, A.; Oudina, F.M.; Mahantheshe, B.; Lorenzini, G.; Sahnoun, M.; Ganouig, M.E. Galerkin finite element analysis of magnetohydrodynamic natural convection of Cuwater nanoliquid in a baffled U-shaped enclosure. Propuls. Power Res., 2020, 9(4), 383-393.
[38]
Oudina, F.M. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf. Asian Res., 2018, 1-13.
[39]
Oudina, F.M.; Bessaih, R.; Mahanthesh, B.; Chamkha, A.J.; Raza, J. Magneto-thermalconvection stability in an inclined cylindrical annulus filled with a molten metal. Int. J. Numer. Methods Heat Fluid Flow, 2020.
[http://dx.doi.org/10.1108/HFF05-2020-0321]
[40]
Swain, k.; Oudina, F.M.; Abo-Dahab, S.M. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim., 2021.
[http://dx.doi.org/10.1007/s10973-020-10432-4]
[41]
Ashraf, M.U.; Qasim, M.; Wakif, A.; Afridi, M.I.; Animasaun, I.L. A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: A physiological application; Numer. Methods Partial Differential. Eq, 2020, p. 127.
[42]
Wakif, A.; Sehaqui, R. Generalized differential quadrature scrutinization of an advanced MHD stability problem concerned water-based nanofluids with metal/metal oxide nanomaterials: A proper application of the revised two-phase nanofluid model with convective heating and through-flow boundary conditions; Numer. Methods Partial Differential. Eq, 2020, p. 128.
[43]
Wakif, A. A Novel numerical procedure for simulating steady MHD convective flows of radiative casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity, Hindawi. Math. Probl. Eng., 2020, Article ID 1675350.
[http://dx.doi.org/10.1155/2020/1675350]
[44]
Thumma, T.; Wakif, A.; Animasaun, I.L. Generalized differential quadrature analysis of unsteady three-dimensional MHD radiating dissipative Casson fluid conveying tiny particles. Heat Transf., 2020, 132.
[http://dx.doi.org/10.1002/htj.21736]
[45]
Wakif, A.; Chamkha, A.; Thumma, T.; Animasaun, I.L.; Sehaqui, R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of aluminacopper oxide hybrid nanofluids utilizing the generalized Buongiornos nanofluid model. J. Therm. Anal. Calorim., 2020, 143, 1201-1220.
[http://dx.doi.org/10.1007/s10973-020-09488-z]
[46]
Wakif, A.; Chamkha, A.; Animasaun, I.L.; Zaydan, M.; Waqas, H.; Sehaqui, R. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation. Arab. J. Sci. Eng., 2020, 45, 9423-9438.
[http://dx.doi.org/10.1007/s13369-020-04757-3]
[47]
Qasim, M.; Ali, Z.; Wakif, A.; Boulahia, Z. Numerical simulation of MHD peristaltic flow with variable electrical conductivity and joule dissipation using generalized differential quadrature method. Commum. Theor. Phys., 2019, 71(5), 509.
[http://dx.doi.org/10.1088/0253-6102/71/5/509]
[48]
Qasim, M.; Afridi, M.I.; Wakif, A.; Saleem, S. Influence of variable transport properties on nonlinear radioactive jeffrey fluid flow over a disk: utilization of generalized differential quadrature method. Arab. J. Sci. Eng., 2019, 44, 5987-5996.
[http://dx.doi.org/10.1007/s13369-019-03804-y]
[49]
Wakif, A.; Qasim, M.; Afridi, M.I.; Saleem, S.; Al-Qarni, M.M. Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of stokes second problem: utilization of the gear-generalized differential quadrature method. J. Non-Equilib. Thermodyn., 2019, 44(4), 385-403.
[http://dx.doi.org/10.1515/jnet-2018-0099]
[50]
Abo-Dahab, S.M.; Abdelhafez, M.A.; Mebarek-Oudina, F.; Bilal, S.M. MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection. Indian J. Phys., 2021.
[http://dx.doi.org/10.1007/s12648-020-01923-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy