Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Impact of Different Arrangements of Molecular Chains in Terms of Low and High Shear Rate’s Viscosities on Heat and Mass Flow of Nonnewtonian Shear thinning Fluids

Author(s): Mohsan Hassan*, Abrar Faisal, Khurram Javid, Salahuddin Khan, Ashfaq Ahmad* and Rawaiz Khan

Volume 25, Issue 7, 2022

Published on: 07 January, 2022

Page: [1115 - 1126] Pages: 12

DOI: 10.2174/1386207324666210719111909

Price: $65

Abstract

Background: Non-newtonian fluids, especially shear thinning fluids, have several applications in the polymer industry, food industry, and even everyday life. The viscosity of shear thinning fluids is decreased by two or three orders of magnitude due to the alignment of the molecules in order when the shear rate is increased, and it cannot be ignored in the case of polymer processing and lubrication problems.

Objective: So, the effects of viscosities at the low and high shear rates on the heat and mass boundary layer flow of shear thinning fluid over moving belts are investigated in this study. For this purpose the generalized Carreau model of viscosity relate to shear rate is used in the momentum equation. The Carreau model contains the five parameters: low shear rate viscosity, high shear rate viscosity, viscosity curvature, consistency index, and flow behavior index. For the heat flow, the expression of the thermal conductivity model similar to the viscosity equation due to the non-Newtonian nature of the fluid is used in the energy equation.

Methods: On the mathematical model of the problem, boundary layer approximations are applied and then simplified by applying the similarity transformations to get the solution. The solution of the simplified equations is obtained by numerical technique RK-shooting method. The results are compared with existing results for limited cases and found good agreement.

Results: The results in the form of velocity and temperature profiles under the impact of all the viscosity’s parameters are obtained and displayed in graphical form. Moreover, the boundary layer parameters such as the thickness of the regions, momentum thickness, and displacement thickness are calculated to understand the structure of the boundary layer flow of fluid.

Conclusion: The velocity and temperature of the fluid are decreased and increased respectively by all viscosity’s parameters of the model. So, the results of the boundary layer fluid flow under rheological parameters will not only help engineers to design superior chemical equipment but also help improve the economy and efficiency of the overall process.

Keywords: Low and high shear rates viscosities, shear thinning fluid flow, five parameters contained carreau model, heat and mass flow, polymer industry, temperature of the fluid.

Graphical Abstract

[1]
Chhabra, R.P.; Richardson, J.F. Non-newtonian flow and applied rheology: Engineering applications; Butterworth-Heinemann: UK, 2011.
[2]
Breit, D. Existence theory for generalized Newtonian fluids; Academic Press, 2017.
[3]
Götz, D. Three topics in fluid dynamics: Viscoelastic, generalized Newtonian, and compressible fluids Verlag Dr. Hut, 2012.
[4]
Crochet, M.J.; Davies, A.R.; Walters, K. Numerical simulation of non-Newtonian flow; Elsevier: Netherlands, 2012.
[5]
Ostwald, W. Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität. Kolloid-Zeitschrift, 1929, 47, 176-187.
[http://dx.doi.org/10.1007/BF01496959]
[6]
Cross, M.M. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci., 1965, 20, 417-437.
[http://dx.doi.org/10.1016/0095-8522(65)90022-X]
[7]
Carreau, P.J. Rheological equations from molecular network theories. Trans. Soc. Rheol., 1972, 16, 99-127.
[http://dx.doi.org/10.1122/1.549276]
[8]
Wilkes, G.L. An overview of the basic rheological behavior of polymer fluids with an emphasis on polymer melts. J. Chem. Educ., 1981, 58, 880-890.
[http://dx.doi.org/10.1021/ed058p880]
[9]
Zarei, M.; Aalaie, J. Application of shear thickening fluids in material development. J. Materials Res. & Tech., 2020, 9, 10411-10433.
[http://dx.doi.org/10.1016/j.jmrt.2020.07.049]
[10]
Noreen, S.; Kausar, T.; Tripathi, D.; Ain, Q.U.; Lu, D. Heat transfer analysis on creeping flow Carreau fluid driven by peristaltic pumping in an inclined asymmetric channel. Therm. Sci. Eng. Prog., 2020, 17, 100486.
[http://dx.doi.org/10.1016/j.tsep.2020.100486]
[11]
Khan, M.H. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv., 2015, 5, 107203.
[http://dx.doi.org/10.1063/1.4932627]
[12]
Khan, M.; Irfan, M.; Khan, W.A.; Alshomrani, A.S. A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results in phy, 2017, 7, 2692-2704.
[13]
Khan, M.; Hussain, A.; Malik, M.Y.; Salahuddin, T.; Aly, S. Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. Appl. Numer. Math., 2019, 144, 100-117.
[http://dx.doi.org/10.1016/j.apnum.2019.05.018]
[14]
Gautam, A.K.; Verma, A.K.; Bhattacharyya, K.; Banerjee, A. Soret and Dufour effects on MHD boundary layer flow of non-Newtonian Carreau fluid with mixed convective heat and mass transfer over a moving vertical plate. Pramana, 2020, 94, 1-0.
[http://dx.doi.org/10.1007/s12043-020-01984-z]
[15]
Mamatha Upadhya, S.; Raju, C.S. Unsteady flow of Carreau fluid in a suspension of dust and graphene nanoparticles with Cattaneo–Christov heat flux. J. Heat Transfer, 2018, 9, 140.
[http://dx.doi.org/10.1115/1.4039904]
[16]
Gayatri, M.; Reddy, K.J.; Babu, M.J. Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating. SN Appl. Sci., 2020, 2, 1-11.
[http://dx.doi.org/10.1007/s42452-020-2262-x]
[17]
Mahanthesh, B. Magnetohydrodynamic flow of Carreau liquid over a stretchable sheet with a variable thickness. Multidiscip. Model. Mater. Struct., 2020, 16, 1277-1293.
[18]
Abbas, T.; Rehman, S.; Shah, R.A.; Idrees, M.; Qayyum, M. Analysis of MHD Carreau fluid flow over a stretching permeable sheet with variable viscosity and thermal conductivity. Physica A, 2020, 551, 124225.
[http://dx.doi.org/10.1016/j.physa.2020.124225]
[19]
Abbas, Z.; Imran, M.; Naveed, M. Hydromagnetic flow of a Carreau fluid in a curved channel with non-linear thermal radiation. Therm. Sci., 2019, 23(6), 3379-3390.
[20]
Khan, M.; Sardar, H.; Gulzar, M.M.; Alshomrani, A.S. On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet. Results Phys., 2018, 8, 926-932.
[http://dx.doi.org/10.1016/j.rinp.2018.01.021]
[21]
Lu, D.; Mohammad, M.; Ramzan, M.; Bilal, M.; Howari, F.; Suleman, M. MHD boundary layer flow of Carreau fluid over a convectively heated bidirectional sheet with non-Fourier heat flux and variable thermal conductivity. Symmetry (Basel), 2019, 11, 618.
[http://dx.doi.org/10.3390/sym11050618]
[22]
Ullah, H.; Khan, M.I.; Hayat, T. Modeling and analysis of megneto-Carreau fluid with radiative heat flux: Dual solutions about critical point. Adv. Mech. Eng., 2020, 8, 1687814020945477.
[http://dx.doi.org/10.1177/1687814020945477]
[23]
Khan, M.I.; Kumar, A.; Hayat, T.; Waqas, M.; Singh, R. Entropy generation in flow of Carreau nanofluid. J. Mol. Liq., 2019, 278, 677-687.
[http://dx.doi.org/10.1016/j.molliq.2018.12.109]
[24]
Khan, M.; Azam, M. Unsteady boundary layer flow of Carreau fluid over a permeable stretching surface. Results Phys., 2016, 6, 1168-1174.
[http://dx.doi.org/10.1016/j.rinp.2016.11.035]
[25]
Hayat, T.; Ullah, I.; Ahmad, B.; Alsaedi, A. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction. Results Phys., 2017, 7, 715-722.
[http://dx.doi.org/10.1016/j.rinp.2017.01.019]
[26]
Kumar, K.G.; Gireesha, B.; Rudraswamy, N.; Manjunatha, S. Radiative heat transfers of Carreau fluid flow over a stretching sheet with fluid particle suspension and temperature jump. Results Phys., 2017, 7, 3976-3983.
[http://dx.doi.org/10.1016/j.rinp.2017.09.058]
[27]
Jalali, A.; Amiri Delouei, A.; Khorashadizadeh, M.; Golmohamadi, A.; Karimnejad, S. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: temperature-dependent viscosity. J. Appl. Comput. Mech., 2020, 6, 307-319.
[28]
Raju, C.; Sandeep, N. Unsteady three-dimensional flow of Casson–Carreau fluids past a stretching surface. Alex. Eng. J., 2016, 55, 1115-1126.
[http://dx.doi.org/10.1016/j.aej.2016.03.023]
[29]
Khan, M.; Salahuddin, T.; Malik, M.; Tanveer, A.; Hussain, A.; Alqahtani, A.S. 3-D axisymmetric Carreau nanofluid flow near the Homann stagnation region along with chemical reaction: Application Fourier’s and Fick’s laws. Math. Comput. Simul., 2020, 170, 221-235.
[http://dx.doi.org/10.1016/j.matcom.2019.10.019]
[30]
Machireddy, G.R.; Naramgari, S. Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng. J., 2018, 9, 1189-1204.
[http://dx.doi.org/10.1016/j.asej.2016.06.012]
[31]
Hassan, M. El&Zahar, E.R.; Khan, S.U.; Rahimi&Gorji, M.; Ahmad, A. Boundary layer flow pattern of heat and mass for homogeneous shear thinning hybrid&nanofluid: An experimental data base modeling. Numer. Methods Partial Differ. Equ., 2021, 37, 1234-1249.
[http://dx.doi.org/10.1002/num.22575]
[32]
Morrison, F.A. Understanding rheology; Oxford University Press: USA, 2001.
[33]
Grubka, L.; Bobba, K. Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transfer, 1985, 107, 248-250.
[http://dx.doi.org/10.1115/1.3247387]
[34]
Hassan, M.; Issakhov, A.; Khan, S.U-D.; Assad, M.E.H.; Hani, E.H.B.; Rahimi-Gorji, M.; Nadeem, S.; Khan, S.U-D. The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: A non-Newtonian fluid with Carreau model. J. Mol. Liq., 2020, 317, 113991.
[http://dx.doi.org/10.1016/j.molliq.2020.113991]
[35]
Hassanien, I.A. Flow and heat transfer on a continuous flat surface moving in a parallel free stream of power-law fluid. Appl. Math. Model., 1996, 20, 779-784.
[http://dx.doi.org/10.1016/0307-904X(96)00082-0]
[36]
Lian-Cun, Z.; Xin-Xin, Z.; Chun-Qing, L. Heat transfer for power law non-Newtonian fluids. Chin. Phys. Lett., 2006, 23, 3301.
[http://dx.doi.org/10.1088/0256-307X/23/12/050]
[37]
Schlichting, H.; Gersten, K. Boundary-layer theory; Springer: Germany, 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy