Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction

Author(s): Jeswin Joseph, Thankamani Karthika, Valiyathara Rajan Akshay Das and Victor Stalin Raj*

Volume 23, Issue 8, 2022

Published on: 10 August, 2021

Page: [1118 - 1129] Pages: 12

DOI: 10.2174/1389201022666210810111716

Price: $65

Abstract

Background: Coronaviruses (CoVs) infect a wide range of animals and birds. Their tropism is primarily determined by the ability of the spike protein to bind to a host cell surface receptor. The ongoing outbreak of SARS-CoV-2 inculcates the need for the development of effective intervention strategies.

Objectives: In this study, we aim to produce pseudotyped coronaviruses of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 and show its applications, including virus entry, neutralization, and screening of entry inhibitors from natural products.

Methods: Here, we generated VSV-based pseudotyped coronaviruses (CoV-PVs) for SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Recombinant spike proteins of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 were transiently expressed in HEK293T cells followed by infection with recombinant VSV. High titer pseudoviruses were harvested and subjected to distinct validation assays, which confirms the proper spike pseudotyping. Further, specific receptor-mediated entry was confirmed by antibody neutralization and soluble form of receptor inhibition assay on Vero E6 cells. Next, these CoV-PVs were used for screening of antiviral activity of natural products such as green tea and Spirulina extract.

Results: Medicinal plants and natural compounds have been traditionally used as antiviral agents. In the first series of experiments, we demonstrated that pseudotyped viruses specifically bind to their receptors for cellular entry. SARS-CoV-1 and MERS-CoV anti-sera neutralize SARS-CoV-1-PV and SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Incubation of soluble ACE2 with CoV-PVs inhibited entry of SARS-CoV-1 and SARS-CoV-2 PVs but not MERS-CoV-PV. Also, transient expression of ACE2 and DPP4 in non-permissive BHK21 cells enabled infection by SARS-CoV-1-PV, SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Next, we showed the antiviral properties of known entry inhibitors of enveloped viruses, Spirulina, and green tea extracts against CoV-PVs. SARSCoV- 1-PV, MERS-CoV-PV, and SARS-CoV-2-PV entry was blocked with higher efficiency when preincubated with either green tea or Spirulina extracts. Green tea provided a better inhibitory effect by binding to the S1 domain of the spike and blocking the spike interaction with its receptor.

Conclusion: In summary, we demonstrated that pseudotyped viruses are an ideal tool for studying viral entry, quantification of neutralizing antibodies, and screening of entry inhibitors in a BSL-2 facility. Moreover, green tea might be a promising natural remedy against emerging coronaviruses.

Keywords: SARS-CoV-2, SARS-CoV-1, MERS-CoV, antivirals, green tea, pseudoviruses.

« Previous
Graphical Abstract

[1]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: Insights, advances, and challenges. BioMed Res. Int., 2017, 2017, 5245021.
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767]
[2]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[3]
Lee, S.H. The SARS epidemic in Hong Kong. J. Epidemiol. Community Health, 2003, 57(9), 652-654.
[http://dx.doi.org/10.1136/jech.57.9.652] [PMID: 12933765]
[4]
Azhar, E.I.; El-Kafrawy, S.A.; Farraj, S.A.; Hassan, A.M.; Al-Saeed, M.S.; Hashem, A.M.; Madani, T.A. Evidence for camel-to-human transmission of mers coronavirus. N. Engl. J. Med., 2014, 370(26), 2499-2505.
[http://dx.doi.org/10.1056/NEJMoa1401505] [PMID: 24896817]
[5]
WHO. Middle East respiratory syndrome coronavirus (MERSCoV) - The kingdom of Saudi Arabia. https://www.who.int/csr/don/24-february-2020-mers-saudi-arabia/en/2021
[6]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A Novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[7]
WHO. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-20192021
[8]
Li, H.; Ying, T.; Yu, F.; Lu, L.; Jiang, S. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect., 2015, 17(2), 109-117.
[http://dx.doi.org/10.1016/j.micinf.2014.11.012] [PMID: 25498866]
[9]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[10]
Quinn, K.; Brindley, M.A.; Weller, M.L.; Kaludov, N.; Kondratowicz, A.; Hunt, C.L.; Sinn, P.L.; McCray, P.B., Jr; Stein, C.S.; Davidson, B.L.; Flick, R.; Mandell, R.; Staplin, W.; Maury, W.; Chiorini, J.A. Rho GTPases modulate entry of ebola virus and vesicular stomatitis virus pseudotyped vectors. J. Virol., 2009, 83(19), 10176-10186.
[http://dx.doi.org/10.1128/JVI.00422-09] [PMID: 19625394]
[11]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2008, 131(2), 111-120.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[12]
Jeong, W-S.; Kong, A-N.T. Biological properties of monomeric and polymeric catechins: Green tea catechins and procyanidins. Pharm. Biol., 2004, 42, 84-93.
[13]
Xu, J.; Xu, Z.; Zheng, W. A review of the antiviral role of green tea catechins. Molecules, 2017, 22(8), 1-18.
[http://dx.doi.org/10.3390/molecules22081337] [PMID: 28805687]
[14]
Ovando, C.A.; de Carvalho, J.C.; Vinícius de Melo Pereira, G.; Jacques, P.; Soccol, V.T.; Soccol, C.R. Functional properties and health benefits of bioactive peptides derived from spirulina: A Review. Food Rev. Int., 2018, 34(1), 34-51.
[http://dx.doi.org/10.1080/87559129.2016.1210632]
[15]
Sangtani, R.; Ghosh, A.; Jha, H.C.; Parmar, H.S.; Bala, K. Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. Phytother. Res., 2020, 35(5), 2296-2316.
[http://dx.doi.org/10.1002/ptr.6948] [PMID: 33210447]
[16]
Baba, M.; Snoeck, R.; Pauwels, R.; de Clercq, E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob. Agents Chemother., 1988, 32(11), 1742-1745.
[http://dx.doi.org/10.1128/AAC.32.11.1742] [PMID: 2472775]
[17]
He, T.C.; Zhou, S.; da Costa, L.T.; Yu, J.; Kinzler, K.W.; Vogelstein, B. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2509-2514.
[http://dx.doi.org/10.1073/pnas.95.5.2509] [PMID: 9482916]
[18]
He, Y.; Zhu, Q.; Liu, S.; Zhou, Y.; Yang, B.; Li, J.; Jiang, S. Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: Importance for designing SARS vaccines. Virology, 2005, 334(1), 74-82.
[http://dx.doi.org/10.1016/j.virol.2005.01.034] [PMID: 15749124]
[19]
Chen, Y.H.; Chang, G.K.; Kuo, S.M.; Huang, S.Y.; Hu, I.C.; Lo, Y.L.; Shih, S.R. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci. Rep., 2016, 6(24253), 24253.
[http://dx.doi.org/10.1038/srep24253] [PMID: 27067133]
[20]
Mutuku, A.; Mwamburi, L.; Keter, L.; Ondicho, J.; Korir, R.; Kuria, J.; Chemweno, T.; Mwitari, P. Evaluation of the antimicrobial activity and safety of Rhus vulgaris (Anacardiaceae) extracts. BMC Complement Med Ther, 2020, 20(1), 272.
[http://dx.doi.org/10.1186/s12906-020-03063-7] [PMID: 32912200]
[21]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; Thiel, V.; Drosten, C.; Rottier, P.J.M.; Osterhaus, A.D.M.E.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[22]
Smits, S.L.; van den Brand, J.M.A.; de Lang, A.; Leijten, L.M.E.; van Ijcken, W.F.; van Amerongen, G.; Osterhaus, A.D.M.E.; Andeweg, A.C.; Haagmans, B.L. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J. Virol., 2011, 85(9), 4234-4245.
[http://dx.doi.org/10.1128/JVI.02395-10] [PMID: 21325418]
[23]
Haagmans, B.L.; van den Brand, J.M.; Provacia, L.B.; Raj, V.S.; Stittelaar, K.J.; Getu, S.; de Waal, L.; Bestebroer, T.M.; van Amerongen, G.; Verjans, G.M.; Fouchier, R.A.; Smits, S.L.; Kuiken, T.; Osterhaus, A.D.M.E. Asymptomatic middle east respiratory syndrome coronavirus infection in rabbits. J. Virol., 2015, 89(11), 6131-6135.
[http://dx.doi.org/10.1128/JVI.00661-15] [PMID: 25810539]
[24]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[25]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[26]
Graham, B.S.; Sullivan, N.J. Emerging viral diseases from a vaccinology perspective: Preparing for the next pandemic. Nat. Immunol., 2018, 19(1), 20-28.
[http://dx.doi.org/10.1038/s41590-017-0007-9] [PMID: 29199281]
[27]
Hu, B. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2019, 1-14.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[28]
Xiong, H-L.; Wu, Y-T.; Cao, J-L.; Yang, R.; Liu, Y.X.; Ma, J.; Qiao, X.Y.; Yao, X.Y.; Zhang, B.H.; Zhang, Y.L.; Hou, W.H.; Shi, Y.; Xu, J.J.; Zhang, L.; Wang, S.J.; Fu, B.R.; Yang, T.; Ge, S.X.; Zhang, J.; Yuan, Q.; Huang, B.Y.; Li, Z.Y.; Zhang, T.Y.; Xia, N.S. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg. Microbes Infect., 2020, 9(1), 2105-2113.
[http://dx.doi.org/10.1080/22221751.2020.1815589] [PMID: 32893735]
[29]
Yang, R.; Huang, B.; Ruhan, A.; Li, W.; Wang, W.; Deng, Y.; Tan, W. Biosafety and health development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing ef fi ciency and entry inhibition test in vitro. Biosaf. Heal., 2020, 2(4), 226-231.
[http://dx.doi.org/10.1016/j.bsheal.2020.08.004] [PMID: 32864605]
[30]
Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Fan, C.; Huang, W.; Xu, M.; Wang, Y. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc., 2020, 15(11), 3699-3715.
[http://dx.doi.org/10.1038/s41596-020-0394-5] [PMID: 32978602]
[31]
Steeds, K.; Hall, Y.; Slack, G.S.; Longet, S.; Strecker, T.; Fehling, S.K.; Wright, E.; Bore, J.A.; Koundouno, F.R.; Konde, M.K.; Hewson, R.; Hiscox, J.A.; Pollakis, G.; Carroll, M.W. Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Sci. Rep., 2020, 10(1), 14289.
[http://dx.doi.org/10.1038/s41598-020-71225-1] [PMID: 32868837]
[32]
Sokolowska, M. Outsmarting SARS-CoV-2 by empowering a decoy ACE2. Signal Transduct. Target. Ther., 2020, 5(1), 260.
[http://dx.doi.org/10.1038/s41392-020-00370-w] [PMID: 33144557]
[33]
Negrete, O.A.; Levroney, E.L.; Aguilar, H.C.; Bertolotti-Ciarlet, A.; Nazarian, R.; Tajyar, S.; Lee, B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature, 2005, 436(7049), 401-405.
[http://dx.doi.org/10.1038/nature03838] [PMID: 16007075]
[34]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[35]
Kim, M.; Kim, S.Y.; Lee, H.W.; Shin, J.S.; Kim, P.; Jung, Y.S.; Jeong, H.S.; Hyun, J.K.; Lee, C.K. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res., 2013, 100(2), 460-472.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.002] [PMID: 23954192]
[36]
Kawai, K.; Tsuno, N.H.; Kitayama, J.; Okaji, Y.; Yazawa, K.; Asakage, M.; Hori, N.; Watanabe, T.; Takahashi, K.; Nagawa, H. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J. Allergy Clin. Immunol., 2003, 112(5), 951-957.
[http://dx.doi.org/10.1016/S0091-6749(03)02007-4] [PMID: 14610487]
[37]
Basu, A.; Mills, D.M.; Bowlin, T.L. High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr. Protocols Pharmacol., 2010, Chapter 13(1), 3.
[http://dx.doi.org/10.1002/0471141755.ph13b03s51] [PMID: 21935898]
[38]
Talekar, A.; Pessi, A.; Glickman, F.; Sengupta, U.; Briese, T.; Whitt, M.A.; Mathieu, C.; Horvat, B.; Moscona, A.; Porotto, M. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment. PLoS One, 2012, 7(3), e30538.
[http://dx.doi.org/10.1371/journal.pone.0030538] [PMID: 22396728]
[39]
Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res., 2005, 28(11), 1293-1301.
[http://dx.doi.org/10.1007/BF02978215] [PMID: 16350858]
[40]
Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res., 2003, 58(2), 167-173.
[http://dx.doi.org/10.1016/S0166-3542(02)00212-7] [PMID: 12742577]
[41]
Mhatre, S.; Naik, S.; Patravale, V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput. Biol. Med., 2021, 129, 104137.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104137] [PMID: 33302163]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy