Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in the Development of Thalidomide-Related Compounds as Anticancer Drugs

Author(s): Alexia Barbarossa, Domenico Iacopetta, Maria Stefania Sinicropi, Carlo Franchini and Alessia Carocci*

Volume 29, Issue 1, 2022

Published on: 23 June, 2021

Page: [19 - 40] Pages: 22

DOI: 10.2174/0929867328666210623143526

Price: $65

Abstract

Introduction: Thalidomide is an old well-known drug firstly used as morning sickness relief in pregnant women and then withdrawn from the market due to its severe side effects on fetal normal development. However, over the last few decades, the interest in this old drug has been renewed because of its efficacy in several important disorders as, for instance, multiple myeloma, breast cancer, and HIV-related diseases due to its antiangiogenic and immunomodulatory properties. Unfortunately, even in these cases, many after effects as deep vein thrombosis, peripheral neuropathy, constipation, somnolence, pyrexia, pain, and teratogenicity have been reported showing the requirement of careful and monitored use. For this reason, research efforts are geared toward the synthesis and optimization of new thalidomide analogues lacking in toxic effects, able to erase these limits and improve the pharmacological profile.

Aims: This review aims to examine the state-of-the-art concerning the current studies on thalidomide and its analogues towards cancer diseases focusing the attention on the possible mechanisms of action involved and the lack of toxicity.

Conclusion: In the light of the collected data, thalidomide analogues and their ongoing optimization could lead, in the future, to the realization of a promising therapeutic alternative for fighting cancer.

Keywords: Thalidomide, antiangiogenics, immunomodulatory properties, anticancer drugs, thalidomide analogues, repositioning.

[1]
Eriksson, T.; Björkman, S.; Höglund, P.; Mercurio, A.; Adriani, G.; Catalano, A.; Carocci, A.; Rao, L.; Lentini, G.; Cavalluzzi, M.M.; Franchini, C.; Vacca, A.; Corbo, F. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol., 2001, 57(5), 365-376.
[http://dx.doi.org/10.1007/s002280100320] [PMID: 11599654]
[2]
Lenz, W. A short history of thalidomide embryopathy. Teratology, 1988, 38(3), 203-215.
[http://dx.doi.org/10.1002/tera.1420380303] [PMID: 3067415]
[3]
Franks, M.E.; Macpherson, G.R.; Figg, W.D. Thalidomide., 2004, 363, 1802-1811.
[4]
Mujagić, H.; Chabner, B.A.; Mujagić, Z. Mechanisms of action and potential therapeutic uses of thalidomide. Croat. Med. J., 2002, 43(3), 274-285.
[PMID: 12035132]
[5]
Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C Embryo Today, 2015, 105(2), 140-156.
[http://dx.doi.org/10.1002/bdrc.21096] [PMID: 26043938]
[6]
Gao, S.; Wang, S.; Fan, R.; Hu, J. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed. Pharmacother., 2020, 127110114
[http://dx.doi.org/10.1016/j.biopha.2020.110114] [PMID: 32304852]
[7]
Leufven, E.; Bruserud, Ø. Immunosuppression and immunotargeted therapy in acute myeloid leukemia - the potential use of checkpoint inhibitors in combination with other treatments. Curr. Med. Chem., 2019, 26(28), 5244-5261.
[http://dx.doi.org/10.2174/0929867326666190325095853] [PMID: 30907305]
[8]
Matyskiela, M.E.; Couto, S.; Zheng, X.; Lu, G.; Hui, J.; Stamp, K.; Drew, C.; Ren, Y.; Wang, M.; Carpenter, A.; Lee, C.W.; Clayton, T.; Fang, W.; Lu, C.C.; Riley, M.; Abdubek, P.; Blease, K.; Hartke, J.; Kumar, G.; Vessey, R.; Rolfe, M.; Hamann, L.G.; Chamberlain, P.P. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol., 2018, 14(10), 981-987.
[http://dx.doi.org/10.1038/s41589-018-0129-x] [PMID: 30190590]
[9]
Asatsuma-Okumura, T.; Ando, H.; De Simone, M.; Yamamoto, J.; Sato, T.; Shimizu, N.; Asakawa, K.; Yamaguchi, Y.; Ito, T.; Guerrini, L.; Handa, H. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat. Chem. Biol., 2019, 15(11), 1077-1084.
[http://dx.doi.org/10.1038/s41589-019-0366-7] [PMID: 31591562]
[10]
Sanchez, A.C.; Thren, E.D.; Iovine, M.K.; Skibbens, R.V Esco2 and cohesin regulate CRL4 ubiquitin ligase expression and thalidomide teratogenicity bioRxiv, 2020.
[11]
Melchert, M.; List, A. The thalidomide saga. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1489-1499.
[http://dx.doi.org/10.1016/j.biocel.2007.01.022] [PMID: 17369076]
[12]
Fabro, S.; Smith, R.L.; Williams, R.T. Toxicity and teratogenicity of optical isomers of thalidomide. Nature, 1967, 215(5098), 296.
[http://dx.doi.org/10.1038/215296a0] [PMID: 6059519]
[13]
Sheskin, J. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther., 1965, 6(3), 303-306.
[http://dx.doi.org/10.1002/cpt196563303] [PMID: 14296027]
[14]
Hales, B.F. Thalidomide on the comeback trail. Nat. Med., 1999, 5(5), 489-490.
[http://dx.doi.org/10.1038/8371] [PMID: 10229222]
[15]
Upputuri, B.; Pallapati, M.S.; Tarwater, P.; Srikantam, A. Thalidomide in the treatment of erythema nodosum leprosum (ENL) in an outpatient setting: A five-year retrospective analysis from a leprosy referral centre in India. PLoS Negl. Trop. Dis., 2020, 14(10)e0008678
[http://dx.doi.org/10.1371/journal.pntd.0008678] [PMID: 33035210]
[16]
Thangaraju, P.; Venkatesan, S.; Gurunthalingam, M.; Babu, S.; Tamilselvan, T. Rationale use of thalidomide in erythema nodosum leprosum-a non-systematic critical analysis of published case reports. Rev. Soc. Bras. Med. Trop., 2020, 53, 1-9.
[http://dx.doi.org/10.1590/0037-8682-0454-2019]
[17]
Ishii, N.; Ishida, Y.; Okano, Y.; Ozaki, M.; Gidoh, M.; Kumano, K.; Goto, M.; Nogami, R.; Hatano, K.; Yamada, A.; Yamaguchi, S.; Yotsu, R.R. Guideline for clinical use of thalidomide for management of erythema nodosum leprosum in Japan. Japanese J. Lepr., 2017, 86(2), 91-100.
[http://dx.doi.org/10.5025/hansen.86.91]
[18]
Kale, V.P.; Habib, H.; Chitren, R.; Patel, M.; Pramanik, K.C.; Jonnalagadda, S.C.; Challagundla, K.; Pandey, M.K. Old drugs, new uses: drug repurposing in hematological malignancies. Semin. Cancer Biol., 2021, 68, 242-248.
[19]
Amare, G.G.; Meharie, B.G.; Belayneh, Y.M. A drug repositioning success: The repositioned therapeutic applications and mechanisms of action of thalidomide. J. Oncol. Pharm. Pract., 2002, 27(3), 673-678.
[20]
Kumar, V.; Chhibber, S. Anti-inflammatory effect of thalidomide alone or in combination with augmentin in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Eur. J. Pharmacol., 2008, 592(1-3), 146-150.
[http://dx.doi.org/10.1016/j.ejphar.2008.07.019] [PMID: 18662682]
[21]
Behl, T.; Kaur, I.; Goel, H.; Kotwani, A. Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul. Pharmacol., 2017, 92, 6-15.
[http://dx.doi.org/10.1016/j.vph.2015.07.003] [PMID: 26196302]
[22]
Rajkumar, S.V.; Witzig, T.E. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat. Rev., 2000, 26(5), 351-362.
[http://dx.doi.org/10.1053/ctrv.2000.0188] [PMID: 11006136]
[23]
Khalil, A.; Kamar, A.; Nemer, G. Thalidomide-revisited : are COVID-19 patients going to be the latest victims of yet another theoretical drug-repurposing? Front. Immunol., 2020, 11, 1248.
[http://dx.doi.org/10.3389/fimmu.2020.01248] [PMID: 32574274]
[24]
Chen, C.; Qi, F.; Shi, K.; Li, Y.; Li, J.; Chen, Y.; Pan, J.; Zhou, T.; Lin, X Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19 pneumonia Prprints, 2020.2020020395
[25]
Davis, M.P.; Dickerson, E.D. Thalidomide: dual benefits in palliative medicine and oncology. Am. J. Hosp. Palliat. Care, 2001, 18(5), 347-351.
[http://dx.doi.org/10.1177/104990910101800511] [PMID: 11565189]
[26]
Hosseini-Chegeni, A.; Jazaeri, F.; Yousefi-Ahmadipour, A.; Heidari, M.; Abdollahie, A.; Dehpour, A.R. Thalidomide attenuates the hyporesponsiveness of isolated atria to chronotropic stimulation in BDL rats: The involvement of TNF-α, IL-6 inhibition, and SOCS1 activation. Iran. J. Basic Med. Sci., 2019, 22(11), 1259-1266.
[PMID: 32128089]
[27]
Salemi, M.; Mohammadi, S.; Ghavamzadeh, A.; Nikbakht, M. Anti-vascular endothelial growth factor targeting by curcumin and thalidomide in acute myeloid leukemia cells. Asian Pac. J. Cancer Prev., 2017, 18(11), 3055-3061.
[PMID: 29172279]
[28]
Zhang, X.; Luo, H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett., 2018, 15(3), 3313-3320.
[PMID: 29435073]
[29]
Bray, J.P.; Munday, J.S. Thalidomide reduces vascular endothelial growth factor immunostaining in canine splenic hemangiosarcoma. Vet. Sci., 2020, 7(2), 67.
[http://dx.doi.org/10.3390/vetsci7020067] [PMID: 32443710]
[30]
Wang, L.; Wang, S.; Xue, A.; Shi, J.; Zheng, C.; Huang, Y. Thalidomide inhibits angiogenesis via downregulation of VEGF and angiopoietin-2 in Crohn’s disease. Inflammation, 2021, 44(2), 795-807.
[PMID: 33206273]
[31]
Mercurio, A.; Adriani, G.; Catalano, A.; Carocci, A.; Rao, L.; Lentini, G.; Cavalluzzi, M.M.; Franchini, C.; Vacca, A.; Corbo, F. A mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr. Med. Chem., 2017, 24(25), 2736-2744.
[http://dx.doi.org/10.2174/0929867324666170601074646] [PMID: 28571559]
[32]
Millrine, D.; Kishimoto, T. A brighter side to thalidomide: its potential use in immunological disorders. Trends Mol. Med., 2017, 23(4), 348-361.
[http://dx.doi.org/10.1016/j.molmed.2017.02.006] [PMID: 28285807]
[33]
Miyazato, K.; Tahara, H.; Hayakawa, Y. Antimetastatic effects of thalidomide by inducing the functional maturation of peripheral natural killer cells. Cancer Sci., 2020, 111(8), 2770-2778.
[http://dx.doi.org/10.1111/cas.14538] [PMID: 32573072]
[34]
Domingo, S.; Solé, C.; Moliné, T.; Ferrer, B.; Ordi-Ros, J.; Cortés-Hernández, J. Efficacy of thalidomide in discoid Lupus Erythematosus: insights into the molecular mechanisms. Dermatology, 2020, 236(5), 467-476.
[http://dx.doi.org/10.1159/000508672] [PMID: 32659758]
[35]
Nguyen, Y.T.; Dupuy, A.; Cordoliani, F.; Vignon-Pennamen, M.D.; Lebbé, C.; Morel, P.; Rybojad, M. Treatment of cutaneous sarcoidosis with thalidomide. J. Am. Acad. Dermatol., 2004, 50(2), 235-241.
[http://dx.doi.org/10.1016/j.jaad.2003.07.006] [PMID: 14726878]
[36]
Revuz, J. Actualité du thalidomide.Annales de dermatologie et de vénéréologie, 1990, 117, pp. (4)313-321.,
[37]
Ghobrial, I.M.; Rajkumar, S.V. Management of thalidomide toxicity. J. Support. Oncol., 2003, 1(3), 194-205.
[PMID: 15334875]
[38]
Hall, V.C.; El-Azhary, R.A.; Bouwhuis, S.; Rajkumar, S.V. Dermatologic side effects of thalidomide in patients with multiple myeloma. J. Am. Acad. Dermatol., 2003, 48(4), 548-552.
[http://dx.doi.org/10.1067/mjd.2003.87] [PMID: 12664018]
[39]
Singhal, S.; Mehta, J. Thalidomide in cancer. Biomed. Pharmacother., 2002, 56(1), 4-12.
[http://dx.doi.org/10.1016/S0753-3322(01)00146-9] [PMID: 11905508]
[40]
Yamshon, S.; Ruan, J. IMiDs new and old. Curr. Hematol. Malig. Rep., 2019, 14(5), 414-425.
[http://dx.doi.org/10.1007/s11899-019-00536-6] [PMID: 31302872]
[41]
Kushwaha, R.S.; Chasta, P.; Chandrol, K.K. A novel approach on thalidomide and their analogues with their therapeutic uses and clinical application. Int. J. Trend Sci. Res. Dev., 2019, 3(4), 1022-1036.
[http://dx.doi.org/10.31142/ijtsrd23233]
[42]
Fink, E.C.; Ebert, B.L. The novel mechanism of lenalidomide activity. Blood, 2015, 126(21), 2366-2369.
[http://dx.doi.org/10.1182/blood-2015-07-567958] [PMID: 26438514]
[43]
Yin, L.L.; Wen, X.M.; Lai, Q.H.; Li, J.; Wang, X.W. Lenalidomide improvement of cisplatin antitumor efficacy on triple-negative breast cancer cells in vitro. Oncol. Lett., 2018, 15(5), 6469-6474.
[http://dx.doi.org/10.3892/ol.2018.8120] [PMID: 29616116]
[44]
Lapenta, C.; Donati, S.; Spadaro, F.; Lattanzi, L.; Urbani, F.; Macchia, I.; Sestili, P.; Spada, M.; Cox, M.C.; Belardelli, F.; Santini, S.M. Lenalidomide improves the therapeutic effect of an interferon-α-dendritic cell-based lymphoma vaccine. Cancer Immunol. Immunother., 2019, 68(11), 1791-1804.
[http://dx.doi.org/10.1007/s00262-019-02411-y] [PMID: 31620858]
[45]
Bringhen, S.; D’Agostino, M.; Paris, L.; Ballanti, S.; Pescosta, N.; Spada, S.; Pezzatti, S.; Grasso, M.; Rota-Scalabrini, D.; De Rosa, L.; Pavone, V.; Gazzera, G.; Aquino, S.; Poggiu, M.; Santoro, A.; Gentile, M.; Baldini, L.; Petrucci, M.T.; Tosi, P.; Marasca, R.; Cellini, C.; Palumbo, A.; Falco, P.; Hájek, R.; Boccadoro, M.; Larocca, A. Lenalidomide-based induction and maintenance in elderly newly diagnosed multiple myeloma patients: updated results of the EMN01 randomized trial. Haematologica, 2020, 105(7), 1937-1947.
[http://dx.doi.org/10.3324/haematol.2019.226407] [PMID: 31582542]
[46]
Gay, F.; Oliva, S.; Petrucci, M.T.; Conticello, C.; Catalano, L.; Corradini, P.; Siniscalchi, A.; Magarotto, V.; Pour, L.; Carella, A.; Malfitano, A.; Petrò, D.; Evangelista, A.; Spada, S.; Pescosta, N.; Omedè, P.; Campbell, P.; Liberati, A.M.; Offidani, M.; Ria, R.; Pulini, S.; Patriarca, F.; Hajek, R.; Spencer, A.; Boccadoro, M.; Palumbo, A. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: a randomised, multicentre, phase 3 trial. Lancet Oncol., 2015, 16(16), 1617-1629.
[http://dx.doi.org/10.1016/S1470-2045(15)00389-7] [PMID: 26596670]
[47]
Dimopoulos, M.; Weisel, K.; Moreau, P.; Anderson, L.D., Jr; White, D.; San-Miguel, J.; Sonneveld, P.; Engelhardt, M.; Jenner, M.; Corso, A.; Dürig, J.; Pavic, M.; Salomo, M.; Casal, E.; Srinivasan, S.; Yu, X.; Nguyen, T.V.; Biyukov, T.; Peluso, T.; Richardson, P. Pomalidomide, bortezomib, and dexamethasone for multiple myeloma previously treated with lenalidomide (OPTIMISMM): outcomes by prior treatment at first relapse. Leukemia, 2020, 35(6), 1722-1731.
[PMID: 32895455]
[48]
Chen, H.; Chen, F.; Pei, S.; Gou, S. Pomalidomide hybrids act as proteolysis targeting chimeras: Synthesis, anticancer activity and B-Raf degradation. Bioorg. Chem., 2019, 87, 191-199.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.035] [PMID: 30901674]
[49]
Cho, S.F.; Lin, L.; Xing, L.; Li, Y.; Wen, K.; Yu, T.; Hsieh, P.A.; Munshi, N.; Wahl, J.; Matthes, K.; Friedrich, M.; Arvedson, T.; Anderson, K.C.; Tai, Y.T. The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv., 2020, 4(17), 4195-4207.
[http://dx.doi.org/10.1182/bloodadvances.2020002524] [PMID: 32898244]
[50]
Kibata, K.; Ito, T.; Inaba, M.; Tanaka, A.; Iwata, R.; Inagaki-Katashiba, N.; Phan, V.; Satake, A.; Nomura, S. The immunomodulatory-drug, lenalidomide, sustains and enhances interferon-α production by human plasmacytoid dendritic cells. J. Blood Med., 2019, 10, 217-226.
[http://dx.doi.org/10.2147/JBM.S206459] [PMID: 31372079]
[51]
Bergsagel, P.L.; Chesi, M. Promiscuous mechanisms underlie the antitumor effects of thalidomide analogs. Nat. Med., 2016, 22(7), 706-707.
[http://dx.doi.org/10.1038/nm.4144] [PMID: 27387882]
[52]
Pessoa, C.; Ferreira, P.M.P.; Lotufo, L.V.C.; de Moraes, M.O.; Cavalcanti, S.M.T.; Coêlho, L.C.D.; Hernandes, M.Z.; Leite, A.C.L.; De Simone, C.A.; Costa, V.M.A.; Souza, V.M.O. Discovery of phthalimides as immunomodulatory and antitumor drug prototypes. ChemMedChem, 2010, 5(4), 523-528.
[http://dx.doi.org/10.1002/cmdc.200900525] [PMID: 20112332]
[53]
Shannon, E.; Noveck, R.; Sandoval, F.; Kamath, B.; Kearney, M. Thalidomide suppressed interleukin-6 but not tumor necrosis factor-alpha in volunteers with experimental endotoxemia. Transl. Res., 2007, 150(5), 275-280.
[http://dx.doi.org/10.1016/j.trsl.2007.05.003] [PMID: 17964516]
[54]
Greig, N.H.; Giordano, T.; Zhu, X.; Yu, Q.S.; Perry, T.A.; Holloway, H.W.; Brossi, A.; Rogers, J.T.; Sambamurti, K.; Lahiri, D.K. Thalidomide-based TNF-α inhibitors for neurodegenerative diseases. Acta Neurobiol. Exp. (Warsz.), 2004, 64(1), 1-9.
[PMID: 15190675]
[55]
Rosiñol, L.; Cibeira, M.T.; Segarra, M.; Cid, M.C.; Filella, X.; Aymerich, M.; Rozman, M.; Arenillas, L.; Esteve, J.; Bladé, J.; Montserrat, E. Response to thalidomide in multiple myeloma: impact of angiogenic factors. Cytokine, 2004, 26(4), 145-148.
[http://dx.doi.org/10.1016/j.cyto.2004.02.002] [PMID: 15149630]
[56]
da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.T.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.L.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M.P. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183.
[http://dx.doi.org/10.1016/j.cbi.2015.06.037] [PMID: 26134001]
[57]
Ferreira, P.M.P.; Da Costa, P.M. Costa, Ade.M.; Lima, D.J.; Drumond, R.R.; Silva, Jdo.N.; Moreira, D.R.; De Oliveira Filho, G.B.; Ferreira, J.M.; De Queiroz, M.G.; Leite, A.C.; Pessoa, C. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells. An. Acad. Bras. Cienc., 2015, 87(1), 313-330.
[http://dx.doi.org/10.1590/0001-3765201520130345] [PMID: 25651156]
[58]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in Docking. Curr. Med. Chem., 2019, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[59]
Bitencourt-Ferreira, G.; Duarte da Silva, A.; Filgueira de Azevedo, W. Jr Application of machine learning techniques to predict binding affinity for drug targets. A study of Cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265.
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[60]
Russo, S.; de Azevedo, W.F. Computational analysis of dipyrone metabolite 4-aminoantipyrine as a cannabinoid receptor 1 agonist. Curr. Med. Chem., 2020, 27(28), 4741-4749.
[http://dx.doi.org/10.2174/0929867326666190906155339] [PMID: 31490743]
[61]
Russo, S.; De Azevedo, W.F. Advances in the Understanding of the Cannabinoid Receptor 1 - Focusing on the Inverse Agonists Interactions. Curr. Med. Chem., 2019, 26(10), 1908-1919.
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[62]
de Azevedo, Junior W.F.; Bitencourt-Ferreira, G.; Godoy, J.R.; Adriano, H.M.A.; Dos Santos Bezerra, W.A.; Dos Santos Soares, A.M. Protein-ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARSCoV- 2. Curr. Med. Chem.,., 2021, 28(37), 7614-7633.
[http://dx.doi.org/10.2174/0929867328666210329094111] [PMID: 33781188]
[63]
de Oliveira Cardoso, M.V.; Moreira, D.R.M.; Filho, G.B.O.; Cavalcanti, S.M.T.; Coelho, L.C.D.; Espíndola, J.W.P. Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.P.; Pessoa, C.; de Simone, C.A.; Guimarães, E.T.; Soares, M.B.P.; Leite, A.C.L. Design, synthesis and structure e activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.041]
[64]
Chaulet, C.; Croix, C.; Alagille, D.; Normand, S.; Delwail, A.; Favot, L.; Lecron, J.C.; Viaud-Massuard, M.C. Design, synthesis and biological evaluation of new thalidomide analogues as TNF-α and IL-6 production inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(3), 1019-1022.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.031] [PMID: 21215621]
[65]
Yeh, C.B.; Lin, P.Y.; Hwang, J.M.; Su, C.J.; Yeh, Y.T.; Yang, S.F.; Chou, M.C. Study on synthesis of thalidomide analogues and their bioactivities; inhibition on INOS pathway and cytotoxic effects. Med. Chem. Res., 2012, 21(7), 953-963.
[http://dx.doi.org/10.1007/s00044-011-9603-7]
[66]
Nagarajan, S.; Majumder, S.; Sharma, U.; Rajendran, S.; Kumar, N.; Chatterjee, S.; Singh, B. Synthesis and anti-angiogenic activity of benzothiazole, benzimidazole containing phthalimide derivatives. Bioorg. Med. Chem. Lett., 2013, 23(1), 287-290.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.106] [PMID: 23182087]
[67]
Puskás, L.G.; Fehér, L.Z.; Vizler, C.; Ayaydin, F.; Rásó, E.; Molnár, E.; Magyary, I.; Kanizsai, I.; Gyuris, M.; Madácsi, R.; Fábián, G.; Farkas, K.; Hegyi, P.; Baska, F.; Ozsvári, B.; Kitajka, K. Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells. Lipids Health Dis., 2010, 9(1), 56.
[http://dx.doi.org/10.1186/1476-511X-9-56] [PMID: 20525221]
[68]
Chimento, A.; Saturnino, C.; Iacopetta, D.; Mazzotta, R.; Caruso, A.; Plutino, M.R.; Mariconda, A.; Ramunno, A.; Sinicropi, M.S.; Pezzi, V.; Longo, P. Inhibition of human topoisomerase I and II and anti-proliferative effects on MCF-7 cells by new titanocene complexes. Bioorg. Med. Chem., 2015, 23(22), 7302-7312.
[http://dx.doi.org/10.1016/j.bmc.2015.10.030] [PMID: 26526741]
[69]
Iacopetta, D.; Mariconda, A.; Saturnino, C.; Caruso, A.; Palma, G.; Ceramella, J.; Muià, N.; Perri, M.; Sinicropi, M.S.; Caroleo, M.C.; Longo, P. Novel gold and silver carbene complexes exert antitumor effects triggering the reactive oxygen species dependent intrinsic apoptotic pathway. ChemMedChem, 2017, 12(24), 2054-2065.
[http://dx.doi.org/10.1002/cmdc.201700634] [PMID: 29120085]
[70]
Saturnino, C.; Barone, I.; Iacopetta, D.; Mariconda, A.; Sinicropi, M.S.; Rosano, C.; Campana, A.; Catalano, S.; Longo, P.; Andò, S. N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression. Future Med. Chem., 2016, 8(18), 2213-2229.
[http://dx.doi.org/10.4155/fmc-2016-0160] [PMID: 27874288]
[71]
Sirignano, E.; Saturnino, C.; Botta, A.; Sinicropi, M.S.; Caruso, A.; Pisano, A.; Lappano, R.; Maggiolini, M.; Longo, P. Synthesis, characterization and cytotoxic activity on breast cancer cells of new half-titanocene derivatives. Bioorg. Med. Chem. Lett., 2013, 23(11), 3458-3462.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.059] [PMID: 23623493]
[72]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3)126905
[http://dx.doi.org/10.1016/j.bmcl.2019.126905] [PMID: 31874823]
[73]
Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des. Devel. Ther., 2017, 11, 599-616.
[http://dx.doi.org/10.2147/DDDT.S119488] [PMID: 28424538]
[74]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M. Design and synthesis of thalidomide based dithiocarbamate Cu (II), Ni (II) and Ru (III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[http://dx.doi.org/10.1016/j.poly.2013.03.056]
[75]
Talaat, R.; El-sayed, W.; Agwa, H.; Gamal-eldeen, A.; Moawia, S.; Zahran, M. Novel thalidomide analogs : anti-angiogenic and apoptotic effects on Hep-G2 and MCF-7 cancer cell lines. Biomed. Aging Pathol., 2014, 4(3), 179-189.
[http://dx.doi.org/10.1016/j.biomag.2014.03.002]
[76]
Talaat, R.; El-Sayed, W.; Agwa, H.S.; Gamal-Eldeen, A.M.; Moawia, S.; Zahran, M.A. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs. Chem. Biol. Interact., 2015, 238, 74-81.
[http://dx.doi.org/10.1016/j.cbi.2015.05.017] [PMID: 26051520]
[77]
El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; Seno, M. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol., 2014, 21(2), 283-292.
[http://dx.doi.org/10.1016/j.intimp.2014.05.007] [PMID: 24859059]
[78]
Ahmed, H.E.A.; Abdel-Salam, H.A.; Shaker, M.A. Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives. Bioorg. Chem., 2016, 66, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.003] [PMID: 26986635]
[79]
Stiz, D.; Campos, A.; Lúcia Tasca Gois Ruiz, A.; Ernesto de Carvalho, J.; Corrêa, R.; Cechinel-Filho, V. Antiproliferative effect of synthetic cyclic imides (methylphtalimides, carboxylic acid phtalimides and itaconimides) against human cancer cell lines. Z. Naturforsch. C J. Biosci., 2016, 71(11-12), 423-427.
[http://dx.doi.org/10.1515/znc-2016-0067] [PMID: 27768587]
[80]
Casal, J.J.; Bollini, M.; Lombardo, M.E.; Bruno, A.M. Thalidomide analogues: Tumor necrosis factor-alpha inhibitors and their evaluation as anti-inflammatory agents. Eur. J. Pharm. Sci., 2016, 83, 114-119.
[http://dx.doi.org/10.1016/j.ejps.2015.12.017] [PMID: 26692341]
[81]
Iacopetta, D.; Carocci, A.; Sinicropi, M.S.; Catalano, A.; Lentini, G.; Ceramella, J.; Curcio, R.; Caroleo, M.C. Old drug scaffold, new activity: thalidomide-correlated compounds exert different effects on breast cancer cell growth and progression. ChemMedChem, 2017, 12(5), 381-389.
[http://dx.doi.org/10.1002/cmdc.201600629] [PMID: 28099781]
[82]
Zahran, M.A.H.; El-Aarag, B.; Mehany, A.B.M.; Belal, A.; Younes, A.S. Design, synthesis, biological evaluations, molecular docking, and in vivo studies of novel phthalimide analogs. Arch. Pharm. (Weinheim), 2018, 351(5)e1700363
[http://dx.doi.org/10.1002/ardp.201700363] [PMID: 29611624]
[83]
Tsui, K.H.; Feng, T.H.; Lin, C.M.; Chang, P.L.; Juang, H.H. Curcumin blocks the activation of androgen and interlukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. J. Androl., 2008, 29(6), 661-668.
[http://dx.doi.org/10.2164/jandrol.108.004911] [PMID: 18676361]
[84]
Belluti, S.; Orteca, G.; Semeghini, V.; Rigillo, G.; Parenti, F.; Ferrari, E.; Imbriano, C. Potent anti-cancer properties of phthalimide-based curcumin derivatives on prostate tumor cells. Int. J. Mol. Sci., 2018, 20(1), 28.
[http://dx.doi.org/10.3390/ijms20010028] [PMID: 30577600]
[85]
Othman, I.M.M.; Gad-Elkareem, M.A.M.; El-Naggar, M.; Nossier, E.S.; Amr, A.E.E. Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1259-1270.
[http://dx.doi.org/10.1080/14756366.2019.1637861] [PMID: 31287341]
[86]
Kuzu, B.; Ayaz, F.; Algul, O. Synthesis of new alicyclic oxalamide derivatives and their differential immunomodulatory activities on the mammalian cells. J. Heterocycl. Chem., 2019, 56(7), 1946-1952.
[http://dx.doi.org/10.1002/jhet.3573]
[87]
Mercurio, A.; Sharples, L.; Corbo, F.; Franchini, C.; Vacca, A.; Catalano, A.; Carocci, A.; Kamm, R.D.; Pavesi, A.; Adriani, G. Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Front. Pharmacol., 2019, 10, 349.
[http://dx.doi.org/10.3389/fphar.2019.00349] [PMID: 31057399]
[88]
Philoppes, J.N.; Lamie, P.F. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg. Chem., 2019, 89102978
[http://dx.doi.org/10.1016/j.bioorg.2019.102978] [PMID: 31136900]
[89]
Radwan, M.A.A.; Alminderej, F.M.; Premanathan, M.; Alwashmi, A.S.S.; Alhumaydhi, F.A.; Alturaiki, W.; Alsagaby, S.A. Synthesis and evaluation of novel isoindoline-1,3-dione derivatives as anticancer agents. Russ. J. Bioorganic Chem., 2020, 46(6), 1087-1098.
[http://dx.doi.org/10.1134/S1068162020060278]
[90]
El-Zahabi, M.A.; Sakr, H.; El-Adl, K.; Zayed, M.; Abdelraheem, A.S.; Eissa, S.I.; Elkady, H.; Eissa, I.H. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg. Chem., 2020, 104104218
[http://dx.doi.org/10.1016/j.bioorg.2020.104218] [PMID: 32932121]
[91]
Zahran, M.A.H.; Kosey, S.E.L.; Mehany, A.B.; Gebreil, M.H. Design, synthesis and biological evaluation of novel indole-thalidomide hybrids analogs. Egypt. J. Chem., 2020, 63(11), 4175-4184.
[http://dx.doi.org/10.21608/ejchem.2020.23685.2408]
[92]
Muller, G.W.; Corral, L.G.; Shire, M.G.; Wang, H.; Moreira, A.; Kaplan, G.; Stirling, D.I. Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J. Med. Chem., 1996, 39(17), 3238-3240.
[http://dx.doi.org/10.1021/jm9603328] [PMID: 8765505]
[93]
Peach, M.L.; Beedie, S.L.; Chau, C.H.; Collins, M.K.; Markolovic, S.; Luo, W.; Tweedie, D.; Steinebach, C.; Greig, N.H.; Gütschow, M.; Vargesson, N.; Nicklaus, M.C.; Figg, W.D. Antiangiogenic activity and in silico cereblon binding analysis of novel thalidomide analogs. Molecules, 2020, 25(23), 5683.
[http://dx.doi.org/10.3390/molecules25235683] [PMID: 33276504]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy