Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp)

Author(s): Shabana Bibi, Mohammad Mehedi Hasan, Yuan-Bing Wang, Stavros P. Papadakos and Hong Yu*

Volume 29, Issue 1, 2022

Published on: 20 August, 2021

Page: [152 - 162] Pages: 11

DOI: 10.2174/0929867328666210820114025

Price: $65

Abstract

Background: SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARSCoV- 2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients.

Objective: The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2.

Methods: Fungal derivative “Cordycepin” was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp.

Results: The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span.

Conclusion: Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARSCoV- 2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).

Keywords: Cordycepin, bioactive metabolite, drug repurposing, SARS-CoV-2, COVID-19, molecular dynamic simulation.

[1]
Phelan, A.L.; Katz, R.; Gostin, L.O. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA, 2020, 323(8), 709-710.
[http://dx.doi.org/10.1001/jama.2020.1097] [PMID: 31999307]
[2]
Meng, L.; Hua, F.; Bian, Z. Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J. Dent. Res., 2020, 99(5), 481-487.
[http://dx.doi.org/10.1177/0022034520914246] [PMID: 32162995]
[3]
Mahase, E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ, 2020, 368, m408.
[http://dx.doi.org/10.1136/bmj.m408] [PMID: 32005727]
[4]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[5]
Khalaf, K.; Papp, N.; Chou, J.TT.; Hana, D.; Mackiewicz, A.; Kaczmarek, M. SARS-CoV-2: Pathogenesis, and advancements in diagnostics and treatment. Frontiers in Immunology. Frontiers Media S.A., 2020, 11570927
[6]
Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.RM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Review of Respiratory Medicine, 2020, 14, 865-868.
[7]
CDC COVID Data Tracker. Available from:. https://covid.cdc.gov/covid-data-tracker/#datatracker-home
[8]
WHO Coronavirus (COVID-19) Dashboard. Available from:. https://covid19.who.int/
[9]
Map and charts showing the spread of the novel coronavirus. Available from: . https://graphics.reuters.com/CHINA-HEALTH-MAP/0100B59S39E/index.html
[10]
Ita, K. Coronavirus DIsease (COVID-19): Current status and prospects for drug and vaccine development. Arch. Med. Res., 2020, 52(1), 15-24.
[PMID: 32950264]
[11]
Wang, Q.; Wu, J.; Wang, H.; Gao, Y.; Liu, Q.; Mu, A.; Ji, W.; Yan, L.; Zhu, Y.; Zhu, C.; Fang, X.; Yang, X.; Huang, Y.; Gao, H.; Liu, F.; Ge, J.; Sun, Q.; Yang, X.; Xu, W.; Liu, Z.; Yang, H.; Lou, Z.; Jiang, B.; Guddat, L.W.; Gong, P.; Rao, Z. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182(2), 417-428.e13.
[http://dx.doi.org/10.1016/j.cell.2020.05.034] [PMID: 32526208]
[12]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus, 2020, 12(3)e7423
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[13]
Zheng, J. SARS-coV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[14]
Betacoronavirus - an overview | ScienceDirect Topics. Available from:. https://www.sciencedirect.com/topics/ immunology-and-microbiology/betacoronavirus
[15]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A. nsights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. In: Biochimica et Biophysica Acta - Molecular Basis of Disease; Elsevier B.V., 2020; 1866, p. 165878..
[16]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by fulllength human ACE2. Science (80- ), 2020, 367(6485), 1444-1448. Available from:. http://science.sciencemag.org/
[17]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19.In: Nature Reviews Microbiology; Nature Research, 2020; 19, pp. 141-154. Available from: , www.nature.com/nrmicro
[18]
Hasan, A.; Paray, B.A.; Hussain, A.; Qadir, F.A.; Attar, F.; Aziz, F.M. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J. Biomol. Struct. Dyn., 2020, 39(8), 3025-3033.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[19]
Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 2020, 9(5), 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[20]
Michel, C.J.; Mayer, C.; Poch, O.; Thompson, J.D. Characterization of accessory genes in coronavirus genomes. Virol. J., 2020, 17(1), 131.
[http://dx.doi.org/10.1186/s12985-020-01402-1] [PMID: 32854725]
[21]
Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047.
[http://dx.doi.org/10.1002/jmv.24736] [PMID: 27864902]
[22]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (80- ), 2020, 368(6492), 779-82..
[23]
Jiang, Y.; Yin, W. Xu, HE RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem. Biophys. Res. Commun., 2020, 538, 47.
[24]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[25]
Baby, K.; Maity, S.; Mehta, C.H.; Suresh, A.; Nayak, U.Y.; Nayak, Y. Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000 Research 2020.9, 1166..
[http://dx.doi.org/10.12688/f1000research.26359.1] [PMID: 3204411]
[26]
Appleby, TC; Perry, JK; Murakami, E; Barauskas, O; Feng, J J; Cho, A Structural basis for RNA replication by the hepatitis C virus polymerase. Science (80-), 2015, 347(6223), 771-775..
[27]
Gong, P.; Peersen, O.B. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. USA, 2010, 107(52), 22505-22510.
[http://dx.doi.org/10.1073/pnas.1007626107] [PMID: 21148772]
[28]
Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051.
[http://dx.doi.org/10.1002/jmv.24678] [PMID: 27604059]
[29]
Elfiky, A.A. Zika virus: novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728.
[http://dx.doi.org/10.2217/fvl-2017-0081]
[30]
Elfiky, A.A. Novel guanosine derivatives as anti-HCV NS5b polymerase: a QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137.
[http://dx.doi.org/10.2174/1573406414666181015152511] [PMID: 30324891]
[31]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[32]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (80- ), 2020, 368(6498), 1499-504..
[33]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[34]
Bibi, S.; Wang, Y-B.; Tang, D-X.; Kamal, M.A.; Yu, H. Prospects for discovering the secondary metabolites of Cordyceps sensu lato by the integrated strategy. Med. Chem., 2021, 17(2), 97-120.
[http://dx.doi.org/10.2174/1573406416666191227120425] [PMID: 31880251]
[35]
Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: a chemical and pharmacological review. J. Pharm. Pharmacol., 2013, 65(4), 474-493.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01601.x] [PMID: 23488776]
[36]
Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid. Based Complement. Alternat. Med., 2015, 2015575063
[http://dx.doi.org/10.1155/2015/575063] [PMID: 25960753]
[37]
Huang, F.; Li, W.; Xu, H.; Qin, H.; He, Z-G. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS One, 2019, 14(6)e0218449
[http://dx.doi.org/10.1371/journal.pone.0218449]
[38]
Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential.In: Molecules; MDPI AG, 2020; 25, p. 2735.
[39]
Holbein, S.; Wengi, A.; Decourty, L.; Freimoser, F.M.; Jacquier, A.; Dichtl, B. Cordycepin interferes with 3′ end formation in yeast independently of its potential to terminate RNA chain elongation. RNA, 2009, 15(5), 837-849.
[http://dx.doi.org/10.1261/rna.1458909] [PMID: 19324962]
[40]
Rose, K.M.; Bell, L.E.; Jacob, S.T. Specific inhibition of chromatin-associated poly(A) synthesis in vitro by cordycepin 5′-triphosphate. Nature, 1977, 267(5607), 178-180.
[http://dx.doi.org/10.1038/267178a0] [PMID: 16073440]
[41]
Nakagawa, K.; Lokugamage, K.G.; Makino, S. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.Advances in Virus Research; Academic Press Inc., 2016, pp. 165-192.
[42]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2.In: Nature Reviews Microbiology; Nature Research, 2020; 19, pp. 155-170;
[43]
Doetsch, P.W.; Suhadolnik, R.J.; Sawada, Y.; Mosca, J.D.; Flick, M.B.; Reichenbach, N.L.; Dang, A.Q.; Wu, J.M.; Charubala, R.; Pfleiderer, W.; Henderson, E.E. Core (2′-5′)oligoadenylate and the cordycepin analog: inhibitors of Epstein--Barr virus-induced transformation of human lymphocytes in the absence of interferon. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 6699-6703.
[http://dx.doi.org/10.1073/pnas.78.11.6699] [PMID: 6171822]
[44]
Ryu, E.; Son, M.; Lee, M.; Lee, K.; Cho, J.Y.; Cho, S.; Lee, S.K.; Lee, Y.M.; Cho, H.; Sung, G.H.; Kang, H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience, 2014, 1(12), 866-881.
[http://dx.doi.org/10.18632/oncoscience.110] [PMID: 25621301]
[45]
Lonai, P.; Declève, A.; Kaplan, H.S. Spontaneous induction of endogenous murine leukemia virus-related antigen expression during short-term in vitro incubation of mouse lymphocytes. Proc. Natl. Acad. Sci. USA, 1974, 71(5), 2008-2012.
[http://dx.doi.org/10.1073/pnas.71.5.2008] [PMID: 4365582]
[46]
Müller, W.E.; Weiler, B.E.; Charubala, R.; Pfleiderer, W.; Leserman, L.; Sobol, R.W.; Suhadolnik, R.J.; Schröder, H.C. Cordycepin analogues of 2′,5′-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry, 1991, 30(8), 2027-2033.
[http://dx.doi.org/10.1021/bi00222a004] [PMID: 1705437]
[47]
Mahy, B.W.J.; Cox, N.J.; Armstrong, S.J.; Barry, R.D. Multiplication of influenza virus in the presence of cordycepin, an inhibitor of cellular RNA synthesis. Nat. New Biol., 1973, 243(127), 172-174.
[http://dx.doi.org/10.1038/newbio243172a0] [PMID: 4541329]
[48]
White, J.L.; Dawson, W.O. Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases. J. Virol., 1979, 29(2), 811-814.
[http://dx.doi.org/10.1128/jvi.29.2.811-814.1979] [PMID: 16789174]
[49]
Dawson, W.O. Tobacco mosaic virus protein synthesis is correlated with double-stranded RNA synthesis and not single-stranded RNA synthesis. Virology, 1983, 125(2), 314-322.
[http://dx.doi.org/10.1016/0042-6822(83)90204-0] [PMID: 6601327]
[50]
Verma, A.K. Cordycepin: A bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-8.
[http://dx.doi.org/10.1080/07391102.2020.1850352] [PMID: 33225826]
[51]
Verma, A.K.; Aggarwal, R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem. Biol. Drug Des., 2021, 97(4), 836-853.
[http://dx.doi.org/10.1111/cbdd.13812] [PMID: 33289334]
[52]
Study of Cordycepin Plus Pentostatin in Patients With Refractory TdT-Positive Leukemia - ClinicalTrials Available from: . https://clinicaltrials.gov/ct2/show/NCT00709215
[53]
Makar, S.; Saha, T.; Swetha, R.; Gutti, G.; Kumar, A.; Singh, S.K. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. In: Bioorganic Chemistry; Academic Press Inc., 2020; 94, p. 103380..
[54]
Hung, C.L.; Chen, C.C. Computational approaches for drug discovery. Drug Development Research,, 2014, 75, 412-418.
[55]
Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int. J. Biol. Macromol., 2020, 163, 1787-1797.
[56]
Ahmad, J.; Ikram, S.; Ahmad, F.; Rehman, I.U.; Mushtaq, M. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) - A drug repurposing study. Heliyon, 2020, 6(7)e04502
[http://dx.doi.org/10.1016/j.heliyon.2020.e04502] [PMID: 32754651]
[57]
Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses, 2020, 12(9), 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[58]
Elfiky, A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J. Biomol. Struct. Dyn., 2020, 39(9), 3204-3212.
[http://dx.doi.org/10.1080/07391102.2020.1761882] [PMID: 32338164]
[59]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H TheProtein Data Bank, 2000.235-42. Available from: . https://pubmed.ncbi.nlm.nih.gov/10592235/
[60]
DeLano, W.L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, 2020.
[61]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[62]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(10), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[63]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[64]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[65]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[66]
Desmond Molecular Dynamics System, D.E. MaestroDesmond Interoperability Tools; Schrödinger: New York, 2020.
[67]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[68]
D. J. Evans BLH. The Nose-Hoover thermostat. J. Chem. Phys., 1985, 83(8), 4069-4074.
[http://dx.doi.org/10.1063/1.449071]
[69]
Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 2016, 32(23), 3676-3678.
[http://dx.doi.org/10.1093/bioinformatics/btw514] [PMID: 27503228]
[70]
Vangone, A.; Bonvin, A. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes. Bio Protoc., 2017, 7(3)
[http://dx.doi.org/10.21769/BioProtoc.2124]
[71]
Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3900-E3909.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[72]
Koulgi, S.; Jani, V.; Uppuladinne, V.N.M.; Sonavane, U.; Joshi, R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One, 2021, 16(5)e0251801
[http://dx.doi.org/10.1371/journal.pone.0251801] [PMID: 33984041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy