Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Arachidonic Acid Metabolites in Neurologic Disorders

Author(s): Oguzhan Kursun, Hulya Karatas, Hulagu Bariskaner and Serefnur Ozturk*

Volume 21, Issue 2, 2022

Published on: 11 May, 2021

Page: [150 - 159] Pages: 10

DOI: 10.2174/1871527320666210512013648

Price: $65

Abstract

Background and Objective: Arachidonic acid (ARA) is essential for the fluidity, selective permeability, and flexibility of the cell membrane. It is an important factor for the function of all cells, particularly in the nervous system, immune system, and vascular endothelium. ARA is the second most common polyunsaturated fatty acid in the phospholipids of the nerve cell membrane after docosahexaenoic acid. ARA metabolites have many kinds of physiologic roles. The major action of ARA metabolites is the promotion of the acute inflammatory response, mediated by the production of pro-inflammatory mediators such as PGE2 and PGI2, followed by the formation of lipid mediators, which have pro-resolving effects. Another important action of ARA derivatives, especially COX, is the regulation of vascular reactivity through PGs and TXA2. There is significant involvement of ARA metabolites in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and neuropsychiatric disorders. ARA derivatives also make an important contribution to acute stroke, global ischemia, subarachnoid hemorrhage, and anticoagulation-related hemorrhagic transformation.

Conclusion: In this review, we have discussed experimental and human study results of neurologic disorders related to ARA and its metabolites in line with treatment options.

Keywords: Arachidonic acid, COX, LOX, stroke, neurodegenerative diseases, PGs.

Graphical Abstract

[1]
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta 2015; 1851(4): 340-55.
[http://dx.doi.org/10.1016/j.bbalip.2014.10.008] [PMID: 25449650]
[2]
Smith WL, Song I. The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002; 68-69: 115-28.
[http://dx.doi.org/10.1016/S0090-6980(02)00025-4] [PMID: 12432913]
[3]
Wlodawer P, Samuelsson B. On the organization and mechanism of prostaglandin synthetase. J Biol Chem 1973; 248(16): 5673-8.
[http://dx.doi.org/10.1016/S0021-9258(19)43558-8] [PMID: 4723909]
[4]
Zhu D, Ran Y. Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension. J Physiol Sci 2012; 62(3): 163-72.
[http://dx.doi.org/10.1007/s12576-012-0196-9] [PMID: 22331435]
[5]
Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V. Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964: 26-40.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.015] [PMID: 24685839]
[6]
Rosenfeld GCL, Eicosanoids DS. Rosenfeld GCL, DS. 6th ed. Lippincott Williams & Wilkins 2014; p. 158.
[7]
Karatas H, Cakir-Aktas C. 12/15 lipoxygenase as a therapeutic target in brain disorders. Noro Psikiyatri Arsivi 2019; 56(4): 288-91.
[PMID: 31903039]
[8]
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63(3): 471-538.
[http://dx.doi.org/10.1124/pr.110.003517] [PMID: 21752876]
[9]
Rang HPR. JM; Flower, RJ; Hndeson, G Local Hormones 1: Eicosanoids 8. 2016.
[10]
Hardman JGL, Goodman LE, Gilman A. Autacoids; drug therapy of inflammation. 10 ed. McGraw-Hill Medical Publishing Division 2001.
[11]
Brink C, Dahlén SE, Drazen J, et al. International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol Rev 2003; 55(1): 195-227.
[http://dx.doi.org/10.1124/pr.55.1.8] [PMID: 12615958]
[12]
Tallima H, El Ridi R. Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res 2017; 11: 33-41.
[http://dx.doi.org/10.1016/j.jare.2017.11.004] [PMID: 30034874]
[13]
Brash AR. Arachidonic acid as a bioactive molecule. J Clin Invest 2001; 107(11): 1339-45.
[http://dx.doi.org/10.1172/JCI13210] [PMID: 11390413]
[14]
Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15(12): 771-85.
[http://dx.doi.org/10.1038/nrn3820] [PMID: 25387473]
[15]
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacol Rev 2018; 70(1): 12-38.
[http://dx.doi.org/10.1124/pr.117.014092] [PMID: 29217656]
[16]
Shamim AM. T.; Ahsan, F.; Kumar, A.; Bagga, P. Lipids: An insight into the neurodegenerative disorders. Clin Nutrition Exper 2018; 20: 1-19.
[http://dx.doi.org/10.1016/j.yclnex.2018.05.001]
[17]
Brenna JT, Diau GY. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 2007; 77(5-6): 247-50.
[http://dx.doi.org/10.1016/j.plefa.2007.10.016] [PMID: 18023566]
[18]
Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev 2006; 64(5 Pt 2): S24-33.
[http://dx.doi.org/10.1301/nr.2006.may.S24-S33] [PMID: 16770950]
[19]
de Bus I, Witkamp R, Zuilhof H, Albada B, Balvers M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat 2019; 144: 106351.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106351] [PMID: 31260750]
[20]
Lim SY, Hoshiba J, Moriguchi T, Salem N Jr. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr Res 2005; 58(4): 741-8.
[http://dx.doi.org/10.1203/01.PDR.0000180547.46725.CC] [PMID: 16189203]
[21]
Hachem M, Belkouch M, Lo Van A, Picq M, Bernoud-Hubac N, Lagarde M. Brain targeting with docosahexaenoic acid as a prospective therapy for neurodegenerative diseases and its passage across blood brain barrier. Biochimie 2020; 170: 203-11.
[http://dx.doi.org/10.1016/j.biochi.2020.01.013] [PMID: 32014503]
[22]
Freund Levi Y, Vedin I, Cederholm T, et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med 2014; 275(4): 428-36.
[http://dx.doi.org/10.1111/joim.12166] [PMID: 24410954]
[23]
Tokuda H, Kontani M, Kawashima H, Kiso Y, Shibata H, Osumi N. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neurosci Res 2014; 88: 58-66.
[http://dx.doi.org/10.1016/j.neures.2014.08.002] [PMID: 25149915]
[24]
Latham CF, Osborne SL, Cryle MJ, Meunier FA. Arachidonic acid potentiates exocytosis and allows neuronal SNARE complex to interact with Munc18a. J Neurochem 2007; 100(6): 1543-54.
[PMID: 17181552]
[25]
Schmidt JT, Mariconda L, Morillo F, Apraku E. A role for the polarity complex and PI3 kinase in branch formation within retinotectal arbors of zebrafish. Dev Neurobiol 2014; 74(6): 591-601.
[http://dx.doi.org/10.1002/dneu.22152] [PMID: 24218155]
[26]
Almeida T, Cunha RA, Ribeiro JA. Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res 1999; 826(1): 104-11.
[http://dx.doi.org/10.1016/S0006-8993(99)01267-6] [PMID: 10216201]
[27]
Carta M, Lanore F, Rebola N, et al. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 2014; 81(4): 787-99.
[http://dx.doi.org/10.1016/j.neuron.2013.12.028] [PMID: 24486086]
[28]
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci 2018; 19(11): 3285.
[http://dx.doi.org/10.3390/ijms19113285] [PMID: 30360467]
[29]
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510(7503): 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[30]
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7: 104.
[http://dx.doi.org/10.3389/fnmol.2014.00104] [PMID: 25628533]
[31]
Czapski GA, Czubowicz K, Strosznajder JB, Strosznajder RP. The lipoxygenases: their regulation and implication in Alzheimer’s Disease. Neurochem Res 2016; 41(1-2): 243-57.
[http://dx.doi.org/10.1007/s11064-015-1776-x] [PMID: 26677076]
[32]
Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem Res 2012; 37(5): 903-10.
[http://dx.doi.org/10.1007/s11064-012-0708-2] [PMID: 22311128]
[33]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[34]
Côté S, Carmichael PH, Verreault R, Lindsay J, Lefebvre J, Laurin D. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimers Dement 2012; 8(3): 219-26.
[http://dx.doi.org/10.1016/j.jalz.2011.03.012] [PMID: 22546354]
[35]
Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004; 63(9): 901-10.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[36]
Fujimi K, Noda K, Sasaki K, et al. Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer’s disease: the Hisayama Study. Dement Geriatr Cogn Disord 2007; 23(6): 423-31.
[http://dx.doi.org/10.1159/000101957] [PMID: 17457030]
[37]
Hoozemans JJ, Veerhuis R, Janssen I, van Elk EJ, Rozemuller AJ, Eikelenboom P. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer’s disease. Brain Res 2002; 951(2): 218-26.
[http://dx.doi.org/10.1016/S0006-8993(02)03164-5] [PMID: 12270500]
[38]
Liang X, Wu L, Wang Q, et al. Function of COX-2 and prostaglandins in neurological disease. J Mol Neurosci 2007; 33(1): 94-9.
[http://dx.doi.org/10.1007/s12031-007-0058-8] [PMID: 17901552]
[39]
Kapila AK, Watts HR, Wang T, Ma D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer’s disease development: biomarkers and preventive strategies. J Alzheimers Dis 2014; 41(1): 1-13.
[http://dx.doi.org/10.3233/JAD-132258] [PMID: 24577482]
[40]
Thomas MH, Pelleieux S, Vitale N, Olivier JL. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 2016; 130: 168-77.
[http://dx.doi.org/10.1016/j.biochi.2016.07.013] [PMID: 27473185]
[41]
Mohri I, Kadoyama K, Kanekiyo T, et al. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2007; 66(6): 469-80.
[http://dx.doi.org/10.1097/01.jnen.0000240472.43038.27] [PMID: 17549007]
[42]
Johansson JU, Woodling NS, Wang Q, et al. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models. J Clin Invest 2015; 125(1): 350-64.
[http://dx.doi.org/10.1172/JCI77487] [PMID: 25485684]
[43]
Woodling NS, Wang Q, Priyam PG, et al. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling. J Neurosci 2014; 34(17): 5882-94.
[http://dx.doi.org/10.1523/JNEUROSCI.0410-14.2014] [PMID: 24760848]
[44]
Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 1997; 323(Pt 3): 577-91.
[http://dx.doi.org/10.1042/bj3230577] [PMID: 9169588]
[45]
Morales I, Jiménez JM, Mancilla M, Maccioni RB. Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis 2013; 37(4): 849-56.
[http://dx.doi.org/10.3233/JAD-131843] [PMID: 23948931]
[46]
Kawamata T, Taniguchi T, Mukai H, et al. A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 1998; 18(18): 7402-10.
[http://dx.doi.org/10.1523/JNEUROSCI.18-18-07402.1998] [PMID: 9736660]
[47]
Rossner S, Mehlhorn G, Schliebs R, Bigl V. Increased neuronal and glial expression of protein kinase C isoforms in neocortex of transgenic Tg2576 mice with amyloid pathology. Eur J Neurosci 2001; 13(2): 269-78.
[http://dx.doi.org/10.1046/j.1460-9568.2001.01388.x] [PMID: 11168531]
[48]
Zach S, Felk S, Gillardon F. Signal transduction protein array analysis links LRRK2 to Ste20 kinases and PKC zeta that modulate neuronal plasticity. PLoS One 2010; 5(10): e13191.
[http://dx.doi.org/10.1371/journal.pone.0013191] [PMID: 20949042]
[49]
Hunot S, Vila M, Teismann P, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 2004; 101(2): 665-70.
[http://dx.doi.org/10.1073/pnas.0307453101] [PMID: 14704277]
[50]
Joshi YB, Giannopoulos PF, Chu J, et al. Absence of ALOX5 gene prevents stress-induced memory deficits, synaptic dysfunction and tauopathy in a mouse model of Alzheimer’s disease. Hum Mol Genet 2014; 23(25): 6894-902.
[http://dx.doi.org/10.1093/hmg/ddu412] [PMID: 25122659]
[51]
Giannopoulos PF, Joshi YB, Chu J, Praticò D. The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 2013; 12(6): 1082-90.
[http://dx.doi.org/10.1111/acel.12136] [PMID: 23862663]
[52]
Joshi YB, Giannopoulos PF, Chu J, Praticò D. Modulation of lipopolysaccharide-induced memory insult, γ-secretase, and neuroinflammation in triple transgenic mice by 5-lipoxygenase. Neurobiol Aging 2014; 35(5): 1024-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.016] [PMID: 24332986]
[53]
Chu J, Li JG, Praticò D. Zileuton improves memory deficits, amyloid and tau pathology in a mouse model of Alzheimer’s disease with plaques and tangles. PLoS One 2013; 8(8): e70991.
[http://dx.doi.org/10.1371/journal.pone.0070991] [PMID: 23951061]
[54]
Spite M, Clària J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 2014; 19(1): 21-36.
[http://dx.doi.org/10.1016/j.cmet.2013.10.006] [PMID: 24239568]
[55]
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10: 719.
[http://dx.doi.org/10.3389/fphar.2019.00719] [PMID: 31333453]
[56]
Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7: 12859.
[http://dx.doi.org/10.1038/ncomms12859] [PMID: 27659679]
[57]
Gilbert NC, Gerstmeier J, Schexnaydre EE, et al. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol 2020; 16(7): 783-90.
[http://dx.doi.org/10.1038/s41589-020-0544-7] [PMID: 32393899]
[58]
Praticò D, Zhukareva V, Yao Y, et al. 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol 2004; 164(5): 1655-62.
[http://dx.doi.org/10.1016/S0002-9440(10)63724-8] [PMID: 15111312]
[59]
Gu XH, Xu LJ, Liu ZQ, et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res 2016; 311: 309-21.
[http://dx.doi.org/10.1016/j.bbr.2016.05.052] [PMID: 27233830]
[60]
Leslie CC. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot Essent Fatty Acids 2004; 70(4): 373-6.
[http://dx.doi.org/10.1016/j.plefa.2003.12.012] [PMID: 15041029]
[61]
Sanchez-Mejia RO, Newman JW, Toh S, et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 2008; 11(11): 1311-8.
[http://dx.doi.org/10.1038/nn.2213] [PMID: 18931664]
[62]
Desbene C, Malaplate-Armand C, Youssef I, et al. Critical role of cPLA2 in Abeta oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 2012; 33(6): 1123. e17-29
[63]
West E, Osborne C, Nolan W, Bate C. Monoacylated cellular prion proteins reduce amyloid-β-induced activation of cytoplasmic phospholipase A2 and Synapse Damage. Biology (Basel) 2015; 4(2): 367-82.
[http://dx.doi.org/10.3390/biology4020367] [PMID: 26043272]
[64]
Gentile MT, Reccia MG, Sorrentino PP, et al. Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer’s disease pathogenesis. Mol Neurobiol 2012; 45(3): 596-604.
[http://dx.doi.org/10.1007/s12035-012-8279-4] [PMID: 22648535]
[65]
Sun GY, He Y, Chuang DY, et al. Integrating cytosolic phospholipase A with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 2012; 46(1): 85-95.
[http://dx.doi.org/10.1007/s12035-012-8261-1] [PMID: 22476944]
[66]
Ng CY, Kannan S, Chen YJ, et al. A new generation of arachidonic acid analogues as potential neurological agent targeting cytosolic phospholipase A2. Sci Rep 2017; 7(1): 13683.
[http://dx.doi.org/10.1038/s41598-017-13996-8] [PMID: 29057981]
[67]
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid signaling in the control of social behavior. Trends Neurosci 2017; 40(7): 385-96.
[http://dx.doi.org/10.1016/j.tins.2017.04.005] [PMID: 28554687]
[68]
Wei D, Lee D, Li D, Daglian J, Jung KM, Piomelli D. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl) 2016; 233(10): 1911-9.
[http://dx.doi.org/10.1007/s00213-016-4222-0] [PMID: 26873082]
[69]
Mozaffarian D, Benjamin EJ, Go AS, et al. Executive Summary: heart disease and stroke statistics--2016 update: a report from the american heart association. Circulation 2016; 133(4): 447-54.
[http://dx.doi.org/10.1161/CIR.0000000000000366] [PMID: 26811276]
[70]
Lees KR, Bluhmki E, von Kummer R, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ecass, atlantis, ninds, and epithet trials. Lancet 2010; 375(9727): 1695-703.
[http://dx.doi.org/10.1016/S0140-6736(10)60491-6] [PMID: 20472172]
[71]
Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333(24): 1581-7.
[http://dx.doi.org/10.1056/NEJM199512143332401] [PMID: 7477192]
[72]
Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke 2005; 36(2): 189-92.
[http://dx.doi.org/10.1161/01.STR.0000153069.96296.fd] [PMID: 15637315]
[73]
Bhardwaj A, Northington FJ, Carhuapoma JR, et al. P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am J Physiol Heart Circ Physiol 2000; 279(4): H1616-24.
[http://dx.doi.org/10.1152/ajpheart.2000.279.4.H1616] [PMID: 11009448]
[74]
Jouihan SA, Zuloaga KL, Zhang W, et al. Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin-induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 2013; 33(10): 1650-6.
[http://dx.doi.org/10.1038/jcbfm.2013.130] [PMID: 23899929]
[75]
Dunn KM, Renic M, Flasch AK, Harder DR, Falck J, Roman RJ. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2008; 295(6): H2455-65.
[http://dx.doi.org/10.1152/ajpheart.00512.2008] [PMID: 18952718]
[76]
Toth P, Rozsa B, Springo Z, Doczi T, Koller A. Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab 2011; 31(10): 2096-105.
[http://dx.doi.org/10.1038/jcbfm.2011.74] [PMID: 21610722]
[77]
Lange A, Gebremedhin D, Narayanan J, Harder D. 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 1997; 272(43): 27345-52.
[http://dx.doi.org/10.1074/jbc.272.43.27345] [PMID: 9341185]
[78]
Cambj-Sapunar L, Yu M, Harder DR, Roman RJ. Contribution of 5-hydroxytryptamine1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke 2003; 34(5): 1269-75.
[http://dx.doi.org/10.1161/01.STR.0000065829.45234.69] [PMID: 12677022]
[79]
Ward NC, Croft KD, Blacker D, et al. Cytochrome P450 metabolites of arachidonic acid are elevated in stroke patients compared with healthy controls. Clin Sci (Lond) 2011; 121(11): 501-7.
[http://dx.doi.org/10.1042/CS20110215] [PMID: 21689071]
[80]
Zuloaga KL, Zhang W, Roese NE, Alkayed NJ. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice. Front Pharmacol 2015; 5: 290.
[http://dx.doi.org/10.3389/fphar.2014.00290] [PMID: 25642188]
[81]
Renic M, Klaus JA, Omura T, et al. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 2009; 29(3): 629-39.
[http://dx.doi.org/10.1038/jcbfm.2008.156] [PMID: 19107134]
[82]
Zuloaga KL, Krasnow SM, Zhu X, et al. Mechanism of protection by soluble epoxide hydrolase inhibition in type 2 diabetic stroke. PLoS One 2014; 9(5): e97529.
[http://dx.doi.org/10.1371/journal.pone.0097529] [PMID: 24824753]
[83]
Bazán NG Jr. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 1970; 218(1): 1-10.
[http://dx.doi.org/10.1016/0005-2760(70)90086-X] [PMID: 5473492]
[84]
Chan PH, Fishman RA, Caronna J, Schmidley JW, Prioleau G, Lee J. Induction of brain edema following intracerebral injection of arachidonic acid. Ann Neurol 1983; 13(6): 625-32.
[http://dx.doi.org/10.1002/ana.410130608] [PMID: 6309072]
[85]
Moskowitz MA, Kiwak KJ, Hekimian K, Levine L. Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 1984; 224(4651): 886-9.
[http://dx.doi.org/10.1126/science.6719118] [PMID: 6719118]
[86]
Li Y, Maher P, Schubert D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 1997; 19(2): 453-63.
[http://dx.doi.org/10.1016/S0896-6273(00)80953-8] [PMID: 9292733]
[87]
van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 2006; 37(12): 3014-8.
[http://dx.doi.org/10.1161/01.STR.0000249004.25444.a5] [PMID: 17053180]
[88]
Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 2008; 39(9): 2538-43.
[http://dx.doi.org/10.1161/STROKEAHA.108.514927] [PMID: 18635843]
[89]
Jung JE, Karatas H, Liu Y, et al. STAT-dependent upregulation of 12/15-lipoxygenase contributes to neuronal injury after stroke. J Cereb Blood Flow Metab 2015; 35(12): 2043-51.
[http://dx.doi.org/10.1038/jcbfm.2015.169] [PMID: 26174325]
[90]
Yigitkanli K, Pekcec A, Karatas H, et al. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann Neurol 2013; 73(1): 129-35.
[http://dx.doi.org/10.1002/ana.23734] [PMID: 23192915]
[91]
Çakır-Aktaş CYM, Bodur E, Eren-Kocak E, van Leyen K, Dalkara T, Karatas KH. 12/15 Lipoxygenase inhibition suppresses neuroinflammation in a thrombotic permanent cerebral ischemia model. J Neurol Sci 2017; 381: 863-4.
[http://dx.doi.org/10.1016/j.jns.2017.08.2434]
[92]
Karatas H, Eun Jung J, Lo EH, van Leyen K. Inhibiting 12/15-lipoxygenase to treat acute stroke in permanent and tPA induced thrombolysis models. Brain Res 2018; 1678: 123-8.
[http://dx.doi.org/10.1016/j.brainres.2017.10.024] [PMID: 29079502]
[93]
Yigitkanli K, Zheng Y, Pekcec A, Lo EH, van Leyen K. Increased 12/15-Lipoxygenase leads to widespread brain injury following global cerebral ischemia. Transl Stroke Res 2017; 8(2): 194-202.
[http://dx.doi.org/10.1007/s12975-016-0509-z] [PMID: 27838820]
[94]
Liu Y, Zheng Y, Karatas H, et al. 12/15-Lipoxygenase inhibition or knockout reduces warfarin-associated hemorrhagic transformation after experimental stroke. Stroke 2017; 48(2): 445-51.
[http://dx.doi.org/10.1161/STROKEAHA.116.014790] [PMID: 28057806]
[95]
Zheng Y, Liu Y, Karatas H, Yigitkanli K, Holman TR, van Leyen K. Contributions of 12/15-Lipoxygenase to bleeding in the brain following ischemic Stroke. Adv Exp Med Biol 2019; 1161: 125-31.
[http://dx.doi.org/10.1007/978-3-030-21735-8_12] [PMID: 31562627]
[96]
Gaberel T, Gakuba C, Zheng Y, Lépine M, Lo EH, van Leyen K. Impact of 12/15-lipoxygenase on brain injury after subarachnoid hemorrhage. Stroke 2019; 50(2): 520-3.
[http://dx.doi.org/10.1161/STROKEAHA.118.022325] [PMID: 30602353]
[97]
Zhang Z, Yu R, Cao L. Neuroprotection of taurine through inhibition of 12/15 lipoxygenase pathway in cerebral ischemia of rats. Neurol Res 2017; 39(5): 453-8.
[http://dx.doi.org/10.1080/01616412.2017.1297906] [PMID: 28256152]
[98]
Poloyac SM, Reynolds RB, Yonas H, Kerr ME. Identification and quantification of the hydroxyeicosatetraenoic acids, 20-HETE and 12-HETE, in the cerebrospinal fluid after subarachnoid hemorrhage. J Neurosci Methods 2005; 144(2): 257-63.
[http://dx.doi.org/10.1016/j.jneumeth.2004.11.015] [PMID: 15910986]
[99]
Farias SE, Heidenreich KA, Wohlauer MV, Murphy RC, Moore EE. Lipid mediators in cerebral spinal fluid of traumatic brain injured patients. J Trauma 2011; 71(5): 1211-8.
[http://dx.doi.org/10.1097/TA.0b013e3182092c62] [PMID: 21427623]
[100]
Zhao J, He Z, Ma S, Li L. Association of ALOX15 gene polymorphism with ischemic stroke in Northern Chinese Han population. J Mol Neurosci 2012; 47(3): 458-64.
[http://dx.doi.org/10.1007/s12031-012-9721-9] [PMID: 22351111]
[101]
Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest 1995; 96(1): 504-10.
[http://dx.doi.org/10.1172/JCI118062] [PMID: 7615823]
[102]
Haynes RL, van Leyen K. 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 2013; 35(2-3): 140-54.
[http://dx.doi.org/10.1159/000350230] [PMID: 23838566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy