Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Unravelling the Immune Modulatory Effect of Indian Spices to Impede the Transmission of COVID-19: A Promising Approach

Author(s): Aswathy R. Devan, Bhagyalakshmi Nair, Ayana R. Kumar, Jaggaiah N. Gorantla, Aishwarya T. S. and Lekshmi R. Nath*

Volume 23, Issue 2, 2022

Published on: 16 February, 2021

Page: [201 - 220] Pages: 20

DOI: 10.2174/1389201022666210216144917

Price: $65

Abstract

Months after WHO declared COVID-19 as a Global Public Health Emergency of International Concern, it does not seem to be flattening the curve as we are still devoid of an effective treatment modality and vaccination is in the first phase in many countries. Amid such uncertainty, being immune is the best strategy to defend against corona attacks. As the whole world is referring back to immune-boosting traditional remedies, interest is rekindled in the Indian system of Medicine, which is gifted with an abundance of herbal medicines as well as remedies. Among them, spices (root, rhizome, seed, fruit, leaf, bud, and flower of various plants used to add taste and flavors to food) are bestowed with immense medicinal potential. A plethora of clinical as well as preclinical studies reported the effectiveness of various spices for various ailments. The potential immune-boosting properties together with their excellent safety profiles are making spices the current choice of phytoresearch as well as the immune-boosting home remedies during these sceptical times. The present review critically evaluates the immune impact of various Indian spices and their potential to tackle the novel coronavirus, with comments on the safety and toxicity aspects of spices.

Keywords: SARS-CoV2, Indian spices, immunity booster, anti-viral, anti-inflammatory, herbal medicine.

Graphical Abstract

[1]
Astuti, I. Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[2]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[3]
Jiang, S.; Hillyer, C.; Du, L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol., 2020, 41(5), 355-359.
[http://dx.doi.org/10.1016/j.it.2020.03.007] [PMID: 32249063]
[4]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[5]
Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: are they closely related? Clin. Microbiol. Infect., 2020, 26(6), 729-734.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[6]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[7]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20]
[8]
Perlman, S.; Dandekar, A.A. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol., 2005, 5(12), 917-927.
[http://dx.doi.org/10.1038/nri1732] [PMID: 16322745]
[9]
Kikkert, M. Innate immune evasion by human respiratory RNA viruses. J. Innate Immun., 2020, 12(1), 4-20.
[http://dx.doi.org/10.1159/000503030] [PMID: 31610541]
[10]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[11]
Totura, A.L.; Baric, R.S. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr. Opin. Virol., 2012, 2(3), 264-275.
[http://dx.doi.org/10.1016/j.coviro.2012.04.004] [PMID: 22572391]
[12]
Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant., 2020, 39(5), 405-407.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[13]
Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol.,.
[http://dx.doi.org/10.12932/AP-200220-0772]
[14]
Egli, A.; Santer, D.M.; O’Shea, D.; Tyrrell, D.L.; Houghton, M. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg. Microbes Infect., 2014, 3(7)e51
[http://dx.doi.org/10.1038/emi.2014.51] [PMID: 26038748]
[15]
Li, C.K-F.; Xu, X. Host Immune Responses to SARS Coronavirus in Humans. In Molecular Biology of the SARS-Coronavirus; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 259-278;
[http://dx.doi.org/10.1007/978-3-642-03683-5_16.]
[16]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[17]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[18]
Randolph, H.E.; Barreiro, L.B. Herd Immunity: Understanding COVID-19. Immunity, 2020, 52(5), 737-741.
[http://dx.doi.org/10.1016/j.immuni.2020.04.012] [PMID: 32433946]
[19]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[20]
Anderson, R.M.; May, R.M. Vaccination and herd immunity to infectious diseases. Nature, 1985, 318(6044), 323-329.
[http://dx.doi.org/10.1038/318323a0] [PMID: 3906406]
[21]
Fine, P.E.M.; Mulholland, K.; Scott, J.A.; Edmunds, W.J. Community Protection.Plotkin’s Vaccines; Elsevier, 2018, pp. 1512-1531.e5.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00077-8]
[22]
Kammath, A.J.; Nair, B. P, S.; Nath, L.R. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J. Food Biochem., 2020.e13285
[http://dx.doi.org/10.1111/jfbc.13285] [PMID: 32524639]
[23]
Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12967-018-1381-2] [PMID: 29370858]
[24]
Chiru, T.; Fursenco, C.; Ciobanu, N. Use of medicinal plants in complementary treatment of the common cold and influenza – Perception of pharmacy customers in Moldova and Romania. J. Herb. Med., 2020, 21100346
[http://dx.doi.org/10.1016/j.hermed.2020.100346]
[25]
Denyer, C.V.; Jackson, P.; Loakes, D.M.; Ellis, M.R.; Young, D.A.B. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). J. Nat. Prod., 1994, 57(5), 658-662.
[http://dx.doi.org/10.1021/np50107a017] [PMID: 8064299]
[26]
Eldershaw, T.P.; Colquhoun, E.Q.; Dora, K.A.; Peng, Z.C.; Clark, M.G. Pungent principles of ginger (Zingiber officinale) are thermogenic in the perfused rat hindlimb. Int. J. Obes. Relat. Metab. Disord., 1992, 16(10), 755-763.
[PMID: 1330955]
[27]
Luzzi, R.; Belcaro, G.; Pellegrini, L.; Cornelli, U.; Feragalli, B.; Dugall, M. Phyto-relief CC: prevention of cold episodes. Control of signs/symptoms and complications. Minerva Gastroenterol. Dietol., 2015.
[PMID: 26492587]
[28]
Imanishi, N.; Andoh, T.; Mantani, N.; Sakai, S.; Terasawa, K.; Shimada, Y.; Sato, M.; Katada, Y.; Ueda, K.; Ochiai, H. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. Am. J. Chin. Med., 2006, 34(1), 157-169.
[http://dx.doi.org/10.1142/S0192415X06003722] [PMID: 16437748]
[29]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[30]
Sahoo, M.; Jena, L.; Rath, S.N.; Kumar, S. Identification of suitable natural inhibitor against influenza A (H1N1) neuraminidase protein by molecular docking. Genomics Inform., 2016, 14(3), 96-103.
[http://dx.doi.org/10.5808/GI.2016.14.3.96] [PMID: 27729839]
[31]
Chang, J.S.; Wang, K.C.; Shieh, D.E.; Hsu, F.F.; Chiang, L.C. Ge-Gen-Tang has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2012, 139(1), 305-310.
[http://dx.doi.org/10.1016/j.jep.2011.11.018] [PMID: 22120014]
[32]
Rungkat, F-Z.; Nurahman, N.; Prangdimurt, E.P.; Tejasari, T. Antioxidant and immunoenhancement activities of ginger (zingiber officinale roscoe) extracts and compounds in in vitro and in vivo mouse and human system. Prev. Nutr. Food Sci., 2003, 8(1), 96-104.
[http://dx.doi.org/10.3746/jfn.2003.8.1.096]
[33]
Carrasco, F.R.; Schmidt, G.; Romero, A.L.; Sartoretto, J.L.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J. Pharm. Pharmacol., 2009, 61(7), 961-967.
[http://dx.doi.org/10.1211/jpp/61.07.0017] [PMID: 19589240]
[34]
Elmowalid, G.A.; Abd El-Hamid, M.I.; Abd El-Wahab, A.M.; Atta, M.; Abd El-Naser, G.; Attia, A.M. Garlic and ginger extracts modulated broiler chicks innate immune responses and enhanced multidrug resistant Escherichia coli O78 clearance. Comp. Immunol. Microbiol. Infect. Dis., 2019, 66101334
[http://dx.doi.org/10.1016/j.cimid.2019.101334] [PMID: 31437688]
[35]
Mahassni, S.H.; Bukhari, O.A. Beneficial effects of an aqueous ginger extract on the immune system cells and antibodies, hematology, and thyroid hormones in male smokers and non-smokers. J. Nutr. Intermed. Metab., 2019, 15, 10-17.
[http://dx.doi.org/10.1016/j.jnim.2018.10.001]
[36]
Ahui, M.L.B.; Champy, P.; Ramadan, A.; Pham Van, L.; Araujo, L.; Brou André, K.; Diem, S.; Damotte, D.; Kati-Coulibaly, S.; Offoumou, M.A.; Dy, M.; Thieblemont, N.; Herbelin, A. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int. Immunopharmacol., 2008, 8(12), 1626-1632.
[http://dx.doi.org/10.1016/j.intimp.2008.07.009] [PMID: 18692598]
[37]
Yocum, G.T.; Hwang, J.J.; Mikami, M.; Danielsson, J.; Kuforiji, A.S.; Emala, C.W. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(2), L296-L303.
[http://dx.doi.org/10.1152/ajplung.00249.2019] [PMID: 31800263]
[38]
Zhang, F-L.; Zhou, B-W.; Yan, Z-Z.; Zhao, J.; Zhao, B-C.; Liu, W-F.; Li, C.; Liu, K-X. 6-Gingerol attenuates macrophages pyroptosis via the inhibition of MAPK signaling pathways and predicts a good prognosis in sepsis. Cytokine, 2020, 125154854
[http://dx.doi.org/10.1016/j.cyto.2019.154854] [PMID: 31539844]
[39]
Han, J.J.; Li, X.; Ye, Z.Q.; Lu, X.Y.; Yang, T.; Tian, J.; Wang, Y.Q.; Zhu, L.; Wang, Z.Z.; Zhang, Y. Treatment with 6-gingerol regulates dendritic cell activity and ameliorates the severity of experimental autoimmune encephalomyelitis. Mol. Nutr. Food Res., 2019, 63(18)e1801356
[http://dx.doi.org/10.1002/mnfr.201801356] [PMID: 31313461]
[40]
Srivastava, AK; Singh, VK Biological Action Of Piper Nigrum - The King Of Spices..
[41]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: an overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[42]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: a review. Open Chem. J., 2016, 3(1), 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]
[43]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine-The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 124-140.
[http://dx.doi.org/10.1111/1541-4337.12246] [PMID: 33371546]
[44]
Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; Valussi, M.; Tumer, T.B.; Monzote Fidalgo, L.; Martorell, M.; Setzer, W.N. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules, 2019, 24(7)E1364
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[45]
Mair, C; Liu, R; Atanasov, A; Schmidtke, M; Dirsch, V; Rollinger, J Antiviral and anti-proliferative in vitro activities of piperamides from black pepper. Planta Med., 2016, 81, S01, S1-.
[http://dx.doi.org/10.1055/s-0036-1596830]
[46]
Bezerra, D.P.; de Castro, F.O.; Alves, A.P.N.N.; Pessoa, C.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.; Elmiro, F.J.; de Alencar, N.M.; Mesquita, R.O.; Lima, M.W.; Costa-Lotufo, L.V. In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J. Appl. Toxicol., 2008, 28(2), 156-163.
[http://dx.doi.org/10.1002/jat.1261] [PMID: 17541943]
[47]
Majdalawieh, A.F.; Carr, R.I. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food, 2010, 13(2), 371-381.
[http://dx.doi.org/10.1089/jmf.2009.1131] [PMID: 20210607]
[48]
Saravanan, P.; Mohamed, M.S.N.; Jaikumar, K.; Anand, D. Assessment of cytotoxic and immunomodulatory properties of piper nigrum linn. (white pepper) seed extract. Int. J. Pharm. Sci. Drug Res., 2017, 9(2)
[http://dx.doi.org/10.25004/IJPSDR.2017.090204]
[49]
Rodgers, G.; Doucette, C. D.; Spurrell, D. R.; Hoskin, D. W.; West, K. A.; Liwski, R. S. Immunomodulatory Effects of Piperine on Dendritic Cell Function., 2009.
[50]
Bae, G-S.; Kim, J-J.; Park, K-C.; Koo, B.S.; Jo, I-J.; Choi, S.B.; Lee, C.H.; Jung, W-S.; Cho, J-H.; Hong, S-H.; Song, H-J.; Shin, Y.K.; Park, S-J. Piperine inhibits lipopolysaccharide-induced maturation of bone-marrow-derived dendritic cells through inhibition of ERK and JNK activation. Phytother. Res., 2012, 26(12), 1893-1897.
[http://dx.doi.org/10.1002/ptr.4649] [PMID: 22430952]
[51]
Kim, S-H.; Lee, Y-C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J. Pharm. Pharmacol., 2009, 61(3), 353-359.
[http://dx.doi.org/10.1211/jpp.61.03.0010] [PMID: 19222908]
[52]
Soutar, D.A.; Doucette, C.D.; Liwski, R.S.; Hoskin, D.W. Piperine, a pungent alkaloid from black pepper, inhibits b lymphocyte activation and effector functions. Phytother. Res., 2017, 31(3), 466-474.
[http://dx.doi.org/10.1002/ptr.5772] [PMID: 28102026]
[53]
Pathak, N.; Khandelwal, S. Cytoprotective and immunomodulating properties of piperine on murine splenocytes: an in vitro study. Eur. J. Pharmacol., 2007, 576(1-3), 160-170.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.033] [PMID: 17706638]
[54]
Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice: from traditional medicine to modern medicine.In herbal medicine: biomolecular and clinical aspects; Benzie, I. F. F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton (FL), 2012;
[55]
Sharma, G.; Thakur, N. Curcumin – the healing herb: Properties and future prospective; Asian J Pharm Clin Res, 2019, pp. 4-9.
[56]
Wilson, L. Spices and Flavoring Crops: Tubers and Roots.Encyclopedia of Food and Health; Elsevier, 2016, pp. 93-97.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00781-9]
[57]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[58]
Pan, M.H.; Wu, J.C.; Ho, C.T.; Badmaev, V. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function. J. Complement. Integr. Med., 2017, 14(3)
[http://dx.doi.org/10.1515/jcim-2015-0107] [PMID: 28889732]
[59]
Chen, D-Y.; Shien, J-H.; Tiley, L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem., 2010, 119(4), 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[60]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[61]
Dutta, K.; Ghosh, D.; Basu, A. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J. Neuroimmune Pharmacol., 2009, 4(3), 328-337.
[http://dx.doi.org/10.1007/s11481-009-9158-2] [PMID: 19434500]
[62]
Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; Ahn, J.K. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[63]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[64]
Li, C.J.; Zhang, L.J.; Dezube, B.J.; Crumpacker, C.S.; Pardee, A.B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1839-1842.
[http://dx.doi.org/10.1073/pnas.90.5.1839] [PMID: 8446597]
[65]
Si, X.; Wang, Y.; Wong, J.; Zhang, J.; McManus, B.M.; Luo, H. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. J. Virol., 2007, 81(7), 3142-3150.
[http://dx.doi.org/10.1128/JVI.02028-06] [PMID: 17229707]
[66]
Guimarães, M.R.; de Aquino, S.G.; Coimbra, L.S.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C. Jr Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immun., 2012, 18(1), 155-163.
[http://dx.doi.org/10.1177/1753425910392935] [PMID: 21242275]
[67]
Decoté-Ricardo, D.; Chagas, K.K.F.; Rocha, J.D.B.; Redner, P.; Lopes, U.G.; Cambier, J.C.; Barros de Arruda, L.; Peçanha, L.M. Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine, 2009, 16(10), 982-988.
[http://dx.doi.org/10.1016/j.phymed.2009.01.004] [PMID: 19303754]
[68]
Deters, M.; Hütten, H.; Kaever, V. Synergistic immunosuppressive effects of the mTOR inhibitor sirolimus and the phytochemical curcumin. Phytomedicine, 2013, 20(2), 120-123.
[http://dx.doi.org/10.1016/j.phymed.2012.09.018] [PMID: 23079231]
[69]
Huang, G.; Yang, Y.; Xu, Z.; Zhou, P.; Gong, W.; Li, Y.; Fan, J.; He, F. Downregulation of B lymphocyte stimulator expression by curcumin in B lymphocyte via suppressing nuclear translocation of NF-κB. Eur. J. Pharmacol., 2011, 650(1), 451-457.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.065] [PMID: 20950605]
[70]
Cho, J-W.; Lee, K-S.; Kim, C-W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α- treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int. J. Mol. Med.,.
[http://dx.doi.org/10.3892/ijmm.19.3.469]
[71]
Jagetia, G.C.; Aggarwal, B.B. “Spicing up” of the immune system by curcumin. J. Clin. Immunol., 2007, 27(1), 19-35.
[http://dx.doi.org/10.1007/s10875-006-9066-7] [PMID: 17211725]
[72]
Elmalti, J.; Mountassif, D.; Amarouch, H. Antimicrobial activity of Elettaria cardamomum: toxicity, biochemical and histological studies. Food Chem., 2007, 104(4), 1560-1568.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.043]
[73]
Sarvade, D.; Bhingardive, K.; Jaiswal, M. THE QUEEN OF SPICES AND AYURVEDA: A BRIEF REVIEW. Int. J. Res. Ayurveda Pharm., 2016, 7(5), 1-6.
[http://dx.doi.org/10.7897/2277-4343.075207]
[74]
Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton] - A critical review. J. Ethnopharmacol., 2020, 246112244
[http://dx.doi.org/10.1016/j.jep.2019.112244] [PMID: 31541721]
[75]
Brown, S.K.; Garver, W.S.; Orlando, R.A. 1,8-cineole: An Underappreciated Anti-inflammatory Therapeutic. J. Biomol. Res. Ther., 2017, 06(01)
[http://dx.doi.org/10.4172/2167-7956.1000154]
[76]
Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir. Med., 2003, 97(3), 250-256.
[http://dx.doi.org/10.1053/rmed.2003.1432] [PMID: 12645832]
[77]
Yadav, N.; Chandra, H. Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB.PLOS ONE; , 2017, 12, p. (11)e0188232..
[78]
Li, Y.; Lai, Y.; Wang, Y.; Liu, N.; Zhang, F.; Xu, P. 1, 8-cineol protect against influenza-virus-induced pneumonia in mice. Inflammation, 2016, 39(4), 1582-1593.
[http://dx.doi.org/10.1007/s10753-016-0394-3] [PMID: 27351430]
[79]
Bastos, V.P.D.; Gomes, A.S.; Lima, F.J.B.; Brito, T.S.; Soares, P.M.; Pinho, J.P.; Silva, C.S.; Santos, A.A.; Souza, M.H.; Magalhães, P.J. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin. Pharmacol. Toxicol., 2011, 108(1), 34-39.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00622.x] [PMID: 20722639]
[80]
Zhao, C.; Sun, J.; Fang, C.; Tang, F. 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation, 2014, 37(2), 566-572.
[http://dx.doi.org/10.1007/s10753-013-9770-4] [PMID: 24197825]
[81]
Bhowal, M.; Gopal, M. Eucalyptol: safety and pharmacological profile. RGUHS J. Pharm. Sci., 2016, 5(4), 125-131.
[http://dx.doi.org/10.5530/rjps.2015.4.2]
[82]
Lawson, L.D. Garlic: A Review of Its Medicinal Effects and Indicated Active Compounds. 691ACS Symposium Series, 1998, , pp. 176-209.,
[http://dx.doi.org/10.1021/bk-1998-0691.ch014]
[83]
Petrovska, B.B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev., 2010, 4(7), 106-110.
[http://dx.doi.org/10.4103/0973-7847.65321] [PMID: 22228949]
[84]
Majewski, M. Allium sativum: facts and myths regarding human health. Rocz. Panstw. Zakl. Hig., 2014, 65(1), 1-8.
[PMID: 24964572]
[85]
Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: a review of potential therapeutic effects. Avicenna J. Phytomed., 2014, 4(1), 1-14.
[PMID: 25050296]
[86]
Aviello, G.; Abenavoli, L.; Borrelli, F. Garlic: Empiricism or Science? Nat. Prod. Commun., 2009, 4(12)
[87]
Colín-González, A.L.; Santana, R.A.; Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Santamaría, A.; Maldonado, P.D. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid. Med. Cell. Longev., 2012, 2012907162
[http://dx.doi.org/10.1155/2012/907162] [PMID: 22685624]
[88]
Iciek, M.; Kwiecień, I.; Włodek, L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen., 2009, 50(3), 247-265.
[http://dx.doi.org/10.1002/em.20474] [PMID: 19253339]
[89]
Abe, K.; Hori, Y.; Myoda, T. Volatile compounds of fresh and processed garlic. Exp. Ther. Med., 2020, 19(2), 1585-1593. [Review].
[http://dx.doi.org/10.3892/etm.2019.8394] [PMID: 32010343]
[90]
Castrillo, J.L.; Carrasco, L. Action of 3-methylquercetin on poliovirus RNA replication. J. Virol., 1987, 61(10), 3319-3321.
[http://dx.doi.org/10.1128/JVI.61.10.3319-3321.1987] [PMID: 2442414]
[91]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[92]
Yue-Sheng, M.E.N.G.; Dao-Pei, L.I.U.; Ai-Lan, G.U.O.; Li-Bi, Z.H.A.N.G.; Gui-Zhen, Z.H.O.U. Studies on the anti-HCMV effect of garlic components. Virol. Sin., 1993, 8(2), 147.
[93]
Fenwick, G.R.; Hanley, A.B.; Whitaker, J.R. The genus allium— part 1. Crit. Rev. Food Sci. Nutr., 1985, 22(3), 199-271.
[http://dx.doi.org/10.1080/10408398509527415] [PMID: 3902370]
[94]
Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol., 2020, 104, 219-234.
[http://dx.doi.org/10.1016/j.tifs.2020.08.006] [PMID: 32836826]
[95]
Neha Sharma. Assessment of potential use of garlic (Allium sativum) against growth of microbes. Int J Res Pharm Sci., 2019, 10(4), 3508-3515.
[http://dx.doi.org/10.26452/ijrps.v10i4.1726]
[96]
Tsai, Y.; Cole, L.L.; Davis, L.E.; Lockwood, S.J.; Simmons, V.; Wild, G.C. Antiviral properties of garlic: in vitro effects on influenza b, herpes simplex and coxsackie viruses. Planta Med., 1985, 51(5), 460-461.
[http://dx.doi.org/10.1055/s-2007-969553] [PMID: 17342616]
[97]
Harris, J.C.; Cottrell, S.L.; Plummer, S.; Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol., 2001, 57(3), 282-286.
[http://dx.doi.org/10.1007/s002530100722] [PMID: 11759674]
[98]
Mohajer Shojai, T.; Ghalyanchi Langeroudi, A.; Karimi, V.; Barin, A.; Sadri, N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomed., 2016, 6(4), 458-267.
[PMID: 27516987]
[99]
Augusti, K.T.; Reji, J.; Paul, A. Antiviral, antiinflamatory and related effects of a food suppliment made of garlic, ginger and blackpepper. Indian J. Clin. Biochem., 2010, 25(2), 217-218.
[100]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[101]
Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1)1700447
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[102]
Saravanan, G.; Prakash, J. Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J. Ethnopharmacol., 2004, 94(1), 155-158.
[http://dx.doi.org/10.1016/j.jep.2004.04.029] [PMID: 15261977]
[103]
Feng, Y.; Zhu, X.; Wang, Q.; Jiang, Y.; Shang, H.; Cui, L.; Cao, Y. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection. Malar. J., 2012, 11(1), 268.
[http://dx.doi.org/10.1186/1475-2875-11-268] [PMID: 22873687]
[104]
Chandrashekar, P.M.; Prashanth, K.V.H.; Venkatesh, Y.P. Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry, 2011, 72(2-3), 255-264.
[http://dx.doi.org/10.1016/j.phytochem.2010.11.015] [PMID: 21168173]
[105]
Washiya, Y.; Nishikawa, T.; Fujino, T. Enhancement of intestinal IgA production by Ajoene in mice. Biosci. Biotechnol. Biochem., 2013, 77(11), 2298-2301.
[http://dx.doi.org/10.1271/bbb.130408] [PMID: 24200781]
[106]
Hanieh, H.; Narabara, K.; Piao, M.; Gerile, C.; Abe, A.; Kondo, Y. Modulatory effects of two levels of dietary Alliums on immune response and certain immunological variables, following immunization, in White Leghorn chickens. Anim. Sci. J., 2010, 81(6), 673-680.
[http://dx.doi.org/10.1111/j.1740-0929.2010.00798.x] [PMID: 21108687]
[107]
Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): a precious spice. Asian Pac. J. Trop. Biomed., 2014, 4(2), 90-96.
[http://dx.doi.org/10.1016/S2221-1691(14)60215-X] [PMID: 25182278]
[108]
Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: a review. Antioxidants, 2017, 6(3), 70.
[http://dx.doi.org/10.3390/antiox6030070] [PMID: 28914764]
[109]
Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 2020, 10(2), 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[110]
Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res., 2007, 21(6), 501-506.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[111]
Benencia, F.; Courrèges, M.C. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother. Res., 2000, 14(7), 495-500.
[http://dx.doi.org/10.1002/1099-1573(200011)14:7<495:AID-PTR650>3.0.CO;2-8] [PMID: 11054837]
[112]
Aboubakr, H.A.; Nauertz, A.; Luong, N.T.; Agrawal, S.; El-Sohaimy, S.A.; Youssef, M.M.; Goyal, S.M. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot., 2016, 79(6), 1001-1012.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-593] [PMID: 27296605]
[113]
Wu, S.; Patel, K.B.; Booth, L.J.; Metcalf, J.P.; Lin, H-K.; Wu, W. Protective essential oil attenuates influenza virus infection: an in vitro study in MDCK cells. BMC Complement. Altern. Med., 2010, 10, 69.
[http://dx.doi.org/10.1186/1472-6882-10-69] [PMID: 21078173]
[114]
Hidalgo, M.E.; De la Rosa, C.; Carrasco, H.; Cardona, W.; Gallardo, C.; Espinoza, L. Antioxidant capacity of eugenol derivatives. Quim. Nova, 2009, 32(6), 1467-1470.
[http://dx.doi.org/10.1590/S0100-40422009000600020]
[115]
Barboza, J.N.; da Silva Maia Bezerra Filho, C.; Silva, R.O.; Medeiros, J.V.R.; de Sousa, D.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid. Med. Cell. Longev., 2018, 20183957262
[http://dx.doi.org/10.1155/2018/3957262] [PMID: 30425782]
[116]
Halder, S.; Mehta, A.K.; Mediratta, P.K.; Sharma, K.K. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity. Phytother. Res., 2011, 25(8), 1254-1256.
[http://dx.doi.org/10.1002/ptr.3412] [PMID: 21796701]
[117]
Grespan, R.; Paludo, M. Lemos, Hde.P.; Barbosa, C.P.; Bersani-Amado, C.A.; Dalalio, M.M.; Cuman, R.K.N. Anti-arthritic effect of eugenol on collagen-induced arthritis experimental model. Biol. Pharm. Bull., 2012, 35(10), 1818-1820.
[http://dx.doi.org/10.1248/bpb.b12-00128] [PMID: 23037170]
[118]
Park, K-R.; Lee, J-H.; Choi, C.; Liu, K-H.; Seog, D-H.; Kim, Y-H.; Kim, D-E.; Yun, C-H.; Yea, S.S. Suppression of interleukin-2 gene expression by isoeugenol is mediated through down-regulation of NF-AT and NF-kappaB. Int. Immunopharmacol., 2007, 7(9), 1251-1258.
[http://dx.doi.org/10.1016/j.intimp.2007.05.015] [PMID: 17630204]
[119]
Choi, C.Y.; Park, K-R.; Lee, J-H.; Jeon, Y.J.; Liu, K-H.; Oh, S.; Kim, D-E.; Yea, S.S. Isoeugenol suppression of inducible nitric oxide synthase expression is mediated by down-regulation of NF-kappaB, ERK1/2, and p38 kinase. Eur. J. Pharmacol., 2007, 576(1-3), 151-159.
[http://dx.doi.org/10.1016/j.ejphar.2007.07.034] [PMID: 17698059]
[120]
Dorra, N.; El-Berrawy, M.; Sallam, S.; Mahmoud, R. Evaluation of antiviral and antioxidant activity of selected herbal extracts. J High Inst Public Health, 2019, 49(1), 36-40.
[http://dx.doi.org/10.21608/jhiph.2019.29464]
[121]
Javed, R.; Hanif, M.A.; Ayub, M.A.; Rehman, R. Fennel.Medicinal Plants of South Asia; Elsevier, 2020, pp. 241-256.
[http://dx.doi.org/10.1016/B978-0-08-102659-5.00019-7]
[122]
Coşge, B.; Kiralan, M.; Gürbüz, B. Characteristics of fatty acids and essential oil from sweet fennel (Foeniculum vulgare Mill. var. dulce) and bitter fennel fruits (F. vulgare Mill. var. vulgare) growing in Turkey. Nat. Prod. Res., 2008, 22(12), 1011-1016.
[http://dx.doi.org/10.1080/14786410801980675] [PMID: 18780240]
[123]
Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components.
[124]
Iftikhar, S.; Shahid, A.A.; Javed, S.; Nasir, I.A.; Tabassum, B.; Haider, M.S. Essential oils and latices as novel antiviral agent against potato leaf roll virus and analysis of their phytochemical constituents responsible for antiviral activity. J. Agric. Sci., 2013, 5(7), 167.
[http://dx.doi.org/10.5539/jas.v5n7p167]
[125]
Ilić, D.P.; Stanojević, L.P.; Troter, D.Z. Improvement of the yield and antimicrobial activity of fennel (Foeniculum vulgare Mill.) essential oil by fruit milling. Ind. Crops Prod., 2019, 142111854
[http://dx.doi.org/10.1016/j.indcrop.2019.111854]
[126]
Hatami, T.; Johner, J.C.F.; Meireles, M.A.A. Extraction and fractionation of fennel using supercritical fluid extraction assisted by cold pressing. Ind. Crops Prod., 2018, 123, 661-666.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.041]
[127]
Farid, A.; Kamel, D.; Abdelwahab Montaser, S.; Mohamed Ahmed, M.; El Amir, M.; El Amir, A. Assessment of antioxidant, immune enhancement, and antimutagenic efficacy of fennel seed extracts in irradiated human blood cultures. J Radiat Res Appl Sci, 2020, 13(1), 260-266.
[http://dx.doi.org/10.1080/16878507.2020.1728963]
[128]
Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: an updated review. Molecules, 2020, 25(11)E2627
[http://dx.doi.org/10.3390/molecules25112627] [PMID: 32516954]
[129]
Ghanem, M.T.M.; Radwan, H.M.A.; Mahdy, S.M.; Elkholy, Y.M.; Hassanein, H.D.; Shahat, A.A. Phenolic compounds from Foeniculum vulgare (Subsp. Piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity. Pharmacognosy Res., 2012, 4(2), 104-108.
[http://dx.doi.org/10.4103/0974-8490.94735] [PMID: 22518082]
[130]
Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[131]
Ranasinghe, P.; Pigera, S.; Premakumara, G.A.; Galappaththy, P.; Constantine, G.R.; Katulanda, P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement. Altern. Med., 2013, 13(1), 275.
[http://dx.doi.org/10.1186/1472-6882-13-275] [PMID: 24148965]
[132]
Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 2017, 6(4)e00459
[http://dx.doi.org/10.1002/mbo3.459] [PMID: 28296357]
[133]
Fatima, M.; Zaidi, N.U.; Amraiz, D.; Afzal, F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. J. Microbiol. Biotechnol., 2016, 26(1), 151-159.
[http://dx.doi.org/10.4014/jmb.1508.08024] [PMID: 26403820]
[134]
Tamam, S.M.; Abd el Hamid, M.S.; Samah, M.H.; Marwa, A.N. The Anti-viral and Immunomodulatory Activity of Cinnamon zeylanicum Against” NDV” Newcastle Disease Virus in Chickens. IJSBAR, 2017, 32(2), 251-262.
[135]
Pratiwi, T.S.; Putri, A.; Murwani, S. The effect of Cinnamomum burmannii extract as an immunomodulator on the increase of GR-1 expressing IFNc and macrophage., 2015.https://www.researchgate.net/publication/292970746_The_Effect_
[136]
Roth-Walter, F.; Moskovskich, A.; Gomez-Casado, C.; Diaz-Perales, A.; Oida, K.; Singer, J.; Kinaciyan, T.; Fuchs, H.C.; Jensen-Jarolim, E. Immune suppressive effect of cinnamaldehyde due to inhibition of proliferation and induction of apoptosis in immune cells: implications in cancer. PLoS One, 2014, 9(10)e108402
[http://dx.doi.org/10.1371/journal.pone.0108402] [PMID: 25271635]
[137]
Mendes, S.J.F.; Sousa, F.I.A.B.; Pereira, D.M.S.; Ferro, T.A.F.; Pereira, I.C.P.; Silva, B.L.R.; Pinheiro, A.J.M.C.R.; Mouchrek, A.Q.S.; Monteiro-Neto, V.; Costa, S.K.P.; Nascimento, J.L.M.; Grisotto, M.A.G.; da Costa, R.; Fernandes, E.S. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int. Immunopharmacol., 2016, 34, 60-70.
[http://dx.doi.org/10.1016/j.intimp.2016.02.012] [PMID: 26922677]
[138]
Shen, C.; Christensen, L.G.; Bak, S.Y.; Christensen, N.; Kragh, K. Immunomodulatory effects of thymol and cinnamaldehyde in chicken cell lines. J. Appl. Anim. Nutr., 2020, 8(1), 21-30.
[http://dx.doi.org/10.3920/JAAN2020.0001]
[139]
High Daily Intakes of Cinnamon: Health Risk Cannot Be Ruled out - BfR Health Assessment No. 044/2006. 2006..
[140]
Székács, A.; Wilkinson, M.G.; Mader, A.; Appel, B. Environmental and food safety of spices and herbs along global food chains. Food Control, 2018, 83, 1-6.
[http://dx.doi.org/10.1016/j.foodcont.2017.06.033]
[141]
Timbo, B.; Koehler, K.M.; Wolyniak, C.; Klontz, K.C. Sulfites--a food and drug administration review of recalls and reported adverse events. J. Food Prot., 2004, 67(8), 1806-1811.
[http://dx.doi.org/10.4315/0362-028X-67.8.1806] [PMID: 15330554]
[142]
Asemi, Z.; Zare, Z.; Shakeri, H.; Sabihi, S.S.; Esmaillzadeh, A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann. Nutr. Metab., 2013, 63(1-2), 1-9.
[http://dx.doi.org/10.1159/000349922] [PMID: 23899653]
[143]
Zweifel, C.; Stephan, R. Spices and herbs as source of Salmonella-related foodborne diseases. Food Res. Int., 2012, 45(2), 765-769.
[http://dx.doi.org/10.1016/j.foodres.2011.02.024]
[144]
Balaji, S.; Chempakam, B. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem. Toxicol., 2010, 48(10), 2951-2959.
[http://dx.doi.org/10.1016/j.fct.2010.07.032] [PMID: 20667459]
[145]
Deshpande, S.S.; Lalitha, V.S.; Ingle, A.D.; Raste, A.S.; Gadre, S.G.; Maru, G.B. Subchronic oral toxicity of turmeric and ethanolic turmeric extract in female mice and rats. Toxicol. Lett., 1998, 95(3), 183-193.
[http://dx.doi.org/10.1016/S0378-4274(98)00035-6] [PMID: 9704820]
[146]
Shah, A.H.; Al-Shareef, A.H.; Ageel, A.M.; Qureshi, S. Toxicity studies in mice of common spices, Cinnamomum zeylanicum bark and Piper longum fruits. Plant Foods Hum. Nutr., 1998, 52(3), 231-239.
[http://dx.doi.org/10.1023/A:1008088323164] [PMID: 9950084]
[147]
Daware, M.B.; Mujumdar, A.M.; Ghaskadbi, S. Reproductive toxicity of piperine in Swiss albino mice. Planta Med., 2000, 66(3), 231-236.
[http://dx.doi.org/10.1055/s-2000-8560] [PMID: 10821048]
[148]
Motarjemi, Y.; Moy, G.; Todd, E.C.D., Eds.; Encyclopedia of Food Safety, 1st ed; Elsevier, Academic Press, 2014.
[149]
Kemprai, P.; Protim Mahanta, B.; Sut, D. Review on safrole: identity shift of the ‘candy shop’ aroma to a carcinogen and deforester. Flavour Fragrance J., 2020, 35(1), 5-23.
[http://dx.doi.org/10.1002/ffj.3521]
[150]
Tabanca, N.; Khan, S.I.; Bedir, E.; Annavarapu, S.; Willett, K.; Khan, I.A.; Kirimer, N.; Baser, K.H. Estrogenic activity of isolated compounds and essential oils of Pimpinella species from Turkey, evaluated using a recombinant yeast screen. Planta Med., 2004, 70(8), 728-735.
[http://dx.doi.org/10.1055/s-2004-827203] [PMID: 15368661]
[151]
Mohiuddin, A.K. Health hazards with adulterated spices: Save the “onion tears.”; Innovare J Med Sci, 2020, pp. 8-11.
[152]
Srirama, R.; Santhosh Kumar, J.U.; Seethapathy, G.S.; Newmaster, S.G.; Ragupathy, S.; Ganeshaiah, K.N.; Uma Shaanker, R.; Ravikanth, G. Species adulteration in the herbal trade: causes, consequences and mitigation. Drug Saf., 2017, 40(8), 651-661.
[http://dx.doi.org/10.1007/s40264-017-0527-0] [PMID: 28389979]
[153]
Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; Normolle, D.P.; Alrawi, S.; Feng, M.R.; Brenner, D.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(8), 1930-1936.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2934] [PMID: 18708382]
[154]
Dei Cas, M.; Ghidoni, R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients, 2019, 11(9)E2147
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[155]
Vázquez-Fresno, R.; Rosana, A.R.R.; Sajed, T.; Onookome-Okome, T.; Wishart, N.A.; Wishart, D.S. Herbs and spices- biomarkers of intake based on human intervention studies - A Systematic Review. Genes Nutr., 2019, 14, 18.
[http://dx.doi.org/10.1186/s12263-019-0636-8] [PMID: 31143299]
[156]
Jolad, S.D.; Lantz, R.C.; Solyom, A.M.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry, 2004, 65(13), 1937-1954.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.008] [PMID: 15280001]
[157]
Musenga, A.; Mandrioli, R.; Ferranti, A.; D’Orazio, G.; Fanali, S.; Raggi, M.A. Analysis of aromatic and terpenic constituents of pepper extracts by capillary electrochromatography. J. Sep. Sci., 2007, 30(4), 612-619.
[http://dx.doi.org/10.1002/jssc.200600456] [PMID: 17444231]
[158]
Aggarwal, B.B.; Kunnumakkara, A.B. Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine; WORLD SCIENTIFIC, 2009.
[http://dx.doi.org/10.1142/7150]
[159]
Marongiu, B.; Piras, A.; Porcedda, S. Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.). Maton. J. Agric. Food Chem., 2004, 52(20), 6278-6282.
[http://dx.doi.org/10.1021/jf034819i] [PMID: 15453700]
[160]
Surh, Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res., 1999, 428(1-2), 305-327.
[http://dx.doi.org/10.1016/S1383-5742(99)00057-5] [PMID: 10518003]
[161]
Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem., 2006, 54(17), 6303-6307.
[http://dx.doi.org/10.1021/jf060608c] [PMID: 16910723]
[162]
Barazani, O.; Fait, A.; Cohen, Y.; Diminshtein, S.; Ravid, U.; Putievsky, E.; Lewinsohn, E.; Friedman, J. Chemical variation among indigenous populations of Foeniculum vulgare var. vulgare in Israel. Planta Med., 1999, 65(5), 486-489.
[http://dx.doi.org/10.1055/s-2006-960824] [PMID: 17260278]
[163]
Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. J. Agric. Food Chem., 2003, 51(15), 4344-4348.
[http://dx.doi.org/10.1021/jf034169i] [PMID: 12848508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy