Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Impact of DMPEI on Biofilm Adhesion on Latex Urinary Catheter

Author(s): Vinícius S. Tarabal, Flávia G. Silva, Ruben D. Sinisterra, Daniel Gonçalves, Jose Silva, Jose M. Granjeiro, Marcelo Speziali and Paulo A. Granjeiro*

Volume 15, Issue 1, 2021

Published on: 15 February, 2021

Page: [51 - 66] Pages: 16

DOI: 10.2174/1872208315666210215084127

Price: $65

Abstract

Background: Microorganisms can migrate from the external environment to the patient’s organism through the insertion of catheters. Despite being indispensable medical device, the catheter surface can be colonized by microorganisms and become a starting point for biofilm formation. Therefore, new technologies are being developed in order to modify surfaces to prevent the adhesion and survival of microorganisms. Patents with the use of DMPEI have been filed.

Objective: In the present work, we coated latex catheter surfaces with 2 mg mL-1 DMPEI in different solvents, evaluated the wettability of the surface and the anti- biofilm activity of the coated catheter against Escherichia coli, Staphylococcus aureus, and Candida albicans.

Methods: We coated the inner and outer catheter surfaces with 2 mg mL-1 of DMPEI solubilized in butanol, dimethylformamide, and cyclohexanone and the surfaces were analyzed visually. Contact angle measurement allowed the analysis of the wettability of the surfaces. The CFU mL-1 count evaluated E. coli, S. aureus, and C. albicans adhesion onto the control and treated surfaces.

Results: The contact angle decreased from 50.48º to 46.93º on the inner surface and from 55.83º to 50.91º on the outer surface of latex catheters coated with DMPEI. The catheter coated with DMPEI showed anti-biofilm activity of 83%, 88%, and 93% on the inner surface and 100%, 92%, and 86% on the outer surface for E. coli, S. aureus, and C. albicans, respectively.

Conclusion: Latex catheter coated with DMPEI efficiently impaired the biofilm formation both on the outer and inner surfaces, showing a potential antimicrobial activity along with a high anti-biofilm activity for medical devices.

Keywords: CAUTI, UTI, DMPEI, biofilm, urinary catheter, latex.

Graphical Abstract

[1]
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel) 2020; 9(2): 9.
[http://dx.doi.org/10.3390/antibiotics9020059] [PMID: 32028684]
[2]
Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2014; 28(1): 1-13.
[http://dx.doi.org/10.1016/j.idc.2013.09.003] [PMID: 24484571]
[3]
Centers for Disease Control and PreventionCatheter-associated Urinary Tract Infection CAUTI. 2015; pp. 1-1.
[4]
Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E. Diagnose des harnwegsinfekts: Eine systematische übersicht. Dtsch Arztebl 2010; 107: 361-7.
[5]
Wang J, Hu J, Harbarth S, Pittet D, Zhou M, Zingg W. Burden of healthcare-associated infections in China: results of the 2015 point prevalence survey in Dong Guan City. J Hosp Infect 2017; 96(2): 132-8.
[http://dx.doi.org/10.1016/j.jhin.2017.02.014] [PMID: 28325579]
[6]
Thomas-White KJ, Gao X, Lin H, Fok CS, Ghanayem K, Mueller ER, et al. Urinary microbes and postoperative urinary tract infection risk in urogynecologic surgical patients. Int Urogynecol J Pelvic Floor Dysfunct 2018; 29(12): 1797-805.
[http://dx.doi.org/10.1007/s00192-018-3767-3] [PMID: 30267143]
[7]
Wales KE, Mecia L, Gray T. Recurrent urinary tract infection in woman. InnovAit 2019; 12(12): 697-702.
[8]
Manohar J, Hatt S, DeMarzo BB, Blostein F, Cronenwett AEW, Wu J, et al. Profiles of the bacterial community in short-term indwelling urinary catheters by duration of catheterization and subsequent urinary tract infection. Am J Infect Control 2020; 48(2): 178-83.
[http://dx.doi.org/10.1016/j.ajic.2019.08.005] [PMID: 31540834]
[9]
Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010; 7(12): 653-60.
[http://dx.doi.org/10.1038/nrurol.2010.190] [PMID: 21139641]
[10]
Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol 2019.
[http://dx.doi.org/10.1177/1756287219832172] [PMID: 31105774]
[11]
World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed 2017; 1-4.
[12]
Critchley IA, Nicole Cotroneo, Pucci MJ, Rodrigo Mendes. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS One 2019; 14: 1-11.
[http://dx.doi.org/10.1371/journal.pone.0220265]
[13]
Tabak YP, Sung AH, Ye G, Vankeepuram L, Gupta V, McCann E. Attributable clinical and economic burden of carbapenem-non-susceptible Gram-negative infections in patients hospitalized with complicated urinary tract infections. J Hosp Infect 2019; 102(1): 37-44.
[http://dx.doi.org/10.1016/j.jhin.2018.11.018] [PMID: 30503367]
[14]
François M, Hanslik T, Dervaux B, Le Strat Y, Souty C, Vaux S, et al. The economic burden of urinary tract infections in women visiting general practices in France: a cross-sectional survey. BMC Health Serv Res 2016; 16(a): 365.
[http://dx.doi.org/10.1186/s12913-016-1620-2] [PMID: 27507292]
[15]
Lee DS, Lee SJ, Choe HS. Community-aquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. BioMed Res Int 2018; 1-14.
[16]
Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol Immunol 2019; 108: 56-67.
[http://dx.doi.org/10.1016/j.molimm.2019.02.007] [PMID: 30784763]
[17]
Öztürk R, Murt A. Epidemiology of urological infections: a global burden. World J Urol 2020; 38(11): 2669-79.
[http://dx.doi.org/10.1007/s00345-019-03071-4] [PMID: 31925549]
[18]
Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP, Ducomble T, et al. Burden of six healthcare-associated infections on European population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS Med 2016; 13(10): e1002150.
[http://dx.doi.org/10.1371/journal.pmed.1002150] [PMID: 27755545]
[19]
Verma A, Bhani D, Tomar V, Bachhiwal R, Yadav S. Differences in bacterial colonization and biofilm formation property of uropathogens between the two most commonly used indwelling urinary catheters. J Clin Diagn Res 2016; 10(6): PC01-3.
[http://dx.doi.org/10.7860/JCDR/2016/20486.7939] [PMID: 27504341]
[20]
Lawrence EL, Turner IG. Materials for urinary catheters: a review of their history and development in the UK. Med Eng Phys 2005; 27(6): 443-53.
[http://dx.doi.org/10.1016/j.medengphy.2004.12.013] [PMID: 15990061]
[21]
Lee KH, Park SJ, Choi SJ, Uh Y, Park JY, Han KH. The influence of urinary catheter materials on forming biofilms of microorganisms. J Bacteriol Virol 2017; 47: 32-40.
[http://dx.doi.org/10.4167/jbv.2017.47.1.32]
[22]
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[23]
Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 2018; 16(1): 19-31.
[http://dx.doi.org/10.1038/nrmicro.2017.107] [PMID: 29062072]
[24]
Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 2013; 64: 175-88.
[http://dx.doi.org/10.1146/annurev-med-042711-140023] [PMID: 22906361]
[25]
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15(12): 740-55.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[26]
Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev 2020; 84(3): 1-36.
[http://dx.doi.org/10.1128/MMBR.00026-19] [PMID: 32792334]
[27]
Rodis N, Tsapadikou VK, Potsios C, Xaplanteri P. Resistance mechanisms in bacterial biofilm formations: a review. J Emerg Med 2020; 4(2): 30.
[28]
Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat-Gadgil BS, Pandit A, et al. Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Mater Sci Eng C 2020; 108: 110319.
[29]
Pires MEE, Parreira AG, Silva TNL, Colares HC, da Silva JA, de Magalhães JT, et al. Recent patents on impact of lipopeptide on the biofilm formation onto titanium and stainless steel surfaces. Recent Pat Biotechnol 2020; 14(1): 49-62.
[http://dx.doi.org/10.2174/1872208313666190822150323] [PMID: 31438836]
[30]
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 2020; 11: 566325.
[http://dx.doi.org/10.3389/fmicb.2020.566325] [PMID: 33193155]
[31]
Balaure PC, Grumezescu AM. Recent advances in surface nanoengineering for biofilm prevention and control. Part II: Active, combined active and passive, and smart bacteria-responsive antibiofilm nanocoatings. Nanomaterials (Basel) 2020; 10(8): 1-53.
[http://dx.doi.org/10.3390/nano10081527] [PMID: 32759748]
[32]
Rubini D, Hari BNV, Nithyanand P. Chitosan coated catheters alleviated mixed species biofilms of Staphylococcus epidermidis and Candida albicans. Carbohydr Polym 2020.
[PMID: 33183634]
[33]
Dundas AA, Sanni O, Dubern JF, Dimitrakis G, Hook AL, Irvine DJ, et al. Validating a predictive structure-property relationship by discovery of novel polymers which reduce bacterial biofilm formation. Adv Mater 2019; 31(49): e1903513.
[http://dx.doi.org/10.1002/adma.201903513] [PMID: 31583791]
[34]
Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, et al. Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm 2016; 513(1-2): 697-708.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.074] [PMID: 27693709]
[35]
Hogan S, Kasotakis E, Maher S, Cavanagh B, O’Gara JP, Pandit A, et al. A novel medical device coating prevents Staphylococcus aureus biofilm formation on medical device surfaces. FEMS Microbiol Lett 2019; 366(9): 1-9.
[http://dx.doi.org/10.1093/femsle/fnz107] [PMID: 31095299]
[36]
Shalom Y, Perelshtein I, Perkas N, Gedanken A, Banin E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infection 2016; 10: 520-533..
[37]
Deb A, Vimala R. Biofilm Formation by Pseudomonas aeruginosa onto graphene oxide-TiO2 nanocomposite-coated catheters: in vitro analysis. Int J Nanosci 2018; 16(3): 1-6.
[38]
Sajeevan SE, Chatterjee M, Paul V, Baranwal G, Kumar VA, Bose C, et al. Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol 2018; 125(5): 1286-95.
[http://dx.doi.org/10.1111/jam.14040] [PMID: 29972893]
[39]
Klibanov AM. Permanently microbicidal materials coatings. J Mater Chem 2007; 17: 2479-82.
[http://dx.doi.org/10.1039/b702079a]
[40]
Haldar J, Chen J, Tumpey TM, Gubareva LV, Klibanov AM. Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett 2008; 30(3): 475-9.
[http://dx.doi.org/10.1007/s10529-007-9565-5] [PMID: 17972018]
[41]
Hsu BB, Ouyang J, Wong SY, Hammond PT, Klibanov AM. On structural damage incurred by bacteria upon exposure to hydrophobic polycationic coatings. Biotechnol Lett 2011; 33(2): 411-6.
[http://dx.doi.org/10.1007/s10529-010-0419-1] [PMID: 20882318]
[42]
Schaer TP, Stewart S, Hsu BB, Klibanov AM. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials 2012; 33(5): 1245-54.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.038] [PMID: 22082621]
[43]
Behlau I, Mukherjee K, Todani A, Tisdale AS, Cade F, Wang L, et al. Biocompatibility and biofilm inhibition of N,N-hexyl, methyl-polyethyleneimine bonded to Boston keratoprosthesis materials. Biomat 2012; 32: 8783-96.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.010]
[44]
Gerrard SE, Larson AM, Klibanov AM, Slater NKH, Hanson CV, Abrams BF, et al. Reducing infectivity of HIV upon exposure to surfaces coated with N,N-dodecyl, methyl-polyethylenimine. Biotechnol Bioeng 2013; 110(7): 2058-62.
[http://dx.doi.org/10.1002/bit.24867] [PMID: 23436242]
[45]
Larson AM, Oh HS, Knipe DM, Klibanov AM. Decreasing herpes simplex viral infectivity in solution by surface-immobilized and suspended N,N-dodecyl,methyl-polyethylenimine. Pharm Res 2013; 30(1): 25-31.
[http://dx.doi.org/10.1007/s11095-012-0825-2] [PMID: 22798261]
[46]
Mukherjee K, Rivera JJ, Klibanov AM. Practical aspects of hydrophobic polycationic bactericidal “paints”. Appl Biochem Biotechnol 2008; 151(1): 61-70.
[http://dx.doi.org/10.1007/s12010-008-8151-1] [PMID: 18327545]
[47]
Haldar J, An D, Cienguegos LA, Chen J, Klibanov AM. Polymeric coating that inactivate viruses and bacteria. US20100136072A1, 2010.
[48]
Schaer TP, Stewart S, Klibanov AM. Antibacterial coatings that inhibit biofilm formation on implants. US20150328378A1, 2015.
[49]
Schaer TP, Stewart S, Klibanov AM. Antibacterial coatings that inhibit biofilm formation on implants. US010500317B2, 2019.
[50]
Silva GR, Cardoso JF, Granjeiro PA. Nanopartículas formadas a partir do N,N-dodecil, metil-PEI incorporadas de vancomicina e revestidas pelo ácido hialurônico: processo de obtenção, composição farmacêutica e aplicação. BR1020190055677, 2019.
[51]
Gu AZ, Klibanov AM, Onnis-Hayden A, Hsu BB, Lewis K. Antimicrobial polycation sand filter for water des-infection. US20140202964A1, 2014.
[52]
Pershin V, Portman T, Mostaghimi J. Coatings, coated surfaces and methods for produc-tion thereof. WO2013159216A1, 2013.
[53]
Pires ME, Parreira AG, Silva TN, Colares HC, da Silva JA, de Magalhães JT, et al. Isolates from Bacillus subtilis ATCC 19659 and its use to prevent bacterial adhesion on titanium and catheters. BR10201602067, 2016.
[54]
Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA 2005; 102(16): 5679-84.
[http://dx.doi.org/10.1073/pnas.0502067102] [PMID: 15824322]
[55]
Haldar J, Weight AK, Klibanov AM. Preparation, application and testing of permanent antibacterial and antiviral coatings. Nat Protoc 2007; 2(10): 2412-7.
[http://dx.doi.org/10.1038/nprot.2007.353] [PMID: 17947982]
[56]
Ren H, Colletta A, Koley D, Wu J, Xi C, Major TC, et al. Thromboresistant/anti-biofilm catheters via electrochemically modulated nitric oxide release. Bioelectrochemistry 2015; 104: 10-6.
[http://dx.doi.org/10.1016/j.bioelechem.2014.12.003] [PMID: 25588885]
[57]
Oliveira MF, Suarez D, Rocha JCB, de Carvalho Teixeira AV, Cortés ME, De Sousa FB, et al. Electrospun nanofibers of polyCD/PMAA polymers and their potential application as drug delivery system. Mater Sci Eng C 2015; 54: 252-61.
[http://dx.doi.org/10.1016/j.msec.2015.04.042] [PMID: 26046289]
[58]
Gao Q, Li X, Yu W, Jia F, Yao T, Jin Q, et al. Fabrication of mixed-charge polypeptide coating for enhanced hemocompatibility and anti-infective effect. ACS Appl Mater Interfaces 2020; 12(2): 2999-3010.
[http://dx.doi.org/10.1021/acsami.9b19335] [PMID: 31845798]
[59]
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284(10): 102230.
[http://dx.doi.org/10.1016/j.cis.2020.102230] [PMID: 32961420]
[60]
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41(3): 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[61]
Savage VJ, Chopra I, O’Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 2013; 57(4): 1968-70.
[http://dx.doi.org/10.1128/AAC.02008-12] [PMID: 23357771]
[62]
Cook LC, Dunny GM. Effects of biofilm growth on plasmid copy number and expression of antibiotic resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother 2013; 57(4): 1850-6.
[http://dx.doi.org/10.1128/AAC.02010-12] [PMID: 23380728]
[63]
Drakopoulos SX, Karger-Kocsis J, Kmetty Á, Lendvai L, Psarras GC. Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: a broadband dielectric spectroscopy study. Carbohydr Polym 2017; 157: 711-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.036] [PMID: 27987982]
[64]
Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 2014; 4: 112.
[http://dx.doi.org/10.3389/fcimb.2014.00112] [PMID: 25191645]
[65]
Wong SY, Li Q, Veselinovic J, Kim BS, Klibanov AM, Hammond PT. Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 2010; 31(14): 4079-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.119] [PMID: 20163855]
[66]
Hsu BB, Yinn Wong S, Hammond PT, Chen J, Klibanov AM. Mechanism of inactivation of influenza viruses by immobilized hydrophobic polycations. Proc Natl Acad Sci USA 2011; 108(1): 61-6.
[http://dx.doi.org/10.1073/pnas.1017012108] [PMID: 21173278]
[67]
Larson AM, Hsu BB, Rautaray D, Haldar J, Chen J, Klibanov AM. Hydrophobic polycationic coatings disinfect poliovirus and rotavirus solutions. Biotechnol Bioeng 2011; 108(3): 720-3.
[http://dx.doi.org/10.1002/bit.22967] [PMID: 20967804]
[68]
Larson AM, Klibanov AM. Biocidal packaging for pharmaceuticals, foods, and other perishables. Annu Rev Chem Biomol Eng 2013; 4: 171-86.
[http://dx.doi.org/10.1146/annurev-chembioeng-061312-103253] [PMID: 23745746]
[69]
Keum H, Kim JY, Yu B, Yu SJ, Kim J, Jeon H, et al. Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water. ACS Appl Mater Interfaces 2017; 9(23): 19736-45.
[http://dx.doi.org/10.1021/acsami.7b06899] [PMID: 28569502]
[70]
Tyler BJ, Hook A, Pelster A, Williams P, Alexander M, Arlinghaus HF. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases 2017; 12(2): C412.
[http://dx.doi.org/10.1116/1.4984011] [PMID: 28535686]
[71]
Mahdhi A, Leban N, Chakroun I, Bayar S, Mahdouani K, Majdoub H, et al. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog 2018; 125: 448-53.
[http://dx.doi.org/10.1016/j.micpath.2018.10.010] [PMID: 30316009]
[72]
Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol (Praha) 2018; 63(2): 181-90.
[http://dx.doi.org/10.1007/s12223-017-0545-4] [PMID: 28905285]
[73]
Khan F, Tabassum N, Kim YM. A strategy to control colonization of pathogens: embedding of lactic acid bacteria on the surface of urinary catheter. Appl Microbiol Biotechnol 2020; 104(21): 9053-66.
[http://dx.doi.org/10.1007/s00253-020-10903-6] [PMID: 32949279]
[74]
Belfield K, Betts H, Parkinson R, Bayston R. A tolerability and patient acceptability pilot study of a novel antimicrobial urinary catheter for long-term use. Neurourol Urodyn 2019; 38(1): 338-45.
[http://dx.doi.org/10.1002/nau.23858] [PMID: 30350877]
[75]
Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, et al. Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies. Adv Healthc Mater 2017; 6(6): 1-15.
[http://dx.doi.org/10.1002/adhm.201601173] [PMID: 28128893]
[76]
Yu K, Lo JC, Yan M, Yang X, Brooks DE, Hancock RE, et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 2017; 116: 69-81.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.047] [PMID: 27914268]
[77]
Zhou C, Wu Y, Thappeta KRV, Subramanian JTL, Pranantyo D, Kang ET, et al. In vivo anti-biofilm and anti-bacterial non-leachable coating thermally polymerized on cylindrical catheter. ACS Appl Mater Interfaces 2017; 9(41): 36269-80.
[http://dx.doi.org/10.1021/acsami.7b07053] [PMID: 28945343]
[78]
Hoque J, Ghosh S, Paramanandham K, Haldar J. Charge-switchable polymeric coating kills bacteria and prevents biofilm formation in vivo. ACS Appl Mater Interfaces 2019; 11(42): 39150-62.
[http://dx.doi.org/10.1021/acsami.9b11453] [PMID: 31550124]
[79]
Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, et al. Promising roles of alternative medicine and plant-based nanotechnology as remedies for urinary tract infections. Molecules 2020; 25(23): 55-93.
[http://dx.doi.org/10.3390/molecules25235593] [PMID: 33260701]
[80]
Vasileva-Tonkova E, Grozdanov P, Nikolova I, Staneva D, Bosch P, Medel S, et al. Evaluation of antimicrobial, biofilm inhibitory and cytotoxic activities of a new hiperbranched polymer modified with 1,8-naphthalimide units. Biointerface Res Appl Chem 2018; 8: 3053-9.
[81]
Hou Z, Wu Y, Xu C, Reghu S, Shang Z, Chen J, et al. Precisely structured nitric-oxide-releasing copolymer brush defeats broad-spectrum catheter-associated biofilm infections in vivo. ACS Cent Sci 2020; 6(11): 2031-45.
[http://dx.doi.org/10.1021/acscentsci.0c00755] [PMID: 33274280]
[82]
Law KY. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 2014; 5(4): 686-8.
[http://dx.doi.org/10.1021/jz402762h] [PMID: 26270837]
[83]
Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 2016; 6(1): 14.
[http://dx.doi.org/10.1186/s13568-016-0186-z] [PMID: 26888203]
[84]
Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 2004; 22(3): 142-6.
[http://dx.doi.org/10.1016/j.tibtech.2004.01.010] [PMID: 15036865]
[85]
Rodrigues L, van der Mei H, Banat IM, Teixeira J, Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol 2006; 46(1): 107-12.
[http://dx.doi.org/10.1111/j.1574-695X.2005.00006.x] [PMID: 16420603]
[86]
Rodrigues L, van der Mei H, Teixeira JA, Oliveira R. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 2004; 66(3): 306-11.
[http://dx.doi.org/10.1007/s00253-004-1674-7] [PMID: 15290139]
[87]
Meylheuc T, Methivier C, Renault M, Herry JM, Pradier CM, Bellon-Fontaine MN. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids Surf B Biointerfaces 2006; 52(2): 128-37.
[http://dx.doi.org/10.1016/j.colsurfb.2006.04.016] [PMID: 16781848]
[88]
Murat S, Alp G, Alatalı C, Uzun M. In vitro Evaluation of Adhesion of Candida albicans on CAD/CAM PMMA-Based Polymers. J Prosthodont 2018; 6: 1-7.
[PMID: 29962017]
[89]
Hirasawa M, Tsutsumi-Arai C, Takakusaki K, Oya T, Fueki K, Wakabayashi N. Superhydrophilic co-polymer coatings on denture surfaces reduce Candida albicans adhesion-an in vitro study. Arch Oral Biol 2018; 87: 143-50.
[http://dx.doi.org/10.1016/j.archoralbio.2017.12.024] [PMID: 29291436]
[90]
Wang R, Neoh KG, Shi Z, Kang ET, Tambyah PA, Chiong E. Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol Bioeng 2012; 109(2): 336-45.
[http://dx.doi.org/10.1002/bit.23342] [PMID: 21956834]
[91]
Heidari Zare H, Juhart V, Vass A, Franz G, Jocham D. Efficacy of silver/hydrophilic poly(p-xylylene) on preventing bacterial growth and biofilm formation in urinary catheters. Biointerphases 2017; 12(1): 011001.
[http://dx.doi.org/10.1116/1.4974197] [PMID: 28100054]
[92]
Anaissie E, Samonis G, Kontoyiannis D, Costerton J, Sabharwal U, Bodey G, et al. Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur J Clin Microbiol Infect Dis 1995; 14(2): 134-7.
[http://dx.doi.org/10.1007/BF02111873] [PMID: 7758480]
[93]
Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 1993; 168(2): 400-7.
[http://dx.doi.org/10.1093/infdis/168.2.400] [PMID: 8335977]
[94]
Ramanathan V, Riosa S, Al-Sharif AH, Mansouri MD, Tranchina A, Kayyal T, et al. Characteristics of biofilm on tunneled cuffed hemodialysis catheters in the presence and absence of clinical infection. Am J Kidney Dis 2012; 60(6): 976-82.
[http://dx.doi.org/10.1053/j.ajkd.2012.06.003] [PMID: 22795945]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy