Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Therapeutic Benefit and Biological Importance of Ginkgetin in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 17, Issue 9, 2021

Published on: 26 January, 2021

Article ID: e190721190770 Pages: 9

DOI: 10.2174/1573407217666210127091221

Price: $65

Abstract

Background: Plants-derived bioactive compounds play an important role in traditional and modern medicine, and some of the best examples are morphine, papaverine, vinblastine, vincristine and ephedrine. Flavonoids are the naturally occurred phenolic compounds found to be present in the different medicinal plants and responsible for their attractive shades in nature. Flavonoids compounds have been well known in medicine for their anti-oxidant, anti-inflammatory, anti-hyperlipidemia and anti-apoptotic activities.

Methods: In order to know the therapeutic benefit of ginkgetin in medicine, here in the present investigation, different scientific databases have been searched to collect the important scientific information of ginkgetin with respect to the medicinal importance and pharmacological activities. Different scientific databases such as Google, PubMed, Science Direct, Scopus and Google Scholar have been searched to collect the important scientific information of the ginkgetin in the present work. All the collected scientific information’s have been analyzed for the medicinal importance, pharmacological activities and analytical aspects of ginkgetin.

Results: Literature databases analysis using various scientific databases such as Google, PubMed, Science Direct, Scopus and Google Scholar revealed that ginkgetin is a biflavonoids found to be present in the Ginkgo biloba leaves and have been used in traditional and allopathic medicine. Databases analysis signified that ginkgetin has effectiveness against inflammatory disorders, lipid peroxidation, prostate cancer, DNA damage, renal cell carcinoma, osteosarcoma and small cell lung cancer. Different analytical techniques for the quantification of ginkgetin have also been included in the present investigation.

Conclusion: Present study revealed the biological importance and therapeutic benefit of ginkgetin in medicine, which could be used for the development of effective medicine against human disorders and associated complications.

Keywords: Biflavonoid, bioactive compounds, flavonoid, ginkgetin, Ginkgo biloba, human disorders.

Graphical Abstract

[1]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance”. Curr. Tradit. Med., 2017, 3, 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15, 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[3]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[4]
Leite, KC de S Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Rev. Bras. Farmacogn., 2018, 28, 325-332.
[http://dx.doi.org/10.1016/j.bjp.2018.04.004]
[5]
Mbosso Teinkela, J.E.; Siwe Noundou, X.; Nguemfo, E.L.; Meyer, F.; Wintjens, R.; Isaacs, M.; Mpondo Mpondo, A.E.; Hoppe, H.C.; Krause, R.W.M.; Azebaze, A.G.B. Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antimalarial, antitrypanosomal and cytotoxity evaluation. Saudi J. Biol. Sci., 2018, 25(1), 117-122.
[http://dx.doi.org/10.1016/j.sjbs.2017.07.002] [PMID: 29379367]
[6]
Marques, G.S.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Monteiro, R.P.M.; Rolim, L.A. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev. Bras. Farmacogn., 2013, 23, 51-57.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[7]
Pereira, D.F.; Cazarolli, L.H.; Lavado, C.; Mengatto, V.; Figueiredo, M.S.R.B.; Guedes, A.; Pizzolatti, M.G.; Silva, F.R. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 2011, 27(11-12), 1161-1167.
[http://dx.doi.org/10.1016/j.nut.2011.01.008] [PMID: 21684120]
[8]
Mohan, S.; Nandhakumar, L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J. Med. Hypotheses., 2014, 8, 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[9]
De Souza, L.A.; Tavares, W.M.G.; Lopes, A.P.M.; Soeiro, M.M.; De Almeida, W.B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem. Phys. Lett., 2017, 676, 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[10]
Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.M.B.; El-Shabrawy, A.E-R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn., 2015, 25, 134-141.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[11]
Morita, M.; Takahashi, I.; Kanai, M.; Okafuji, F.; Iwashima, M.; Hayashi, T.; Watanabe, S.; Hamazaki, T.; Shimozawa, N.; Suzuki, Y.; Furuya, H.; Yamada, T.; Imanaka, T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett., 2005, 579(2), 409-414.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[12]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[13]
Govindarasu, M.; Palani, M.; Vaiyapuri, M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int. J. Pharm. Pharm. Sci., 2017, 9, 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[14]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni-Suef. Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[15]
Wahby, M.M.; Abdallah, Z.M.; Abdou, H.M.; Yousef, M.I.; Newairy, A-S.A. Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats. Egypt J. Basic Appl. Sci., 2017, 4, 350-357.
[16]
Lieberman, H.R.; Kellogg, M.D.; Fulgoni, V.L. III.; Agarwal, S. Moderate doses of commercial preparations of Ginkgo biloba do not alter markers of liver function but moderate alcohol intake does: A new approach to identify and quantify biomarkers of ‘adverse effects’ of dietary supplements. Regul. Toxicol. Pharmacol., 2017, 84, 45-53.
[http://dx.doi.org/10.1016/j.yrtph.2016.12.010] [PMID: 28025058]
[17]
Deng, Y.; Bi, H.C.; Zhao, L.Z.; Wang, X.D.; Chen, J.; Ou, Z.M.; Ding, L.; Xu, L.J.; Guan, S.; Chen, X.; Zhou, S.F.; Huang, M. Induction of cytochrome P450 3A by the Ginkgo biloba extract and bilobalides in human and rat primary hepatocytes. Drug Metab. Lett., 2008, 2(1), 60-66.
[http://dx.doi.org/10.2174/187231208783478489] [PMID: 19356072]
[18]
Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med., 2019.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.003] [PMID: 30671362]
[19]
Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Rodríguez-Landa, JF; Mérida-Portilla, CV; Díaz-Sobac, R The protective effect of two commercial formats of Ginkgo biloba on motor alterations induced by cassava juice ( Manihot esculenta Crantz) in Wistar rats. Neurol, 2017, 32, 516-522.
[20]
Zhang, N.; Lan, W.; Wang, Q.; Sun, X.; Xie, J. Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus. Aquac. Fish., 2018, 3(4), 163-169.
[http://dx.doi.org/10.1016/j.aaf.2018.05.005]
[21]
Li, Z.; Li, J.; Zhao, W.; Li, Y. Potential antiosteoporotic effect of ginkgo biloba extract via regulation of SIRT1-NF-kB signaling pathway. J King Saud Univ- Sci., 2020, 32(4), 2513-2519.
[http://dx.doi.org/10.1016/j.jksus.2020.04.011]
[22]
Kim, M.S.; Bang, J.H.; Lee, J.; Han, J.S.; Baik, T.G.; Jeon, W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine, 2016, 23(12), 1356-1364.
[http://dx.doi.org/10.1016/j.phymed.2016.07.013] [PMID: 27765355]
[23]
Cui, Y.; Wu, H.; Liu, M.; Yang, H.; Qin, H.; Liu, X. Effect of Ginkgo biloba leaf extract on cerebral cortex amino acid levels in cerebral ischemia model rats. J. Tradit. Chin. Med., 2018, 38(5), 676-684.
[http://dx.doi.org/10.1016/S0254-6272(18)30906-3] [PMID: 32185984]
[24]
Tian, J.; Liu, Y.; Chen, K. Ginkgo biloba extract in vascular protection: Molecular mechanisms and clinical applications. Curr. Vasc. Pharmacol., 2017, 15(6), 532-548.
[http://dx.doi.org/10.2174/1570161115666170713095545] [PMID: 28707602]
[25]
Yang, G.; Wang, Y.; Sun, J.; Zhang, K.; Liu, J. Ginkgo Biloba for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Curr. Top. Med. Chem., 2016, 16(5), 520-528.
[http://dx.doi.org/10.2174/1568026615666150813143520] [PMID: 26268332]
[26]
Gertz, H.J.; Kiefer, M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr. Pharm. Des., 2004, 10(3), 261-264.
[http://dx.doi.org/10.2174/1381612043386437] [PMID: 14754386]
[27]
Grollino, M.G.; Raschellà, G.; Cordelli, E.; Villani, P.; Pieraccioli, M.; Paximadas, I.; Malandrino, S.; Bonassi, S.; Pacchierotti, F. Cytotoxicity, genotoxicity and gene expression changes elicited by exposure of human hepatic cells to Ginkgo biloba leaf extract. Food Chem. Toxicol., 2017, 109(Pt 1), 486-496.
[http://dx.doi.org/10.1016/j.fct.2017.09.042] [PMID: 28943387]
[28]
Agnihotri, V.; Adhikari, P.; Pandey, N.; Sati, P.; Pandey, A. Thin layer drying behavior of Ginkgo biloba L. leaves with respect to Ginkgolide A and Bilobalide content and microbial load. Heliyon, 2020, 6(4), e03220.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03220] [PMID: 32322698]
[29]
Alkuraishy H, M.; Algareeb A, I.; Albuhadilly A, K.; ALmgoter, B. Modulation effects of piracetam and Ginkgo biloba on the cognitive and working memory functions: Psychometric study. Curr. Psychopharmacol., 2015, 3, 87-92.
[http://dx.doi.org/10.2174/221155600302150302105355]
[30]
Montes, P.; Ruiz-Sanchez, E.; Rojas, C.; Rojas, P. Ginkgo biloba extract 761: A review of basic studies and potential clinical use in psychiatric disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(1), 132-149.
[http://dx.doi.org/10.2174/1871527314666150202151440] [PMID: 25642989]
[31]
DeFeudis, F.V.; Drieu, K. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr. Drug Targets, 2000, 1(1), 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[32]
Lim, H.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of anti-inflammatory biflavonoid, ginkgetin, on chronic skin inflammation. Biol. Pharm. Bull., 2006, 29(5), 1046-1049.
[http://dx.doi.org/10.1248/bpb.29.1046] [PMID: 16651744]
[33]
Wu, H.; Dai, M.; Dai, M.; Huang, W. Ginkgetin aglycone exerts anti-osteoporotic effect via regulation of NOX4/Akt/PI3K pathway. Trop. J. Pharm. Res., 2019.
[34]
Hu, WH; Chan, GKL; Duan, R; Wang, HY; Kong, XP; Dong, TTX Synergy of ginkgetin and resveratrol in suppressing vegf-induced angiogenesis: A therapy in treating colorectal cancer. Cancers (Basel), 2019.
[http://dx.doi.org/10.3390/cancers11121828]
[35]
Lou, J.S.; Bi, W.C.; Chan, G.K.L.; Jin, Y.; Wong, C.W.; Zhou, Z.Y. Ginkgetin induces autophagic cell death through p62/SQSTM1- mediated autolysosome formation and redox setting in nonsmall cell lung cancer. Oncotarget, 2017.
[36]
Pan, J.; Li, X.; Guo, F.; Yang, Z.; Zhang, L.; Yang, C. Ginkgetin attenuates cerebral ischemia–reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci. Rep., 2019, 39(9), BSR20191452.
[http://dx.doi.org/10.1042/BSR20191452]
[37]
Ren, Y.; Huang, S.S.; Wang, X.; Lou, Z.G.; Yao, X.P.; Weng, G.B. Ginkgetin induces apoptosis in 786-O cell line via suppression of JAK2-STAT3 pathway. Iran. J. Basic Med. Sci., 2016, 19(11), 1245-1250.
[PMID: 27917282]
[38]
Park, Y.; Woo, S.H.; Seo, S-K.; Kim, H.; Noh, W.C.; Lee, J.K.; Kwon, B.M.; Min, K.N.; Choe, T.B.; Park, I.C. Ginkgetin induces cell death in breast cancer cells via downregulation of the estrogen receptor. Oncol. Lett., 2017, 14(4), 5027-5033.
[http://dx.doi.org/10.3892/ol.2017.6742] [PMID: 29085516]
[39]
Saponara, R.; Bosisio, E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. J. Nat. Prod., 1998, 61(11), 1386-1387.
[http://dx.doi.org/10.1021/np970569m] [PMID: 9834158]
[40]
Dell’Agli, M.; Bosisio, E. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta Med., 2002, 68(1), 76-79.
[http://dx.doi.org/10.1055/s-2002-19876] [PMID: 11842336]
[41]
Dell’Agli, M.; Galli, G.V.; Bosisio, E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba. Planta Med., 2006, 72(5), 468-470.
[http://dx.doi.org/10.1055/s-2005-916236] [PMID: 16557462]
[42]
Liu, P-K.; Weng, Z-M.; Ge, G-B.; Li, H-L.; Ding, L-L.; Dai, Z-R.; Hou, X.D.; Leng, Y.H.; Yu, Y.; Hou, J. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int. J. Biol. Macromol., 2018, 118(Pt B), 2216-2223.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.085] [PMID: 30009906]
[43]
Lian, N.; Tong, J.; Li, W.; Wu, J.; Li, Y. Ginkgetin ameliorates experimental atherosclerosis in rats. Biomed. Pharmacother., 2018, 102, 510-516.
[http://dx.doi.org/10.1016/j.biopha.2018.03.107] [PMID: 29579712]
[44]
Cho, Y-L.; Park, J-G.; Kang, H.J.; Kim, W.; Cho, M.J.; Jang, J-H.; Kwon, M.G.; Kim, S.; Lee, S.H.; Lee, J.; Kim, Y.G.; Park, Y.J.; Kim, W.K.; Bae, K.H.; Kwon, B.M.; Chung, S.J.; Min, J.K. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol. Res., 2019, 139, 325-336.
[http://dx.doi.org/10.1016/j.phrs.2018.11.027] [PMID: 30472463]
[45]
Baek, S-H.; Yun, S-S.; Kwon, T.K.; Kim, J-R.; Chang, H-W.; Kwak, J-Y.; Kim, J.H.; Kwun, K.B. The effects of two new antagonists of secretory PLA2 on TNF, iNOS, and COX-2 expression in activated macrophages. Shock, 1999, 12(6), 473-478.
[http://dx.doi.org/10.1097/00024382-199912000-00010] [PMID: 10588517]
[46]
Park, H.; Kim, Y.H.; Chang, H.W.; Kim, H.P. Anti-inflammatory activity of the synthetic C-C biflavonoids. J. Pharm. Pharmacol., 2006, 58(12), 1661-1667.
[http://dx.doi.org/10.1211/jpp.58.12.0014] [PMID: 17331331]
[47]
Cheon, B.S.; Kim, Y.H.; Son, K.S.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med., 2000, 66(7), 596-600.
[http://dx.doi.org/10.1055/s-2000-8621] [PMID: 11105561]
[48]
Kim, S.J.; Lim, M.H.; Chun, I.K.; Won, Y.H. Effects of flavonoids of Ginkgo biloba on proliferation of human skin fibroblast. Skin Pharmacol., 1997, 10(4), 200-205.
[http://dx.doi.org/10.1159/000211505] [PMID: 9413894]
[49]
Lee, S.J.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of arachidonate release from rat peritoneal macrophage by biflavonoids. Arch. Pharm. Res., 1997, 20(6), 533-538.
[http://dx.doi.org/10.1007/BF02975207] [PMID: 18982255]
[50]
Kim, H.P.; Mani, I.; Iversen, L.; Ziboh, V.A. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot. Essent. Fat. Acids., 1998, 58(1), 17-24.
[http://dx.doi.org/10.1016/S0952-3278(98)90125-9]
[51]
Zhou, H.F.; Xie, C.; Jian, R.; Kang, J.; Li, Y.; Zhuang, C.L.; Yang, F.; Zhang, L.L.; Lai, L.; Wu, T.; Wu, X. Biflavonoids from Caper (Capparis spinosa L.) fruits and their effects in inhibiting NF-kappa B activation. J. Agric. Food Chem., 2011, 59(7), 3060-3065.
[http://dx.doi.org/10.1021/jf105017j] [PMID: 21381749]
[52]
Tao, Z.; Jin, W.; Ao, M.; Zhai, S.; Xu, H.; Yu, L. Evaluation of the anti-inflammatory properties of the active constituents in Ginkgo biloba for the treatment of pulmonary diseases. Food Funct., 2019, 10(4), 2209-2220.
[http://dx.doi.org/10.1039/C8FO02506A] [PMID: 30945705]
[53]
Kwak, W-J.; Han, C.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Park, B.K.; Kim, H.P. Effects of Ginkgetin from Ginkgo biloba Leaves on cyclooxygenases and in vivo skin inflammation. Planta Med., 2002, 68(4), 316-321.
[http://dx.doi.org/10.1055/s-2002-26742] [PMID: 11988854]
[54]
Li, Q.; Ye, T.; Long, T.; Peng, X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Biosci. Biotechnol. Biochem., 2019, 83(4), 675-683.
[http://dx.doi.org/10.1080/09168451.2018.1553608]
[55]
Kang, S.S.; Lee, J.Y.; Choi, Y.K.; Song, S.S.; Kim, J.S.; Jeon, S.J.; Han, Y.N.; Son, K.H.; Han, B.H. Neuroprotective effects of naturally occurring biflavonoids. Bioorg. Med. Chem. Lett., 2005, 15(15), 3588-3591.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.078] [PMID: 15978805]
[56]
Jeong, E.J.; Hwang, L.; Lee, M.; Lee, K.Y.; Ahn, M-J.; Sung, S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol., 2014, 64, 397-402.
[http://dx.doi.org/10.1016/j.fct.2013.12.003] [PMID: 24315869]
[57]
Zeng, Y-Q.; Wang, Y-J.; Zhou, X-F. Ginkgetin ameliorates neuropathological changes in APP/PS1 transgenical mice model. J. Prev. Alzheimers Dis., 2016, 3(1), 24-29.
[PMID: 29214278]
[58]
Wang, Y.Q.; Wang, M.Y.; Fu, X.R.; Peng-Yu, ; Gao, G.F.; Fan, Y.M.; Duan, X.L.; Zhao, B.L.; Chang, Y.Z.; Shi, Z.H. Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radic. Res., 2015, 49(9), 1069-1080.
[http://dx.doi.org/10.3109/10715762.2015.1032958] [PMID: 25968939]
[59]
Xu, B.; He, X.; Sui, Y.; Wang, X.; Wang, X.; Ren, L.; Zhai, Y.X. Ginkgetin aglycone attenuates neuroinflammation and neuronal injury in the rats with ischemic stroke by modulating STAT3/JAK2/SIRT1. Folia Neuropathol., 2019, 57(1), 16-23.
[http://dx.doi.org/10.5114/fn.2019.83827] [PMID: 31038184]
[60]
Tian, Z.; Tang, C.; Wang, Z. Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. J. Cell. Biochem., 2019, 120(10), 18487-18495.
[http://dx.doi.org/10.1002/jcb.29169] [PMID: 31265179]
[61]
Weniger, B.; Vonthron-Sénécheau, C.; Kaiser, M.; Brun, R.; Anton, R. Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids. Phytomedicine, 2006, 13(3), 176-180.
[http://dx.doi.org/10.1016/j.phymed.2004.10.008] [PMID: 16428025]
[62]
Krauze-Baranowska, M.; Wiwart, M. Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z. Natforsch. C J. Biosci., 2003, 58(1-2), 65-69.
[http://dx.doi.org/10.1515/znc-2003-1-212] [PMID: 12622229]
[63]
Li, G.; Wang, G.; Wang, S.; Deng, Y. Ginkgetin in vitro and in vivo reduces Streptococcus suis virulence by inhibiting suilysin activity. J. Appl. Microbiol., 2019, 127(5), 1556-1563.
[http://dx.doi.org/10.1111/jam.14365] [PMID: 31260158]
[64]
Hayashi, K.; Hayashi, T.; Morita, N. Mechanism of action of the antiherpesvirus biflavone ginkgetin. Antimicrob. Agents Chemother., 1992, 36(9), 1890-1893.
[http://dx.doi.org/10.1128/AAC.36.9.1890] [PMID: 1329635]
[65]
Miki, K.; Nagai, T.; Suzuki, K.; Tsujimura, R.; Koyama, K.; Kinoshita, K. Anti-influenza virus activity of biflavonoids. Bioorganic. Med. Chem. Lett., 2007, 17(3), 772-775.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.075]
[66]
Kim, H.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of rat adjuvant-induced arthritis by ginkgetin, a biflavone from Ginkgo biloba leaves. Planta Med., 1999, 65(5), 465-467.
[http://dx.doi.org/10.1055/s-2006-960815] [PMID: 10418340]
[67]
Son, J.K.; Son, M.J.; Lee, E.; Moon, T.C.; Son, K.H.; Kim, C.H.; Kim, H.P.; Kang, S.S.; Chang, H.W. Ginkgetin, a Biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biol. Pharm. Bull., 2005, 28(12), 2181-2184.
[http://dx.doi.org/10.1248/bpb.28.2181] [PMID: 16327145]
[68]
Yamaguchi, L.F.; Vassão, D.G.; Kato, M.J.; Di Mascio, P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry, 2005, 66(18), 2238-2247.
[http://dx.doi.org/10.1016/j.phytochem.2004.11.014] [PMID: 16153416]
[69]
Zhang, Y.; Shi, S.; Wang, Y.; Huang, K. Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J. Chromatogr. B. Anal. Technol. Biomed. Life. Sci., 2011, 879(2), 191-196.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.004]
[70]
Zhang, L.; Liu, J.; Geng, T. Ginkgetin aglycone attenuates the apoptosis and inflammation response through nuclear factor-kB signaling pathway in ischemic-reperfusion injury. J. Cell. Biochem., 2019.
[http://dx.doi.org/10.1002/jcb.28086] [PMID: 30582212]
[71]
Zhang, J.; Yang, S.; Chen, F.; Li, H.; Chen, B. Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci., 2017, 7, 44.
[http://dx.doi.org/10.1186/s13578-017-0173-3] [PMID: 28852469]
[72]
Chen, T-R.; Wei, L-H.; Guan, X-Q.; Huang, C.; Liu, Z-Y.; Wang, F-J.; Hou, J.; Jin, Q.; Liu, Y.F.; Wen, P.H.; Zhang, S.J.; Ge, G.B.; Guo, W.Z. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg. Chem., 2019, 92, 103199.
[http://dx.doi.org/10.1016/j.bioorg.2019.103199] [PMID: 31446241]
[73]
Lee, M.K.; Lim, S.W.; Yang, H.; Sung, S.H.; Lee, H.S.; Park, M.J. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorganic. Med. Chem. Lett., 2006.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.018]
[74]
Lee, S.J.; Choi, J.H.; Son, K.H.; Chang, H.W.; kang, S.S.; Kim, H.P. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci., 1995, 57(6), 551-558.
[http://dx.doi.org/10.1016/0024-3205(95)00305-P]
[75]
Kim, H.P.; Pham, H.T.; Ziboh, V.A. Flavonoids differentially inhibit guinea pig epidermal cytosolic phospholipase A2.Prostaglandins Leukot. Essent. Fatty Acids; , 2001, 65, pp. (5-6)281-286.
[http://dx.doi.org/10.1054/plef.2001.0326]
[76]
Kim, S.J. Effect of biflavones of Ginkgo biloba against UVB-induced cytotoxicity in vitro. J. Dermatol., 2001, 28(4), 193-199.
[http://dx.doi.org/10.1111/j.1346-8138.2001.tb00117.x] [PMID: 11449670]
[77]
Li, Y.Y.; Lu, X.Y.; Sun, J.L.; Wang, Q.Q.; Zhang, Y.D.; Zhang, J.B.; Fan, X.H. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin. J. Nat. Med., 2019, 17(9), 672-681.
[http://dx.doi.org/10.1016/S1875-5364(19)30081-0] [PMID: 31526502]
[78]
Ruan, X.; Yan, L-Y.; Li, X-X.; Liu, B.; Zhang, H.; Wang, Q. Optimization of process parameters of extraction of amentoflavone, quercetin and ginkgetin from Taxus chinensis using supercritical CO2 plus co-solvent. Molecules, 2014, 19(11), 17682-17696.
[http://dx.doi.org/10.3390/molecules191117682] [PMID: 25365294]
[79]
Beck, S.; Stengel, J. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry, 2016, 130, 201-206.
[http://dx.doi.org/10.1016/j.phytochem.2016.05.005] [PMID: 27233155]
[80]
Krauze-Baranowska, M. Flavonoids from Metasequoia glyptostroboides. Acta. Pol. Pharm.- Drug Res., 2004, 61(3), 199-202.
[81]
Yang, L.; Zheng, Z-S.; Cheng, F.; Ruan, X.; Jiang, D-A.; Pan, C-D.; Wang, Q. Seasonal dynamics of metabolites in needles of Taxus wallichiana var. mairei. Molecules, 2016, 21(10), 1403.
[http://dx.doi.org/10.3390/molecules21101403] [PMID: 27775631]
[82]
Li Z hui; Yan L ye; Yu X yan; Ruan X; Liu B; Wang Q. Optimization of supercritical fluid extraction of total flavonoids and monomer compositions from taxus remainder extracts free of taxoids. Zhong Yao Cai, 2016, 9(7), 524.
[83]
Wang, G.; Yao, S.; Zhang, X.X.; Song, H. Rapid screening and structural characterization of antioxidants from the extract of Selaginella doederleinii hieron with DPPH-UPLC-Q-TOF/MS method. Int. J. Anal. Chem., 2015, 2015, 849769.
[http://dx.doi.org/10.1155/2015/849769] [PMID: 25792983]
[84]
Briançon-Scheid, F.; Lobstein-Guth, A.; Anton, R. HPLC separation and quantitative determination of biflavones in leaves from Ginkgo biloba. Planta Med., 1983, 49(12), 204-207.
[http://dx.doi.org/10.1055/s-2007-969851] [PMID: 17405053]
[85]
Krauze-Baranowska, M.; Pobłocka, L.; El Hela, A.A. Biflavones from Chamaecyparis obtusa. Zeitschrift Fur Naturforsch - Sect C. J. Biosci., 2005.
[86]
Hyun, S.K.; Kang, S.S.; Son, K.H.; Chung, H.Y.; Choi, J.S. Biflavone glucosides from Ginkgo biloba yellow leaves. Chem. Pharm. Bull. (Tokyo), 2005, 53(9), 1200-1201.
[http://dx.doi.org/10.1248/cpb.53.1200] [PMID: 16141598]
[87]
Liu, X.Q.; Zhang, X.D.; Zhu, Y.L.; Shin, B.Y.; Wu, S.X. Structrue identification of biflavones and determination of Taxol from Taxus Madia. Zhong Yao Cai, 2008, 31(10), 1498-1501.
[PMID: 19230397]
[88]
Pattamadilok, D.; Suttisri, R. Seco-terpenoids and other constituents from Elateriospermum tapos. J. Nat. Prod., 2008, 71(2), 292-294.
[http://dx.doi.org/10.1021/np070629g] [PMID: 18179177]
[89]
Zhou, G.; Yao, X.; Tang, Y.; Yang, N.; Pang, H.; Mo, X.; Zhu, S.; Su, S.; Qian, D.; Jin, C.; Qin, Y.; Duan, J.A. Two new nonacosanetriols from Ginkgo biloba sarcotesta. Chem. Phys. Lipids, 2012, 165(7), 731-736.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.08.003] [PMID: 22981471]
[90]
Li, J.; Li, F.; Lu, Y.Y.; Su, X.J.; Huang, C.P.; Lu, X.W. A new dilactone from the seeds of Gaultheria yunnanensis. Fitoterapia, 2010, 81(1), 35-37.
[http://dx.doi.org/10.1016/j.fitote.2009.07.003] [PMID: 19628028]
[91]
Chi, J.D.; He, X.F.; Liu, A.R.; Xu, L.X. HPLC determination of six flavonoid constituents in Ginkgo biloba leaves. Yao Xue Xue Bao, 1997, 32(8), 625-628.
[PMID: 11596315]
[92]
Petersen, M.J.; de Cássia Lemos Lima, R.; Kjaerulff, L.; Staerk, D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. Phytochemistry, 2019, 164, 94-101.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.016] [PMID: 31103779]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy