Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antimicrobial Activity of Coleus forskohlii Fractions, Isolation and Characterization of Phenolic Compounds

Author(s): Kamel H. Shaker*, M. Abo Yonus, Mohamed A. Ibrahim, Mona Kilany and Frank Wiggers

Volume 18, Issue 1, 2022

Published on: 26 January, 2021

Article ID: e160921190769 Pages: 6

DOI: 10.2174/1573407217666210127090810

Price: $65

Abstract

Background: It is known that medicinal plants represent promising candidates against many species of pathogenic bacteria. The south area of Saudi Arabia “Asir region†has a unique habitat and its medicinal plant's composition is still nearly unexplored. Therefore, the aim of the present work is to investigate the antimicrobial activities of Coleus forskohlii fractions and to identify the major active compounds.

Methods: The total plant extract was partitioned by petroleum ether, ethyl acetate and n-butanol. Agar well diffusion was assessed to evaluate the antimicrobial activities of the plant fractions against Gram-positive, Gram-negative and Candida albicans. Successive column chromatography was performed to isolate the major metabolites. Structures of the isolated compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry.

Results: All plant fractions showed significant antimicrobial potential activities against the tested pathogens, where ethyl acetate exhibited the highest antimicrobial activity, followed by petroleum ether then n-butanol. From the n-butanol fraction, thymoquinol-2-O-β-glucopyranoside (1) was isolated while syringic acid (2), methyl 3,4,5-trihydroxybenzoate (3), and luteolin (4) were assigned from the ethyl acetate fraction.

Conclusion: The antimicrobial assays revealed that ethyl acetate was the most potent fraction and the major abundant metabolites of C. forskohlii, thymoquinol-2-O-β-glucopyranoside (1), syringic acid (2), methyl 3,4,5-trihydroxybenzoate (3), and luteolin (4) were isolated herein for the first time.

Keywords: Phenolic, Colues forskohlii, isolation, spectroscopy, antimicrobial, medicinal plants.

Graphical Abstract

[1]
Carey, J. Fighting superbugs with superdrugs. Drug Discov. Today, 2004, 9(15), 637-640.
[http://dx.doi.org/10.1016/S1359-6446(04)03138-1] [PMID: 15279846]
[2]
Aldulaimi, O.A. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 2017, 11(22), 123-127.
[http://dx.doi.org/10.4103/phrev.phrev_43_16] [PMID: 28989246]
[3]
Ngezahayo, J.; Havyarimana, F.; Hari, L.; Stévigny, C.; Duez, P. Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases. J. Ethnopharmacol., 2015, 173, 338-351.
[http://dx.doi.org/10.1016/j.jep.2015.07.028] [PMID: 26232628]
[4]
Enioutina, E.Y.; Teng, L.; Fateeva, T.V.; Brown, J.C.S.; Job, K.M.; Bortnikova, V.V.; Krepkova, L.V.; Gubarev, M.I.; Sherwin, C.M.T. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Rev. Clin. Pharmacol., 2017, 10(11), 1203-1214.
[http://dx.doi.org/10.1080/17512433.2017.1371591] [PMID: 28836870]
[5]
Kotagiri, D.; Beebi, S.K.; Chaitanya, K.V. Secondary metabolites and the antimicrobial potential of five different Coleus species in response to salinity stress. bioRxiv, 2017, 1-49.
[http://dx.doi.org/10.1101/220368]
[6]
Malleswari, D.; Mohd, K.M.; Rana, K.; Bagyanarayana, G. Antibacterial and antifungal activity of leaf, stem and root extracts of Costusigneus. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 2314.
[7]
Sher, H.; Al-Yemeni, M.N.; Masrahi, Y.S.; Shah, A.H. Ethnomedicinal and ethnoecological evaluation of Salvadorapersica L.: A threatened medicinal plant in Arabian Peninsula. J. Med. Plants Res., 2010, 4(12), 1209-1215.
[8]
Van Wyk, B-E.; Van Oudtshoorn, B.; Gericke, N. Medicinal plants of South Africa; Briza Publications: Pretoria, 2009.
[9]
Kapewangolo, P.; Meyer, D. Plectranthus barbatus; antioxidant, and other inhibitory responses against HIV/AIDS. Herbal antioxidant against HIV/AIDS, 2018, , 149-158.
[10]
Kavitha, C.; Rajamani, K.; Vadivel, E. Coleus forskohlii A comprehensive review on morphology, phytochemistry and pharmacological aspects. J. Med. Plants Res., 2010, 4(4), 278-385.
[11]
Bruneton, J. Pharmacognosy, phytochemistry, medicinal plants; Lavoisier publishing company: Paris, 1995.
[12]
De Souza, N.J. Coleus forskohlii Briq. The indian plant source for forskolin.Recent Advances in Medicinal, Aromatic & Spice crops (ed: S.. P. Raychaudhuri.); New Delhi, India., 1991, 1, pp. 83-91.
[13]
Yuenyongsawad, S.; Tewtrakul, S. Essential oil components and biological activities of Coleus parvifolius leaves. Songklanakarin J. Sci. Technol., 2005, 27, 497-502.
[14]
Ghazghazi, H.; Aouadhi, C.; Weslati, M.; Trakhna, F.; Maaroufi, A.; Hasnaoui, B. Chemical composition of Rutachalepensis Leaves essential oil and variation in biological activities between leaves, stems and roots methanolic extracts. J Essent Oil Bear Pl, 2015, 18(3), 570-581.
[http://dx.doi.org/10.1080/0972060X.2014.905757]
[15]
Prashant, A.; Mehta, J.P. A review on antimicrobial and phytochemical screening of traditionally used Himalayan medicinal plants. Environ. Conserv. J., 2017, 18(1&2), 49-62.
[http://dx.doi.org/10.36953/ECJ.2017.181207]
[16]
Xu, L.L.; Lu, J.; Li, W.J.; Kong, L.Y. Studies on the chemical constituents in root of Coleus forskohlii.. Zhongguo Zhongyao Zazhi, 2005, 30(22), 1753-1755.
[PMID: 16468372]
[17]
Shan, Y.; Wang, X.; Zhou, X.; Kong, L.; Niwa, M. Two minor diterpene glycosides and an eudesman sesquiterpene from Coleus forskohlii. Chem. Pharm. Bull. (Tokyo), 2007, 55(3), 376-381.
[http://dx.doi.org/10.1248/cpb.55.376] [PMID: 17329875]
[18]
Shan, Y.; Xu, L.; Lu, Y.; Wang, X.; Zheng, Q.; Kong, L.; Niwa, M. Diterpenes from Coleus forskohlii (WILLD.) BRIQ. (Labiatae). Chem. Pharm. Bull. (Tokyo), 2008, 56(1), 52-56.
[http://dx.doi.org/10.1248/cpb.56.52] [PMID: 18175974]
[19]
Musarat, A.; Al Musayeib, N.M.; Al-Said, M.S.; Al-Zahrani, R.N.; Sabrin, R.M.; Ibrahim, S.R.M.; Mohamed, G.M. Barbaterpene and barbatusterol, new constituents from Plectranthusbarbatus growing in Saudi Arabia. Lett. Drug Des. Discov., 2018, 15(8), 851-856.
[http://dx.doi.org/10.2174/1570180814666171120161340]
[20]
Mothana, R.A.; Khaled, J.M.; El-Gamal, A.A.; Noman, O.M.; Kumar, A.; Alajmi, M.F.; Al-Rehaily, A.J.; Al-Said, M.S. Comparative evaluation of cytotoxic, antimicrobial and antioxidant activities of the crude extracts of three Plectranthus species grown in Saudi Arabia. Saudi Pharm. J., 2019, 27(2), 162-170.
[http://dx.doi.org/10.1016/j.jsps.2018.09.010] [PMID: 30766425]
[21]
Kilany, M. Inhibition of human pathogenic bacteria by Moringa oleifera cultivated in Jazan (Kingdom of Saudi Arabia) and study of synergy to amoxicillin. Egypt Pharmaceut J., 2016, 15(1), 38.
[http://dx.doi.org/10.4103/1687-4315.184029]
[22]
Abu-Shanab, B.; Adwan, G.M.; Jarrar, N.; Abu-Hijleh, A.; Adwan, K. Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus. Turk. J. Biol., 2007, 30(4), 195-198.
[23]
Massiot, G.; Lavaud, C. Structural elucidation of saponins: Studies in Natural Products Chemistry. Atta-ur-Rahman, Elsevier, 1995, 15, 187-224.
[24]
El-Ghaly, E.M.; Shaheen, U.; Ragab, E.; El-hila, A.A.; Abd-Allah, M.R. Bioactive constituents of Pulicaria jaubertii: A promising antihypertensive activity. Pharmacogn. J., 2016, 8(1), 81-86.
[25]
Kamel, M.S.; Assaf, M.H.; Hasanean, H.A.; Ohtani, K.; Kasai, R.; Yamasaki, K. Monoterpene glucosides from Origanum syriacum. Phytochemistry, 2001, 58(8), 1149-1152.
[http://dx.doi.org/10.1016/S0031-9422(01)00386-7] [PMID: 11738398]
[26]
Liao, C.R.; Kuo, Y.H.; Ho, Y.L.; Wang, C.Y.; Yang, C.S.; Lin, C.W.; Chang, Y.S. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells. Molecules, 2014, 19(7), 9515-9534.
[http://dx.doi.org/10.3390/molecules19079515] [PMID: 25000464]
[27]
Kane, C.J.; Menna, J.H.; Yeh, Y.C. Methyl gallate, methyl-3,4,5-trihydroxybenzoate, is a potent and highly specific inhibitor of herpes simplex virus in vitro. I. Purification and characterization of methyl gallate from Sapium sebiferum. Biosci. Rep., 1988, 8(1), 85-94.
[http://dx.doi.org/10.1007/BF01128975] [PMID: 2840132]
[28]
Moussaoui, F.; Zellagui, A.; Segueni, N.; Touil, A.; Rhouati, S. Flavonoid constituents from Algerian Launaea resedifolia (OK), and their antimicrobial activity. Rec. Nat. Prod., 2010, 4(1), 91.
[29]
Atulkar, P.; Thakur, R.; Singh, P. Anitimicrobial activities of root extracts of Coleus forskohlii II Brio. Int. J. Recent Sci. Res., 2015, 6(12), 7732-7734.
[30]
Senthilkumar, C.S.; Kumar, M.S.; Pandian, M.R. In Vitro Antibacterial activity of crude leaf extracts from tecomastans (L) Juss. et Kunth, Coleus forskohlii and Pogostemon Patchouli against human pathogenic bacteria. Int. J. Pharm. Tech. Res., 2010, 2(1), 438-442.
[31]
Saklani, S.; Gahlot, M.; Kumar, A.; Singh, R.; Patial, R.; Kashyap, P. Antimicrobial activity of extracts of the medicinal plant Coleus forskohlii. Int. J. Drug Dev. Res, 2017, 1, 8.
[32]
Al-Judaibi, A.; Al-Yousef, F. Antifungal effect of ethanol plant extract on Candida sp. Am. J. Agric. Biol. Sci., 2014, 9, 277-283.
[http://dx.doi.org/10.3844/ajabssp.2014.277.283]
[33]
Snowden, R.; Harrington, H.; Morrill, K.; Jeane, L.; Garrity, J.; Orian, M.; Lopez, E.; Rezaie, S.; Hassberger, K.; Familoni, D.; Moore, J.; Virdee, K.; Albornoz-Sanchez, L.; Walker, M.; Cavins, J.; Russell, T.; Guse, E.; Reker, M.; Tschudy, O.; Wolf, J.; True, T.; Ukaegbu, O.; Ahaghotu, E.; Jones, A.; Polanco, S.; Rochon, Y.; Waters, R.; Langland, J. A comparison of the anti-Staphylococcus aureus activity of extracts from commonly used medicinal plants. J. Altern. Complement. Med., 2014, 20(5), 375-382.
[http://dx.doi.org/10.1089/acm.2013.0036] [PMID: 24635487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy