Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products

Author(s): Irene Rossi, Ruggero Bettini and Francesca Buttini*

Volume 27, Issue 12, 2021

Published on: 22 January, 2021

Page: [1436 - 1452] Pages: 17

DOI: 10.2174/1381612827666210122143214

Price: $65

conference banner
Abstract

Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.

Keywords: Resistant tuberculosis, second line drugs, particle engineering, dry powder inhalers, antibiotics for nebulization, pulmonary delivery.

[2]
Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003; 16(3): 463-96.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[3]
Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 1998; 66(4): 1277-81.
[http://dx.doi.org/10.1128/IAI.66.4.1277-1281.1998] [PMID: 9529042]
[4]
Fenton MJ, Vermeulen MW. Immunopathology of tuberculosis- roles of macrophages and monocytes. Infect Immun 1996; 64(3): 683-90.
[http://dx.doi.org/10.1128/IAI.64.3.683-690.1996] [PMID: 8641767]
[5]
van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 2002; 15(2): 294-309.
[http://dx.doi.org/10.1128/CMR.15.2.294-309.2002] [PMID: 11932234]
[6]
Dannenberg AMJ, Rook JA. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses. Dual mechanisms that control bacillary multiplication.Tuberculosis: Pathogenesis. Protection, and Control 1994; pp. 459-83.
[http://dx.doi.org/10.1128/9781555818357.ch27]
[7]
WHO treatment guidelines for drug- resistant tuberculosis, WHO Document Production Services. 2016; 1-64.https://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf
[8]
Fourie PB, Nettey OS. Inhaled therapies for tuberculosis: A viable approach for spray-dried drugs delivered by handheld dry powder inhaler. Inhalation 2015; pp. 1-5.
[9]
Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 1998; 2(1): 10-5.
[PMID: 9562106]
[10]
Buttini F, Colombo G. Formulation strategies for antitubercular drugs by inhalation Drug delivery systems for tuberculosis prevention and treatment. Chichester, UK: John Wiley & Sons, Ltd 2016; pp. 197-212.
[http://dx.doi.org/10.1002/9781118943182.ch10]
[11]
Chang KC, Leung CC. Immunization: Efficacy, Limitations, and Future Needs.Handbook of Global Tuberculosis Control. 4 ed. US, Boston, MA: Springer 2017; 343-57.
[12]
Abubakar I, Pimpin L, Ariti C, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess 2013; 17(37): 1-372. v-vi
[http://dx.doi.org/10.3310/hta17370] [PMID: 24021245]
[13]
Vasconcelos-Junior AC, de Araújo-Filho JA, de Silva EB, de Sousa EM, Kipnis A, Junqueira-Kipnis AP. Limitations of the BCG vaccine and new prophylaxis strategies against human tuberculosis. Einstein (Sao Paulo) 2009; 7: 383-9.
[14]
Muttil P, Wang C, Hickey AJ. Inhaled drug delivery for tuberculosis therapy. Pharm Res 2009; 26(11): 2401-16.
[http://dx.doi.org/10.1007/s11095-009-9957-4] [PMID: 20183916]
[15]
Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016; 90(7): 1585-604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[16]
Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 2011; 35(5): 901-11.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00289.x] [PMID: 21707669]
[17]
Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 2005; 45: 529-64.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120] [PMID: 15822188]
[18]
Palomino JC, Martin A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel) 2014; 3(3): 317-40.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[19]
Bamaga M, Wright DJM, Zhang H. Selection of in vitro mutants of pyrazinamide-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 2002; 20(4): 275-81.
[http://dx.doi.org/10.1016/S0924-8579(02)00182-6] [PMID: 12385684]
[20]
Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010; 8(4): 260-71.
[http://dx.doi.org/10.1038/nrmicro2319] [PMID: 20208551]
[21]
Morris RP, Nguyen L, Gatfield J, et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2005; 102(34): 12200-5.
[http://dx.doi.org/10.1073/pnas.0505446102] [PMID: 16103351]
[22]
Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994; 264(5157): 382-8.
[http://dx.doi.org/10.1126/science.8153625] [PMID: 8153625]
[23]
Liu J, Nikaido H. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc Natl Acad Sci USA 1999; 96(7): 4011-6.
[http://dx.doi.org/10.1073/pnas.96.7.4011] [PMID: 10097154]
[24]
Philalay JS, Palermo CO, Hauge KA, Rustad TR, Cangelosi GA. Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 2004; 48(9): 3412-8.
[http://dx.doi.org/10.1128/AAC.48.9.3412-3418.2004] [PMID: 15328105]
[25]
Gao LY, Laval F, Lawson EH, et al. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 2003; 49(6): 1547-63.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03667.x] [PMID: 12950920]
[26]
Duncan K, Barry CE. III, Prospects for new antitubercular drugs. Curr Opin Microbiol 2004; 7(5): 460-5.
[http://dx.doi.org/10.1016/j.mib.2004.08.011] [PMID: 15451500]
[27]
Hegde SS, Vetting MW, Roderick SL, et al. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 2005; 308(5727): 1480-3.
[http://dx.doi.org/10.1126/science.1110699] [PMID: 15933203]
[28]
Montero C, Mateu G, Rodriguez R, Takiff H. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 2001; 45(12): 3387-92.
[http://dx.doi.org/10.1128/AAC.45.12.3387-3392.2001] [PMID: 11709313]
[29]
Buriánková K, Doucet-Populaire F, Dorson O, et al. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 2004; 48(1): 143-50.
[http://dx.doi.org/10.1128/AAC.48.1.143-150.2004] [PMID: 14693532]
[30]
Houghton JL, Green KD, Pricer RE, Mayhoub AS, Garneau-Tsodikova S. Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J Antimicrob Chemother 2013; 68(4): 800-5.
[http://dx.doi.org/10.1093/jac/dks497] [PMID: 23233486]
[31]
Viveiros M, Martins M, Rodrigues L, et al. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti Infect Ther 2012; 10(9): 983-98.
[http://dx.doi.org/10.1586/eri.12.89] [PMID: 23106274]
[32]
Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2005; 87(12): 1137-47.
[http://dx.doi.org/10.1016/j.biochi.2005.04.012] [PMID: 15951096]
[33]
Colangeli R, Helb D, Sridharan S, et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 2005; 55(6): 1829-40.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04510.x] [PMID: 15752203]
[34]
Colangeli R, Helb D, Vilchèze C, et al. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 2007; 3(6): e87.
[http://dx.doi.org/10.1371/journal.ppat.0030087] [PMID: 17590082]
[35]
Garcia Contreras L, Sung J, Ibrahim M, Elbert K, Edwards D, Hickey A. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs. Mol Pharm 2015; 12(8): 2642-50.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00046] [PMID: 25942002]
[36]
Khadka P, Dummer J, Hill PC, Das SC. Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. Int J Pharm 2018; 548(1): 244-54.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.011] [PMID: 29983396]
[37]
Srichana T, Ratanajamit C, Juthong S, et al. Evaluation of proinflammatory cytokines and adverse events in healthy volunteers upon inhalation of antituberculosis drugs. Biol Pharm Bull 2016; 39(11): 1815-22.
[http://dx.doi.org/10.1248/bpb.b16-00354] [PMID: 27803453]
[38]
Buttini F, Balducci AG, Colombo G, et al. Dose administration maneuvers and patient care in tobramycin dry powder inhalation therapy. Int J Pharm 2018; 548(1): 182-91.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.006] [PMID: 29883795]
[39]
Pham DD, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 2015; 478(2): 517-29.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.009] [PMID: 25499020]
[40]
Das S, Tucker I, Stewart P. Inhaled dry powder formulations for treating tuberculosis. Curr Drug Deliv 2015; 12(1): 26-39.
[http://dx.doi.org/10.2174/1567201811666140716123050] [PMID: 25030114]
[41]
Misra A, Hickey AJ, Rossi C, et al. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis (Edinb) 2011; 91(1): 71-81.
[http://dx.doi.org/10.1016/j.tube.2010.08.009] [PMID: 20875771]
[42]
Son YJ, McConville JT. A new respirable form of rifampicin. Eur J Pharm Biopharm 2011; 78(3): 366-76.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.004] [PMID: 21324356]
[43]
Kadota K, Yanagawa Y, Tachikawa T, et al. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int J Pharm 2019; 555: 280-90.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.055] [PMID: 30471373]
[44]
Maretti E, Costantino L, Rustichelli C, et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm 2017; 528(1-2): 440-51.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.045] [PMID: 28624659]
[45]
Rossi I, Buttini F, Sonvico F, et al. Sodium Hyaluronate Nanocomposite Respirable Microparticles to Tackle Antibiotic Resistance with Potential Application in Treatment of Mycobacterial Pulmonary Infections. Pharmaceutics 2019; 11(5): 203-26.
[http://dx.doi.org/10.3390/pharmaceutics11050203] [PMID: 31052403]
[46]
Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 2004; 269(1): 37-49.
[http://dx.doi.org/10.1016/j.ijpharm.2003.08.017] [PMID: 14698575]
[47]
Maretti E, Costantino L, Buttini F, et al. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 2019; 9(1): 298-310.
[http://dx.doi.org/10.1007/s13346-018-00607-w] [PMID: 30484257]
[48]
Rodrigues S, Alves AD, Cavaco JS, et al. Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles. Int J Pharm 2017; 529(1-2): 433-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.088] [PMID: 28669623]
[49]
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiol 2015; 220(5): 575-88.
[http://dx.doi.org/10.1016/j.imbio.2014.12.005] [PMID: 25582403]
[50]
Martinelli F, Balducci AG, Kumar A, et al. Engineered sodium hyaluronate respirable dry powders for pulmonary drug delivery. Int J Pharm 2017; 517(1-2): 286-95.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.002] [PMID: 27923698]
[51]
Parumasivam T, Chan JGY, Pang A, et al. In vitro evaluation of inhalable verapamil-rifapentine particles for tuberculosis therapy. Mol Pharm 2016; 13(3): 979-89.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00833] [PMID: 26808409]
[52]
Kaur R, Garg T, Das Gupta U, Gupta P, Rath G, Goyal AK. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs. Artif Cells Nanomed Biotechnol 2016; 44(1): 182-7.
[http://dx.doi.org/10.3109/21691401.2014.930747] [PMID: 24992699]
[53]
Manca ML, Valenti D, Sales OD, Nacher A, Fadda AM, Manconi M. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin. Int J Pharm 2014; 472(1-2): 102-9.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.009] [PMID: 24928129]
[54]
Lawlor C, O’Sullivan MP, Rice B, et al. Therapeutic aerosol bioengineering of targeted, inhalable microparticle formulations to treat Mycobacterium tuberculosis (MTb). J Mater Sci Mater Med 2012; 23(1): 89-98.
[http://dx.doi.org/10.1007/s10856-011-4511-4] [PMID: 22183789]
[55]
Parumasivam T, Leung SSY, Quan DH, Triccas JA, Britton WJ, Chan HK. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization. Eur J Pharm Sci 2016; 88: 1-11.
[http://dx.doi.org/10.1016/j.ejps.2016.03.024] [PMID: 27049049]
[56]
Manion JR, Cape SP, McAdams DH, Rebits LG, Evans S, Sievers RE. Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Sci Technol 2012; 46: 403-10.
[http://dx.doi.org/10.1080/02786826.2011.634453]
[57]
Zhang L, Li Y, Zhang Y, Zhu C. Sustained release of isoniazid from polylactide microspheres prepared using solid/oil drug loading method for tuberculosis treatment. Sci China Life Sci 2016; 59(7): 724-31.
[http://dx.doi.org/10.1007/s11427-016-5051-4] [PMID: 27278371]
[58]
Omar SM, Maziad NA, El-Tantawy NM. Pulmonary delivery of isoniazid in nanogel-loaded chitosan hybrid microparticles for inhalation. J Aerosol Med Pulm Drug Deliv 2019; 32(2): 78-87.
[PMID: 30526251]
[59]
Parikh R, Dalwadi S. Preparation and characterization of controlled release poly-ɛ-caprolactone microparticles of isoniazid for drug delivery through pulmonary route. Powder Technol 2014; 264: 158-65.
[http://dx.doi.org/10.1016/j.powtec.2014.04.077]
[60]
Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int J Pharm 2016; 506(1-2): 174-83.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.038] [PMID: 27091294]
[61]
Andriole VT. The quinolones: past, present, and future. Clin Infect Dis 2005; 41(Suppl. 2): S113-119.
[http://dx.doi.org/10.1086/428051] [PMID: 15942877]
[62]
Hooper DC. Mode of action of fluoroquinolones. Drugs 1999; 58(Suppl. 2): 6-10.
[http://dx.doi.org/10.2165/00003495-199958002-00002] [PMID: 10553698]
[63]
Barazesh A, Gilani K, Rouini M, Barghi MA. Effect of pH and leucine concentration on aerosolization properties of carrier-free formulations of levofloxacin. Eur J Pharm Sci 2018; 118: 13-23.
[http://dx.doi.org/10.1016/j.ejps.2018.03.002] [PMID: 29505814]
[64]
Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 2010; 27(8): 1597-609.
[http://dx.doi.org/10.1007/s11095-010-0142-6] [PMID: 20407918]
[65]
Gupta PV, Nirwane AM, Belubbi T, Nagarsenker MS. Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: A novel antimicrobial and antibiofilm strategy. Nanomedicine (Lond) 2017; 13(7): 2371-84.
[http://dx.doi.org/10.1016/j.nano.2017.06.011] [PMID: 28648640]
[66]
Gupta PV, Nirwane AM, Nagarsenker MS. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and antibiofilm strategy. AAPS PharmSciTech 2018; 19(3): 1454-67.
[http://dx.doi.org/10.1208/s12249-017-0945-4] [PMID: 29464594]
[67]
Mishra B, Mishra M, Yadav SK. Antibacterial loaded spray dried chitosan polyelectrolyte complexes as dry powder aerosol for the treatment of lung infections. Iran J Pharm Res 2017; 16(1): 74-92.
[PMID: 28496463]
[68]
Akdag Cayli Y, Sahin S, Buttini F, et al. Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm 2017; 43(8): 1378-89.
[http://dx.doi.org/10.1080/03639045.2017.1318902] [PMID: 28420285]
[69]
Merchant Z, Taylor KMG, Stapleton P, et al. Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. Eur J Pharm Biopharm 2014; 88(3): 816-29.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.005] [PMID: 25305582]
[70]
Gaspar MC, Sousa JJS, Pais AACC, et al. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm 2015; 96: 65-75.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.010] [PMID: 26192459]
[71]
Gaspar MC, Pais AACC. Sousa JJS, Brillaut J, Olivier JC Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 2019; 556: 117-24.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.005] [PMID: 30528632]
[72]
Gaspar MC, Grégoire N, Sousa JJS, et al. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. Eur J Pharm Sci 2016; 93: 184-91.
[http://dx.doi.org/10.1016/j.ejps.2016.08.024] [PMID: 27531420]
[73]
Stockmann C, Sherwin CMT, Ampofo K, Spigarelli MG. Development of levofloxacin inhalation solution to treat Pseudomonas aeruginosa in patients with cystic fibrosis. Ther Adv Respir Dis 2014; 8(1): 13-21.
[http://dx.doi.org/10.1177/1753465813508445] [PMID: 24334337]
[74]
Elborn JS, Flume PA, Cohen F, Loutit J, VanDevanter DR. Safety and efficacy of prolonged levofloxacin inhalation solution (APT-1026) treatment for cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. J Cyst Fibros 2016; 15(5): 634-40.
[http://dx.doi.org/10.1016/j.jcf.2016.01.005] [PMID: 26935334]
[75]
Rosenthal IM, Zhang M, Almeida D, Grosset JH, Nuermberger EL. Isoniazid or moxifloxacin in rifapentine-based regimens for experimental tuberculosis? Am J Respir Crit Care Med 2008; 178(9): 989-93.
[http://dx.doi.org/10.1164/rccm.200807-1029OC] [PMID: 18723432]
[76]
Dorman SE, Johnson JL, Goldberg S, et al. Tuberculosis Trials Consortium Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 2009; 180(3): 273-80.
[http://dx.doi.org/10.1164/rccm.200901-0078OC] [PMID: 19406981]
[77]
Fouad M, Gallagher JC. Moxifloxacin as an alternative or additive therapy for treatment of pulmonary tuberculosis. Ann Pharmacother 2011; 45(11): 1439-44.
[http://dx.doi.org/10.1345/aph.1Q299] [PMID: 21990937]
[78]
Chan JGY, Tyne AS, Pang A, et al. A rifapentine-containing inhaled triple antibiotic formulation for rapid treatment of tubercular infection. Pharm Res 2014; 31(5): 1239-53.
[http://dx.doi.org/10.1007/s11095-013-1245-7] [PMID: 24242939]
[79]
Duan J, Vogt FG, Li X, Hayes D Jr, Mansour HM. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine 2013; 8: 3489-505.
[PMID: 24092972]
[80]
Eedara BB, Rangnekar B, Sinha S, Doyle C, Cavallaro A, Das SC. Development and characterization of high payload combination dry powders of anti-tubercular drugs for treating pulmonary tuberculosis. Eur J Pharm Sci 2018; 118: 216-26.
[http://dx.doi.org/10.1016/j.ejps.2018.04.003] [PMID: 29625212]
[81]
Rangnekar B, Momin MAM, Eedara BB, Sinha S, Das SC. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. Int J Pharm 2019; 570: 118689-700.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118689] [PMID: 31513868]
[82]
Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 1999; 43(4): 727-37.
[http://dx.doi.org/10.1128/AAC.43.4.727] [PMID: 10103173]
[83]
Davis D. Inhalation of penicillin and streptomycin in office practice. Arch Otolaryngol 1949; 50(2): 156-71.
[http://dx.doi.org/10.1001/archotol.1949.00700010165002] [PMID: 18134274]
[84]
Yagi K, Ishii M, Namkoong H, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis 2017; 17(1) : 558.
[http://dx.doi.org/10.1186/s12879-017-2665-5] [PMID: 28793869]
[85]
Davis KK, Kao PN, Jacobs SS, Ruoss SJ. Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series. BMC Pulm Med 2007; 7: 2-15.
[http://dx.doi.org/10.1186/1471-2466-7-2] [PMID: 17319962]
[86]
Jhun BW, Yang B, Moon SM, et al. Amikacin inhalation as salvage therapy for refractory nontuberculous mycobacterial lung disease. Antimicrob Agents Chemother 2018; 62(7): e00011-8.
[http://dx.doi.org/10.1128/AAC.00011-18] [PMID: 29661870]
[87]
Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des 2017; 23(3): 362-72.
[http://dx.doi.org/10.2174/1381612823666161116114732] [PMID: 27848886]
[88]
Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One 2014; 9(9): e108703.
[http://dx.doi.org/10.1371/journal.pone.0108703] [PMID: 25264757]
[89]
Malinin V, Neville M, Eagle G, Gupta R, Perkins WR. Pulmonary deposition and elimination of liposomal amikacin for inhalation and effect on macrophage function after administration in rats. Antimicrob Agents Chemother 2016; 60(11): 6540-9.
[http://dx.doi.org/10.1128/AAC.00700-16] [PMID: 27550345]
[90]
Caimmi D, Martocq N, Trioleyre D, et al. Positive Effect of liposomal amikacin for inhalation on mycobacterium abcessus in cystic fibrosis patients. Open Forum Infect Dis 2018; 5(3)ofy034
[http://dx.doi.org/10.1093/ofid/ofy034] [PMID: 29564361]
[91]
Olivier KN, Griffith DE, Eagle G, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195(6): 814-23.
[http://dx.doi.org/10.1164/rccm.201604-0700OC] [PMID: 27748623]
[92]
Daley CL, Olivier KN. ALIS (amikacin liposome inhalation suspension): the beginning of a wonderland? Am J Respir Crit Care Med 2018; 198(12): 1473-5.
[http://dx.doi.org/10.1164/rccm.201810-1901ED] [PMID: 30365392]
[93]
Belotti S, Rossi A, Colombo P, et al. Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction. Int J Pharm 2014; 471(1-2): 507-15.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.055] [PMID: 24886692]
[94]
Belotti S, Rossi A, Colombo P, et al. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: The role of ethanol in particle formation. Eur J Pharm Biopharm 2015; 93: 165-72.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.023] [PMID: 25845771]
[95]
Russo P, Buttini F, Sonvico F, Bettini R, Massimo G, Sacchetti C, et al. Chimeral agglomerates of microparticles for the administration of caffeine nasal powders. J Drug Deliv Sci Technol 2004; 14: 449-54.
[http://dx.doi.org/10.1016/S1773-2247(04)50083-7]
[96]
Hoppentocht M, Akkerman OW, Hagedoorn P, Frijlink HW, de Boer AH. The Cyclops for pulmonary delivery of aminoglycosides; a new member of the Twincer™ family. Eur J Pharm Biopharm 2015; 90: 8-15.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.012] [PMID: 25615881]
[97]
Finegold SM. Toxicity of kanamycin in adults. Ann N Y Acad Sci 1966; 132(2): 942-56.
[http://dx.doi.org/10.1111/j.1749-6632.1966.tb43018.x] [PMID: 5227783]
[98]
Momin MAM, Sinha S, Tucker IG, Doyle C, Das SC. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm 2017; 528(1-2): 107-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.004] [PMID: 28583333]
[99]
Momin MAM, Tucker IG, Doyle CS, Denman JA, Sinha S, Das SC. Co-spray drying of hygroscopic kanamycin with the hydrophobic drug rifampicin to improve the aerosolization of kanamycin powder for treating respiratory infections. Int J Pharm 2018; 541(1-2): 26-36.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.026] [PMID: 29458207]
[100]
Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother 2013; 57(6): 2613-9.
[http://dx.doi.org/10.1128/AAC.02346-12] [PMID: 23529740]
[101]
Curry International Tuberculosis Center Drug-resistant tuberculosis: a survival guide for clinicians 3rd ed . 2016; 1-324.
[102]
Donomae I. Capreomycin in the treatment of pulmonary tuberculosis. Ann N Y Acad Sci 1966; 135(2): 1011-38.
[http://dx.doi.org/10.1111/j.1749-6632.1966.tb45543.x] [PMID: 4957083]
[103]
Garfield JW, Jones JM, Cohen NL, Daly JF, McClement JH. The auditory, vestibular and renal effects of capreomycin in humans. Ann N Y Acad Sci 1966; 135(2): 1039-46.
[http://dx.doi.org/10.1111/j.1749-6632.1966.tb45544.x] [PMID: 5296040]
[104]
Miller JD, Popplewell AG, Landwehr A, Greene ME. Toxicology studies in patients on prolonged therapy with capreomycin. Ann N Y Acad Sci 1966; 135(2): 1047-56.
[http://dx.doi.org/10.1111/j.1749-6632.1966.tb45545.x] [PMID: 5220233]
[105]
Giovagnoli S, Blasi P, Schoubben A, Rossi C, Ricci M. Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int J Pharm 2007; 333(1-2): 103-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.005] [PMID: 17079101]
[106]
Schoubben A, Blasi P, Giovagnoli S, Ricci M, Rossi C. Simple and scalable method for peptide inhalable powder production. Eur J Pharm Sci 2010; 39(1-3): 53-8.
[http://dx.doi.org/10.1016/j.ejps.2009.10.010] [PMID: 19879945]
[107]
Schoubben A, Blasi P, Marenzoni ML, et al. Capreomycin supergenerics for pulmonary tuberculosis treatment: preparation, in vitro, and in vivo characterization. Eur J Pharm Biopharm 2013; 83(3): 388-95.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.005] [PMID: 23220041]
[108]
Schoubben A, Giovagnoli S, Tiralti MC, Blasi P, Ricci M. Capreomycin inhalable powders prepared with an innovative spray-drying technique. Int J Pharm 2014; 469(1): 132-9.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.042] [PMID: 24747443]
[109]
Garcia-Contreras L, Fiegel J, Telko MJ, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother 2007; 51(8): 2830-6.
[http://dx.doi.org/10.1128/AAC.01164-06] [PMID: 17517845]
[110]
Fiegel J, Garcia Contreras L, Thomas M, et al. Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res 2008; 25(4): 805-11.
[http://dx.doi.org/10.1007/s11095-007-9381-6] [PMID: 17657592]
[111]
Garcia-Contreras L, Muttil P, Fallon JK, Kabadi M, Gerety R, Hickey AJ. Pharmacokinetics of sequential doses of capreomycin powder for inhalation in guinea pigs. Antimicrob Agents Chemother 2012; 56(5): 2612-8.
[http://dx.doi.org/10.1128/AAC.06145-11] [PMID: 22330920]
[112]
Wang F, Langley R, Gulten G, et al. Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 2007; 204(1): 73-8.
[http://dx.doi.org/10.1084/jem.20062100] [PMID: 17227913]
[113]
Debnath SK, Saisivam S, Omri A. PLGA Ethionamide Nanoparticles for Pulmonary Delivery: Development and in vivo evaluation of dry powder inhaler. J Pharm Biomed Anal 2017; 145: 854-9.
[http://dx.doi.org/10.1016/j.jpba.2017.07.051] [PMID: 28826144]
[114]
Batson S, de Chiara C, Majce V, et al. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun 2017; 8(1) 1939
[http://dx.doi.org/10.1038/s41467-017-02118-7] [PMID: 29208891]
[115]
Ranjan R, Srivastava A, Bharti R, Ray L, Singh J, Misra A. Preparation and optimization of a dry powder for inhalation of second-line anti-tuberculosis drugs. Int J Pharm 2018; 547(1-2): 150-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.065] [PMID: 29852204]
[116]
Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother 2012; 67(2): 290-8.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[117]
Verma RK, Germishuizen WA, Motheo MP, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother 2013; 57(2): 1050-2.
[http://dx.doi.org/10.1128/AAC.01897-12] [PMID: 23183441]
[118]
Zheng J, Rubin EJ, Bifani P, et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 2013; 288(32): 23447-56.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[119]
Gad S, Tajber L, Corrigan OI, Healy AM. Preparation and characterisation of novel spray-dried nano-structured para-aminosalicylic acid particulates for pulmonary delivery: impact of ammonium carbonate on morphology, chemical composition and solid state. J Pharm Pharmacol 2012; 64(9): 1264-74.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01465.x] [PMID: 22881439]
[120]
Tsapis N, Bennett D, O’Driscoll K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb) 2003; 83(6): 379-85.
[http://dx.doi.org/10.1016/j.tube.2003.08.016] [PMID: 14623169]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy