Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In Vitro Antifungal Screening of Argentine Native or Naturalized Plants against the Phytopathogen Monilinia fructicola

Author(s): María Inés Stegmayer, Laura Noemí Fernández, Norma Hortensia Álvarez, Gisela Marisol Seimandi, Andrea Guadalupe Reutemann and Marcos Gabriel Derita*

Volume 25, Issue 7, 2022

Published on: 21 January, 2021

Page: [1158 - 1166] Pages: 9

DOI: 10.2174/1386207324666210121113648

Price: $65

Abstract

Background: One of the main problems that fruit health has gone through in recent years is the problematic eradication of their fungal pathogens during crops or the post-harvest stage. This concerns the whole world because it represents huge production losses, fruit export restrictions, and consumer distrust. Consequently, new alternatives are sought to avoid the increasing use of fungicides that cause important damage to fruit consumers and the environment. One of the alternatives to solve this problem could be exploring plants and their active compounds applied to the treatment of fruit health.

Materials and Methods: This article describes peach production worldwide and particularly in Argentina, in addition to the main fungal rot that causes the greatest economic losses. Furthermore, experimental in-vitro studies of 69 extracts obtained from 18 plants growing in the central region of Argentina were displayed against the devastating fungus Monilinia fructicola, which greatly affects stone fruits. A simple and effective method developed in agar plate was applied to evaluate a large number of samples in a short time.

Results: The results showed that approximately 36% of the samples tested were strongly active against this pathogen, 12% were moderately active, and 52% demonstrated to be inactive.

Conclusion: These findings support the possible use of natural products for fruit health and the importance of deepening in this field of science.

Keywords: Antifungal, argentine plants, phytopathogenic, peaches, rot, production.

Graphical Abstract

[1]
Pergomet, J.L.; Di Liberto, M.G.; Derita, M.G.; Bracca, A.B.J.; Kaufman, T.S. Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates. Fitoterapia, 2018, 125, 98-105.
[http://dx.doi.org/10.1016/j.fitote.2017.12.021] [PMID: 29288027]
[2]
Cortés, I.; di Liberto, M.G.; Kaufman, T.S.; Derita, M.G.; Bracca, A.B.J. Synthesis and evaluation of aromatic methoxime derivatives against five postharvest phytopathogenic fungi of fruits. Main structure-activity relationships. Food Chem., 2020, 321, 126701.
[http://dx.doi.org/10.1016/j.foodchem.2020.126701] [PMID: 32283502]
[3]
Fu, W.; Tian, G.; Pei, Q.; Ge, X.; Tian, P. Evaluation of berberine as a natural compound to inhibit peach brown rot pathogen Monilinia fructicola. Crop Prot., 2017, 91, 20-26.
[http://dx.doi.org/10.1016/j.cropro.2016.09.008]
[4]
Zhang, Y.; Zeng, L.; Yang, J.; Zheng, X.; Yu, T. 6-Benzylaminopurine inhibits growth of Monilinia fructicola and induces defense-related mechanism in peach fruit. Food Chem., 2015, 187, 210-217.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.100] [PMID: 25977018]
[5]
Novaes, A.A.; Ribeiro, B.P.; Oliveira, C.E.M.; Fitzgerald, B.A.; Linsde, A.L. Response surface methodology for optimization of edible chitosan coating formulations incorporating essential oil against several food borne pathogenic bacteria. Food Control, 2014, 43, 1-9.
[http://dx.doi.org/10.1016/j.foodcont.2014.02.033]
[6]
Di Liberto, M.G.; Stegmayer, M.I.; Svetaz, L.A.; Derita, M.G. Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Rev. Bras. Farmacogn., 2019, 29(5), 686-688.
[http://dx.doi.org/10.1016/j.bjp.2019.05.007]
[7]
Stegmayer, M.I.; Álvarez, N.H.; Favaro, M.A.; Fernandez, L.N.; Carrizo, M.E.; Reutemann, A.G.; Derita, M.G. Argentinian wild plants as controllers of fruits phytopathogenic fungi: trends and perspectives.Wild plants: The treasure of natural healers; Rai, M.; Bhattarai, S; Feitosa, C., Ed.; CRC Press, 2020, Vol. 6, pp. 121-137.
[http://dx.doi.org/10.1201/9781003020134-8]
[8]
Di Liberto, M.G.; Caldo, A.J.; Quiroga, A.D.; Riveira, M.J.; Derita, M.G. Zanthosimuline and related pyranoquinolines as antifungal agents for postharvest fruit disease control. ACS Omega, 2020, 5(13), 7481-7487.
[http://dx.doi.org/10.1021/acsomega.0c00225] [PMID: 32280891]
[9]
Mondino, P. Sintomatología, etiología y características epidemiológicas de la enfermedad. Manejo de la podredumbre morena (Monilinia fructicola y M. laxa) en huertos frutales de Uruguay, Chile, Bolivia, Brasil y Argentina; Mitidieri, M.; Castillo, J.A., Eds.; CYTED. Programa Interamericano de Ciencia y Tecnología para el Desarrollo,, 2014, 2, pp. 35-41.
[10]
Dowling, M.E.; Bridges, W.C.; Cox, B.M.; Sroka, T.; Wilson, J.R.; Schnabel, G. Preservation of Monilinia fructicola genotype diversity within fungal cankers. Plant Dis., 2019, 103(3), 526-530.
[http://dx.doi.org/10.1094/PDIS-05-18-0800-RE] [PMID: 30657426]
[11]
Mitidieri, M.S. Manejo integrado de la podredumbre morena en duraznero y nectarinos. Manejo de la podredumbre morena (Monilinia fructicola y M. laxa) en huertos frutales de Uruguay, Chile, Bolivia, Brasil y Argentina; Mitidieri, M.; Castillo, J.A., Eds.; CYTED Programa Interamericano de Ciencia y Tecnología para el Desarrollo,, 2014, 2, pp. 47-62.
[12]
Tran, T.T.; Li, H.; Nguyen, D.Q.; Jones, M.G.K.; Sivasithamparam, K.; Wylie, S.J. Monilinia fructicola and Monilinia laxa isolates from stone fruit orchards sprayed with fungicides displayed a broader range of responses to fungicides than those from unsprayed orchards. Eur. J. Plant Pathol., 2019, 153(4), 985-999.
[http://dx.doi.org/10.1007/s10658-018-01613-x]
[13]
Svetaz, L.; Zuljan, F.; Derita, M.; Petenatti, E.; Tamayo, G.; Cáceres, A.; Cechinel, F.V.; Giménez, A.; Pinzón, R.; Zacchino, S.A.; Gupta, M. Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J. Ethnopharmacol., 2010, 127(1), 137-158.
[http://dx.doi.org/10.1016/j.jep.2009.09.034] [PMID: 19782744]
[14]
Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing for filamentous fungi (M38 A2); 2nd; Wayne: USA, 2008, 28, pp. 1-35.
[15]
[16]
Campos-Navarro, R.; Scarpa, G.F. The cultural-bound disease “empacho” in Argentina. A comprehensive botanico-historical and ethnopharmacological review. J. Ethnopharmacol., 2013, 148(2), 349-360.
[http://dx.doi.org/10.1016/j.jep.2013.05.002] [PMID: 23684719]
[17]
Jardim, C.M.; Jham, G.N.; Dhingra, O.D.; Freire, M.M. Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J. Chem. Ecol., 2008, 34(9), 1213-1218.
[http://dx.doi.org/10.1007/s10886-008-9526-z] [PMID: 18679750]
[18]
Al-Snafi, A.E. Chemical constituents and pharmacological activities of Ammi majus and Ammi visnaga: A review. I.J.P.I.R., 2013, 3(3), 257-265.
[19]
Daehler, C. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol. Conserv., 1998, 84(2), 167-180.
[http://dx.doi.org/10.1016/S0006-3207(97)00096-7]
[20]
Martínez, C.R. Las plantas utilizadas en medicina popular en el noroeste de Corrientes. Instituto Miguel Lillo. Miscelánea, 1981, 69, 7-139.
[21]
Álvarez, M.E.; Isaza, L.G.; Echeverry, H.M. Efecto antibacteriano in vitro de Austroeupatorium inulifolium H.B.K. (Salvia amarga) y Ludwigia polygonoides H.B.K. (Clavo de laguna). Biosalud (Manizales), 2005, 4, 46-55.
[22]
Grande-Tovar, C.D.; Chaves-Lopez, C.; Viuda-Martos, M.; Serio, A.; Delgado-Ospina, J.; Perez-Alvarez, J.A.; Paparella, A. Sub-lethal concentrations of Colombian Austroeupatorium inulifolium (HBK) essential oil and its effect on fungal growth and the production of enzymes. Ind. Crops Prod., 2016, 87, 315-323.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.066]
[23]
Avila-Sosa, R.; Gastélum-Reynoso, G.; García-Juárez, M.; Meneses-Sánchez, M.; Navarro-Cruz, A.R.; Dávila-Márquez, R.M. Evaluation of different Mexican plant extracts to control anthracnose. Food Bioprocess Technol., 2011, 4(4), 655-659.
[http://dx.doi.org/10.1007/s11947-009-0318-4]
[24]
Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol., 2016, 185, 202-234.
[http://dx.doi.org/10.1016/j.jep.2016.02.050] [PMID: 26944238]
[25]
Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf., 2009, 8(2), 31-43.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00065.x]
[26]
Holst, B.; Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 2004, 21(3), 425-447.
[http://dx.doi.org/10.1039/b204039p] [PMID: 15162227]
[27]
Dubuis, P.H.; Marazzi, C.; Städler, E.; Mauch, F. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. J. Phytopathol., 2005, 153(1), 27-36.
[http://dx.doi.org/10.1111/j.1439-0434.2004.00923.x]
[28]
Pirzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol., 2015, 174, 540-560.
[http://dx.doi.org/10.1016/j.jep.2015.08.012] [PMID: 26297840]
[29]
Singh, A.; Mauryab, S.; Singhc, R.; Singh, U.P. Antifungal efficacy of some ethyl acetate extract fractions of Cyperus rotundus rhizomes against spore germination of some fungi. Arch. Phytopathol. Pflanzenschutz, 2011, 44(20), 2004-2011.
[http://dx.doi.org/10.1080/03235408.2011.559040]
[30]
Simpson, D.A.; Inglis, C.A. Cyperaceae of Economic, Ethnobotanical and Horticultural Importance: A Checklist. Kew Bull., 2001, 56, 257-360.
[http://dx.doi.org/10.2307/4110962]
[31]
Thullen, J.S.; Nelson, S.M.; Cade, B.S.; Sartoris, J.J. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: rates associated with environmental and biotic variables. Ecol. Eng., 2008, 32(3), 281-290.
[http://dx.doi.org/10.1016/j.ecoleng.2007.12.003]
[32]
Alonso, J.; Desmarchelier, C. Plantas medicinales autóctonas de la Argentina, 1st ed; Lola: Buenos Aires, 2005.
[33]
Shang, X.; Pan, H.; Wang, X.; He, H.; Li, M. Leonurus japonicus Houtt.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2014, 152(1), 14-32.
[http://dx.doi.org/10.1016/j.jep.2013.12.052] [PMID: 24412548]
[34]
Lukhoba, C.W.; Simmonds, M.S.; Paton, A.J. Plectranthus: a review of ethnobotanical uses. J. Ethnopharmacol., 2006, 103(1), 1-24.
[http://dx.doi.org/10.1016/j.jep.2005.09.011] [PMID: 16289602]
[35]
Kubínová, R.; Švajdlenka, E.; Schneiderová, K.; Hanáková, Z. Dall’ Acqua, S.; Farsa, O. Polyphenols and diterpenoids from Plectranthus forsteri ‘Marginatus’. Biochem. Syst. Ecol., 2013, 49, 39-42.
[http://dx.doi.org/10.1016/j.bse.2013.03.029]
[36]
Rombi, M.; Robert, D. 100 plantes médicinales: composition, mode d’action et intérêt thérapeutique; Alpen: Mónaco, 2007.
[37]
Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci., 2009, 22(1), 102-106.
[PMID: 19168430]
[38]
Derita, M.G.; Leiva, M.L.; Zacchino, S.A. Influence of plant part, season of collection and content of the main active constituent, on the antifungal properties of Polygonum acuminatum Kunth. J. Ethnopharmacol., 2009, 124(3), 377-383.
[http://dx.doi.org/10.1016/j.jep.2009.05.029] [PMID: 19505551]
[39]
Derita, M.; Zacchino, S. Validation of the ethnopharmacological use of Polygonum persicaria for its antifungal properties. Nat. Prod. Commun., 2011, 6(7), 931-933.
[http://dx.doi.org/10.1177/1934578X1100600702] [PMID: 21834226]
[40]
Griffiths, D.W.; Deighton, N.; Birch, A.N.E.; Patrian, B.; Baur, R.; Städler, E. Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry, 2001, 57(5), 693-700.
[http://dx.doi.org/10.1016/S0031-9422(01)00138-8] [PMID: 11397436]
[41]
Al-Jassani, M.J. Tropaeolum majus leaves extract as an antifungal, antiaflatoxigenic and antiaflatoxin agent. J. Glob. Pharma Technol., 2009, 12(09), 328-333.
[42]
Deena, M.J.; Thoppil, J.E. Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia, 2000, 71(4), 453-455.
[http://dx.doi.org/10.1016/S0367-326X(00)00140-4] [PMID: 10925025]
[43]
Naz, R.; Bano, A. Phytochemical screening, antioxidants and antimicrobial potential of Lantana camara in different solvents. Asian Pac. J. Trop. Dis., 2013, 3(6), 480-486.
[http://dx.doi.org/10.1016/S2222-1808(13)60104-8]
[44]
Kumar, M.S.; Maneemegalai, S. Evaluation of larvicidal effect of Lantana camara Linn against mosquito species Aedes aegypti and Culex quinquefasciatus. Adv. Biol. Res. (Faisalabad), 2008, 2(3), 39-43.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy