Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Amalgamation and Scrutinizing of Leucine Derivatives Schiff Bases Complexes as Antimicrobial Agent

Author(s): Muhammad Pervaiz*, Ikram Ahmad, Zohaib Saeed, Muhammad Sagir, Umer Younas, Muhammad Bilal Tahir*, Awais Ahmad, Ayoub Rashid, Quratulain Syed and Ahmad Adnan

Volume 25, Issue 7, 2022

Published on: 13 January, 2022

Page: [1167 - 1180] Pages: 14

DOI: 10.2174/1386207325666210927092623

Price: $65

conference banner
Abstract

The enhanced applications of Schiff bases metal complexes of amino acid derivatives have captured the attention of researchers for the synthesis of leucine derivatives of Schiff bases metal complexes. Amino acids are considered to be essential part of food supplements as well as derivatives of Schiff bases in coordination chemistry due to their donor ability. The leucine derivatives Schiff bases ligand have been synthesized by condensation reaction between amine of leucine with aldehyde or ketone bearing molecules attached with them. These complexes were characterized by different spectroscopic tools in order to confirm their structural geometries. The structural geometries are considered to be very important in order to improve the antimicrobial potential of leucine derivative metal complexes. By taking into account the antimicrobial potential of titled compounds, a comprehensive review of leucine derivatives of Schiff bases metal complexes has been compiled.

Keywords: Leucine, metal complexes, schiff bases ligand, biological studies, amino acid derivative, antibacterial agent.

Graphical Abstract

[1]
Kabbani, A.T.; Hammud, H.H.; Ghannoum, A.M. Preparation and antibacterial activity of copper and cobalt complexes of 4-chloro-3-nitrobenzoate with a nitrogen donor ligand. Chem. Pharm. Bull. (Tokyo), 2007, 55(3), 446-450.
[http://dx.doi.org/10.1248/cpb.55.446] [PMID: 17329888]
[2]
Sayed, C.; Hamed, A.; Meligi, G.; Boraie, W.; Shafik, M. The use of 4-(3,4-Dichlorophenyl)-4-Oxo-2-(4-Antipyrinyl)-Butanoic acid in the preparation of some new heterocyclic compounds with expected biological activity. Molecules, 2003, 8(3), 322-332.
[http://dx.doi.org/10.3390/80300322]
[3]
Abu-Hussen, A.A.A.; Linert, W. Synthesis, spectroscopic and biological activity of new mononuclear transition metal complexes of mac-rocyclic schiff bases derived from 1, 1&-diacetylferrocin. Synth. React. Inorg. Me., 2011, 39(1), 13-23.
[http://dx.doi.org/10.1080/15533170802668157]
[4]
Elmali, A.; Kabak, N.; Elerman, Y. Keto-enol tautomerism, conformations and structure of N-(2-hydroxy-5- methylphenyl), 2-hydroxybenzaldehydeimine. J. Mol. Struct., 2000, 477(1-3), 151-158.
[5]
Tabar, F.M.; Shafaatian, B.; Soleymanpour, A.; Ahmad Rezvani, S.A.; Notash, B. Synthesis, spectral characterization, X-ray crystal struc-ture, electrochemical studies, and DNA interactions of a Schiff base pro-ligand and its homobimetallic complexes containing the cysteam-ine moiety. Transit. Metal. Chem., 2016, 41, 475-484.
[http://dx.doi.org/10.1007/s11243-016-0043-6]
[6]
Yildiz, E.; Boztepe, H. Synthesis of novel acidic mono azo dyes and an investigation of their use in the textile industry. Turk. J. Chem., 2002, 26(6), 897-904.
[7]
Tweedy, B. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology, 1964, 55, 910-914.
[8]
Cave, G.W.; Lydon, D.P.; Rourke, J.P. Cyclopalladated Schiff’s base liquid crystals: the effect of the acac group on the thermal behaviour. J. Organomet. Chem., 1998, 555(1), 81-88.
[http://dx.doi.org/10.1016/S0022-328X(97)00751-1]
[9]
Renehan, M.F.; Schanz, H.J.; Mcgarrigle, E.M.; Dalton, C.T.; Daly, A. M and Gilheany, D.G. Unsymmetrical chiral salen Schiff base lig-ands; Synthesis and use in metal-based asymmetric epoxidation reactions. J. Mol. Catal. Chem., 2004, 231(1), 205-220.
[10]
Pervaiz, M.; Yousaf, M.; Sagir, M.; Naz, M.Y.; Mushtaq, M.; Ullah, S.; Chatha, S.A.S. Novel preparation and spectral investigation of monometallic transition metal Schiff base complexes (Zn, Cu, Mn, Co) as bacteria and fungus inhibitors. Main Group Chem., 2014, 13, 129-145.
[http://dx.doi.org/10.3233/MGC-140128]
[11]
Shahid, M.; Sharma, P.K.; Siddiqi, Z.A.; Sama, F.; Ansari, I.A.; Khalid, M. Designing and characterization of Fe(III) complexes of oxydi-acetate containing &-diimine as auxiliary ligand: 57Fe-Mössbauer and cyclic voltammetric studies. J. Mol. Struct., 2014, 1063, 313-319.
[http://dx.doi.org/10.1016/j.molstruc.2014.01.072]
[12]
Brunsch, Y.; Behr, A. Temperature-controlled catalyst recycling in homogeneous transition-metal catalysis: minimization of catalyst leach-ing. Angew. Chem. Int. Ed. Engl., 2013, 52(5), 1586-1589.
[http://dx.doi.org/10.1002/anie.201208667] [PMID: 23239533]
[13]
Lekha, L.; Kanmaniraja, K.; Rajagopal, G.; Sivakumar, D.; Easwaramoorthi, D. Synthesis spectral characterization and antimicrobial as-sessment of Schiff Base ligand derived from amino acid and its transition metal complexes. Inter. J. Chem. Pharm. Sci, 2019, 2(1), 48-54.
[14]
Gawryszewska, P.; Lisowski, J. Lanthanide (III) complexes of N4O4 Schiff base macrocycle: Luminescence and formation of heterodinu-clear d–f complexes. Inorg. Chim. Acta, 2012, 383, 220-229.
[http://dx.doi.org/10.1016/j.ica.2011.11.012]
[15]
Munde, A.S.; Jagdale, A.N.; Jadhav, S.M.; Chondhekar, T.K. Synthesis, characterization and thermal study of some transition metal com-plexes of an asymmetrical tetradentate Schiff base ligand. J. Serb. Chem. Soc., 2010, 75(3), 349-359.
[http://dx.doi.org/10.2298/JSC090408009M]
[16]
Yousaf, M.; Pervaiz, M.; Zahoor, A.F.; Hussain, A.I.; Khosa, M.K.; Ashraf, S.; Sagir, M.; Zaman, A.; Shehzad, K. Synthesis, Characteriza-tion and Biological Studies of Bis-{µ-2,2&& &-[ethane-1,3-diylbis(nitrilomethylidyne)]diphenolato}dicopper(II) Using Triple Component Solvent System. Asian J. Chem., 2013, 25(1), 521-524.
[http://dx.doi.org/10.14233/ajchem.2013.13412]
[17]
Aghav, B.D.; Patil, S.K.; Lokhande, R.S. Synthesis, characterization and antibacterial properties of the ternary complexes of cerium with Schiff base derived from 4-aminoantipyrine and some amino acids. Adv. Appl. Sci. Res., 2015, 6(12), 37-43.
[18]
Faúndez, G.; Troncoso, M.; Navarrete, P.; Figueroa, G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enter-ica and Campylobacter jejuni. BMC Microbiol., 2004, 4, 19-26.
[http://dx.doi.org/10.1186/1471-2180-4-19] [PMID: 15119960]
[19]
Aiyelabola, T.O.; Ojo, I.A.; Adebajo, A.C.; Ogunlusi, G.O.; Oyetunji, O.; Akinkunmi, E.O.; Adeoye, A.O. Synthesis, characterization and antimicrobial activities of some metal (II) amino acids’ complexes. Adv. Biol. Chem., 2012, 2, 268-273.
[http://dx.doi.org/10.4236/abc.2012.23034]
[20]
Raman, N.; Raja, D.J.; Sakthivel, A. Synthesis, spectral characterization of Schiff base transition metal complexes; DNA cleavage and an-timicrobial activity studies. J. Chem. Sci., 2007, 119(4), 303-310.
[http://dx.doi.org/10.1007/s12039-007-0041-5]
[21]
Asemave, K.; Anhwange, B.A.; Anom, T.J. Antibacterial Studies of Leucine Complexes of Fe (III)and Cu (II). Int. J. Sci. Res., 2015, 4(1), 1527-1529.
[22]
St&nil& A.; Braicu, C.; St&nil& S.; Pop, R.M. Antibacterial activity of copper and cobalt amino acids complexes. Not. Bot. Horti Agrobot. Cluj-Napoca, 2011, 39(2), 124-129.
[http://dx.doi.org/10.15835/nbha3926847]
[23]
Cozzi, P.G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421.
[http://dx.doi.org/10.1039/B307853C] [PMID: 15354222]
[24]
Rehman, M.; Imran, M.; Arif, M. Synthesis, Characterization and in vitro antimicrobial studies of Schiff-bases derived from Acetyl ace-tone and Amino acids and their Oxovanadium (IV) complexes. Afric. J. Appl. Chemistry, 2013, 1(4), 59-66.
[25]
Rajavel, R.; Vedanayaki, S.; Sandhanamalar, D.; Jayaseelan, P. Synthesis, Spectroscopic and antimicrobial studies of binuclear transition metal complexes with tetradentate Schiff base. J. Pharm. Biol. Chem. Sci., 2011, 2(3), 994-1001.
[26]
Patil, A.R.; Donde, K.J.; Raut, S.S.; Patil, V.R.; Lokhand, R.S. Synthesis, characterization and biological activity of mixed ligand Co (II) complexes of Schiff base 2-amino-4-nitrophenol-n-salicylidene with some amino acids. J. Chem. Pharm. Res., 2012, 4(2), 1413-1425.
[27]
Trávnícek, Z.; Malon, M.; Sindelál, Z.; Dolezal, K.; Rolcík, J.; Krystof, V.; Strnad, M.; Marek, J. Preparation, physicochemical properties and biological activity of copper(II) complexes with 6-(2-chlorobenzylamino)purine (HL1) or 6-(3-chlorobenzylamino)purine (HL2). The single-crystal X-ray structure of. J. Inorg. Biochem., 2001, 84(1-2), 23-32.
[http://dx.doi.org/10.1016/S0162-0134(00)00218-X] [PMID: 11330478]
[28]
Arndt, S.; Schrock, R.R.; Muller, P. Synthesis and reactions of tungsten alkylidene complexes that contain the 2,6-Dichlorophenylimido ligand. Organometallics, 2007, 26, 1279-1290.
[http://dx.doi.org/10.1021/om061000w]
[29]
Owalude, S.O.; Tella, A.C. Ohara, M.S.; Eke.; U.B. One Pot Synthesis 0f Group 6 Homo-Bimetallic Carbonyl Complexes Incorporating a Schiff Base and bidentate Phosphine Ligands. FUW Trends Sci. Technol. J., 2016, 1(2), 574-577.
[30]
Hossain, B.M.; Islam, R.M.; Salam, A.M.; Yousuf, A.M. Synthesis and characterization of mixed ligand complexes of Co (II) and Fe (III) ions with maleic acid and heterocyclic amines. J. Bangladesh Chem. Soc., 2012, 25(2), 139-145.
[http://dx.doi.org/10.3329/jbcs.v25i2.15066]
[31]
Varshney, S.V.; Gupta, M.; Bansal, K.B.; Arshney, A.K.V. Synthesis, characterization, antimicrobial and insecticidal activity of some new ruthenium (III) complexes with Schiff bases of amino acids. Inorg. Chem., 2013, 8(5), 129-135.
[32]
Sakiyan, I. Lo&o&lu, E.; Arslan, S.; Sari, N.; Sakiyan, N. Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese(III) complexes. Biometals, 2004, 17(2), 115-120.
[http://dx.doi.org/10.1023/B:BIOM.0000018380.34793.df] [PMID: 15088937]
[33]
Mitchell, J.M.; Finney, N.S. New molybdenum catalysts for alkyl olefin epoxidation. Their implications for the mechanism of oxygen atom transfer. J. Am. Chem. Soc., 2001, 123(5), 862-869.
[http://dx.doi.org/10.1021/ja002697u] [PMID: 11456619]
[34]
Chandraleka, S. Chandramohan1, G.; Dhanasekaran, D.; Meenakumari, P.; Panneerselvam, A. Antifungal activity of amino acid schiff base Copper (II) complexes with phenanthroline and bipyridyl. Intern. J. Chemi. Anal. Sci., 2011, 2(10), 1235-1240.
[35]
Tumer, M. Synthesis and spectral characterization of metal complexes containing tetra- and pentadentate schiff base ligands. Synth. React. Inorg. Met.-Org. Chem., 2008, 30(6), 1139-1158.
[http://dx.doi.org/10.1080/00945710009351825]
[36]
Sarkar, S.; Biswas, S.; Dey, K. Synthesis, spectroscopic characterization and magnetic properties of homo- and heterodinuclear complexes of transition and non-transition metal ions with a new Schiff base ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(4), 1555-1561.
[http://dx.doi.org/10.1016/j.saa.2008.06.002] [PMID: 18650125]
[37]
Umar, Z.S. Iliyasu, M. Inusa. Metal Complexes of Mn (II) and Ni (II) with a schiff base ligand: preparation, characterization and biologi-cal activity. Int. J. Adv. Res. Sci. Eng. Technol., 2010, 5(5), 5919-5924.
[38]
Hanna, W.G.; Mona, M. Synthesis, characterization and antimicrobial activity of Co (II), Ni (II) and Cu (II) with new asymmetrical Schiff base. Trans. Met. Chem. (Weinh.), 2001, 26(6), 644-651.
[http://dx.doi.org/10.1023/A:1012066612090]
[39]
Costes, J.P.; Laurent, J.P. New route to bimetallic imidazolate-bridged complexes. III. Solution properties of dinuclear copper and nickel complexes and their mononuclear precursors. Inorg. Chim. Acta, 1987, 134, 245-248.
[http://dx.doi.org/10.1016/S0020-1693(00)88089-5]
[40]
Dhusiya, U.; Gautam, S.; Chandra, S.; Agrawal, S. Unsymmetrical mixed ligand (with 2, 3-Dihydroxypyridine and some amino acids) on complexation with metal ions Hg (II) and UO2 (II): Synthesis, spectral characterization and antifungal activity. J. Pharma. cal. Chem. Biol., 2016, 4(1), 1-12.
[41]
El-Said, A.I. Synthesis, spectral and thermal studies of monomeric, homobimetallic and polymeric complexes containing benzoyldithio-carbazate. Transit. Metal Chem., 2003, 28, 749-755.
[http://dx.doi.org/10.1023/A:1026074223926]
[42]
Shaker, A.M.; Nassr, L.A.E.; Adam, M.S.S.; Mohamed, I.M.A. Synthesis, characterization and spectrophotometric studies of seven novel antibacterial Hydrophilic Iron(II) schiff base amino acid complexes. J. Kore. Chem.Soc, 2013, 57(5), 560-567.
[http://dx.doi.org/10.5012/jkcs.2013.57.5.560]
[43]
Zsako, J.; Pokol, G.; Novak, C.; Varhelyi, C.; Dobo, A.; Lipaty, G. Synthesis, spectral and thermal studies of monomeric, homobimetallic and polymeric complexes containing benzoyldithiocarbazate. J. Therm. Anal. Calorim., 2003, 64, 843-846.
[http://dx.doi.org/10.1023/A:1011577319016]
[44]
Sinthuja, S.A.; Shaji, Y.C.; Rose, G.L. Synthesis, characterization and evaluation of biological properties of transition metal chelates with schiff base ligands derived from glutaraldehyde with L-Leucine. Inter. J. Sci. Rese. Sci. Tec, 2018, 4(2), 582-582.
[45]
Azzouz, A.S.P.; Ali, R.T. Synthesis of schiff bases derived from benzaldehyde and salicylaldehyde with some amino acids by a new de-velop method. New J. Chem., 2010, 37, 158-168.
[46]
Mariam, S. Hussain, S.; Ali, S.; Shahzadi, S.; Ramzan, S and Shahid, M. Homobimetallic (Sn,Sn) complexes with [2-Dithiocarboxy(methyl)amino]acetic acid; synthesis, characterization and biological studies. Iran. J. Sci. Technol. Arts, 2016, 42(3)
[http://dx.doi.org/10.1007/s40995-016-0127-3]
[47]
Hosny, H.M.; El-Dossoki, F. Schiff base complexes derived from 2-Acetylpyridine, leucine, and some metal chlorides: their preparation, characterization, and physical properties. J. Chem. Eng. Data, 2008, 53, 2567-2572.
[http://dx.doi.org/10.1021/je800415n]
[48]
Dong, Y.; Narla, R.K.; Sudbeck, E.; Uckun, F.M. Synthesis, X-ray structure, and anti-leukemic activity of oxovanadium(IV) complexes. J. Inorg. Biochem., 2000, 78(4), 321-330.
[http://dx.doi.org/10.1016/S0162-0134(00)00060-X] [PMID: 10857913]
[49]
Hussain, S.; Ali, S.; Shahzadi, S.; Tahir, M.N.; Shahid, M. Synthesis, characterization, biological activities, crystal structure and DNA binding of organotin (IV) 5-chlorosalicylates. J. Coord. Chem., 2015, 68, 2369-2387.
[http://dx.doi.org/10.1080/00958972.2015.1046849]
[50]
Salama, M.M.; Ahmed, S.G.; Hassan, S.S. Synthesis, Characterizations, biological, and molecular docking studies of some amino acid schiff bases with their Cobalt (II) complexes. Adv. Biol. Chem., 2017, 7, 182-194.
[http://dx.doi.org/10.4236/abc.2017.75013]
[51]
Gupta, S.K.; Hitchcock, R.H.; Kushwah, Y.S. Synthesis, Characterization and Crystal structure of a Ni (ii) shif f base complex derived from acetylacetone and ethylene diamine. J. Coord. Chem., 2002, 55(12), 1401-1407.
[http://dx.doi.org/10.1080/0095897021000058646]
[52]
Buttgereit, F.; Burmester, G.R.; Simon, L.S. Gastrointestinal toxic side effects of nonsteroidal anti-inflammatory drugs and cyclooxygen-ase-2-specific inhibitors. Am. J. Med., 2001, 110(Suppl. 3A), 13S-19S.
[http://dx.doi.org/10.1016/S0002-9343(00)00728-2] [PMID: 11173045]
[53]
Pervaiz, M.; Ahmad, I.; Yousaf, M.; Kirn, S.; Munawar, A.; Saeed, Z.; Adnan, A.; Gulzar, T.; Kamal, T.; Ahmad, A.; Rashid, A. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 642-649.
[http://dx.doi.org/10.1016/j.saa.2018.05.057] [PMID: 29880252]
[54]
Kumar, U.; Chandra, S. Synthesis, spectroscopic characterization of some Schiff base complexes derived from 2-methylcyclohexanone and their activity against some fungi. J. Saudi Chem. Soc., 2011, 15, 19-24.
[http://dx.doi.org/10.1016/j.jscs.2010.08.003]
[55]
Adan, A.B.; Hayam, M.A.A.; Aida, A.G. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Ar-chive. Der. Pharmaize, 2005, 338, 167-174.
[http://dx.doi.org/10.1002/ardp.200400940]
[56]
Al-Zaidi, B.H.; Hasson, M.M.; Ismail, A.H. New complexes of chelating Schiff base: Synthesis, spectral investigation, antimicrobial, and thermal behavior studies. J. App. Pharm. Sci., 2019, 9(04), 045-057.
[57]
Hayat, A.; Jahangir, T.M.; Khuhawar, M.Y.; Alamgir, M.; Ali, R.; Ali, A.; Musharraf, S.G. Determination of important phenolic com-pounds in Pakistani brown rice varieties in controlled, germinated and fermented conditions by high performance liquid chromatography. Prog. Chem. Biochem. Res, 2019, 2, 134-142.
[http://dx.doi.org/10.33945/SAMI/PCBR.2019.2.6]
[58]
Pervaiz, M.; Yousaf, M.; Sagir, M.; Pervaiz, A.; Naz, M.Y. Sspectral investigation of Schiff base monometallic transition metal complexes as bacteria and fungus inhibitors. T. App. Sci. Res., 2014, 9(3), 132-143.
[59]
Salavati, N.M.; Salimi, Z.; Bazarganipour, M.; Davar, F. Synthesis, characterization and catalytic oxidation of cyclohexane using a novel host (zeolite-Y)/guest (binuclear transition metal complexes) nanocomposite materials. Inorg. Chim. Acta, 2009, 362(10), 3715-3724.
[http://dx.doi.org/10.1016/j.ica.2009.04.028]
[60]
Ahmad, N.; Iqbal, N.; Munir, C. Synthesis, Characterization, and Antibacterial Activity of Complexes of (1S,2S)-N, N-1,2-Diphenylethylene-bis-(5-imino-1-phenyl-1,3-hexanedione). Monatsh. Chem., 2000, 131, 1067-1072.
[http://dx.doi.org/10.1007/s007060070039]
[61]
Bhattacharjee, C.R.; Datta, C.; Das, G.; Das, D.; Mondal, P.; Prasad, S.K.; Rao, D.S.S. Photoluminescent columnar zinc (II) bimetal-lomesogen of tridentate [ONO]-donor Schiff base ligand. Liq. Cryst., 2013, 40(7), 942-950.
[http://dx.doi.org/10.1080/02678292.2013.788229]
[62]
Chae, H.W.; Kadkin, O.N. Choi. M.G. New heteropolynuclear metallomesogens; copper (II), palladium (II), nickel (II) and oxovanadium (IV) chelates with [3] ferrocenophane &containing Schiff’s base and &aminovinylketone. Liq. Cryst., 2009, 36, 53-60.
[http://dx.doi.org/10.1080/02678290802650261]
[63]
Islam, S.; Salam, A. Preparation and characterization of copper iso-leucine complex and structure determination by computational calcula-tion. Int. J. Sci. Eng. Res., 2017, 8(11), 563-577.
[64]
Venugopala, K.; Jayashree, B. Synthesis of carboxamides of 2&-amino-4&-(6-bromo-3-coumarinyl) thiazole as analgesic and antiinflamma-tory agents. Indian J. Heterocycl. Chem., 2003, 12(4), 307-310.
[65]
Singh, H.L.; Singh, J. Synthesis, spectral, 3D molecular modeling and antibacterial studies of dibutyltin (IV) Schiff base complexes de-rived from substituted isatin and amino acids. Nat. Sci., 2012, 4(3), 170-178.
[http://dx.doi.org/10.4236/ns.2012.43025]
[66]
Ikiz, M. Chemical fixation of CO2 into cyclic carbonates by azo-containing Schiff base metal complexes. New J. Chem., 2015, 39(10), 7786-7796.
[http://dx.doi.org/10.1039/C5NJ00571J]
[67]
Siddiqi, Z.A.; Khalid, M.; Kumar, S.; Shahid, M.; Noor, S. Spectral and physico-chemical investigations of novel homo-dinuclear di-micro2-alkoxo bridged Schiff base complexes: 57Fe Mössbauer parameters of the Fe(III) complex. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(2), 841-845.
[http://dx.doi.org/10.1016/j.saa.2009.12.010] [PMID: 20036186]
[68]
Golcü, A.; Dolaz, M.; Serin, S. Spectrophotometric determination of propranolol as Cu (II), Ni (II) and Co (II) dithiocarbamate complexes. Turk. J. Chem., 2001, 25(4), 485-490.
[69]
Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Old materials with new tricks: multifunctional open-framework materials. Chem. Soc. Rev., 2007, 36(5), 770-818.
[http://dx.doi.org/10.1039/b501600m] [PMID: 17471401]
[70]
Pervaiz, M.; Riaz, A.; Saeed, Z.; Hussain, S.; Younis, U.; Rashid, A.; Adnan, A. Synthesis, characterization and antimicrobial activity of 4-amino-N-(5-methyl-3-isoxazolyl) benzene sulfonamide (Sulfamethoxaz) metal complexes. J. Mol. Struct., 2020, 1202, 1272-1284.
[http://dx.doi.org/10.1016/j.molstruc.2019.127284]
[71]
Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056), 629-634.
[http://dx.doi.org/10.1126/science.1209688] [PMID: 22053043]
[72]
Garnovskii, A.D. chenko, I.S.V.; Garnovskii, D.A.; Burlov, A.S.; Uraev, A.I. Binuclear and polynuclear complexes of schiff bases. Russ. J. Gen. Chem., 2009, 79(12), 2776-2786.
[http://dx.doi.org/10.1134/S1070363209120366]
[73]
Al-Shemary, P.K.; Al-Khazraji, A.A.; Lateef, A.F.S.J.M. Synthesis, characterization and antimicrobial activity studies of mixed- 1,10-phenanthroline Mn (II), Co (II), Cu (II), Ni (II)and Hg (II) complexes with schiff base[2,2'-(1Z,1'Z) - (biphenyl-4,4'- diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene) diphenol]. Int. J. Sci. Res., 2016, 5(5), 1787-1793.
[74]
Mounika, K.; Anupama, B.; Pragathi, J.; Gyanakumari, C. Synthesis¸ characterization and biological activity of a schiff base derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its transition metal complexes. J. Sci. Res., 2010, 2(3), 513-524.
[http://dx.doi.org/10.3329/jsr.v2i3.4899]
[75]
Pervaiz, M.; Yousaf, M.; Sagir, M.; Mushtaq, M.; Naz, M.Y.; Ullah, S.; Mushtaq, R. Synthesis and characterization of bimetallic post tran-sition complexes for antimicrobial activity. Synth. React. Inorg. Me., 2015, 45(4), 546-552.
[http://dx.doi.org/10.1080/15533174.2013.841218]
[76]
Sharghi, H.; Nasseri, M.A. Schiff-base metal (II) complexes as new catalysts in the efficient, mild and regioselective conversion of 1,2-Epoxyethanes to 2-hydroxyethyl thiocyanates with ammonium thiocyanate. Bull. Chem. Soc. Jpn., 2003, 76, 137-142.
[http://dx.doi.org/10.1246/bcsj.76.137]
[77]
Sharma, N.; Chaturvedi, K. Iron (II), Nickel (II), Copper (II) and Zinc (II) complexes of 2,4-dinitro-6(pyridine-2-ylmethylamino) methylphenolate: Synthesis, characterization and Antimicrobial Activities. Int. J. Curr. Microbiol. Appl. Sci., 2005, 3(4), 65-74.
[78]
Al-Khafagy, A. Synthesis, characterization and biological study of some new metal-azo chelate complexes. J. Chem. Pharm. Res., 2016, 8(8), 296-302.
[79]
ÖZDEM&R, Ö. Synthesis of novel azo linkage-based Schiff bases including anthranilic acid and hexanoic acid moieties: investigation of azo-hydrazone and phenol-keto tautomerism, solvatochromism, and ionochromism. Turk. J. Chem., 2019, 43(1), 266-285.
[http://dx.doi.org/ 10.3906/kim-1807-24]
[80]
Zaman, A.; Khan, M.A.; Munawar, M.A.; Athar, M.M.; Pervaiz, M.; Pervaiz, A.; Mehmood, A. Microwave assisted Gould-Jacobs reaction for synthesis of-acetyl-4-hydroxyquinoline derivatives. Asian J. Chem., 2015, 27(8), 2823-2826.
[http://dx.doi.org/10.14233/ajchem.2015.18094]
[81]
De Logu, A.; Onnis, V.; Saddi, B.; Congiu, C.; Schivo, M.L.; Cocco, M.T. Activity of a new class of isonicotinoylhydrazones used alone and in combination with isoniazid, rifampicin, ethambutol, para-aminosalicylic acid and clofazimine against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2002, 49(2), 275-282.
[http://dx.doi.org/10.1093/jac/49.2.275] [PMID: 11815568]
[82]
Sun, J.; Liu, D.M.; Wang, J.X.; Yan, C.G. Regioselective synthesis of calix [4] arene 1, 3-di-and monosubstituted sulfur-containing Schiff bases. J. Incl. Phenom. Macro., 2009, 64(3), 317-324.
[http://dx.doi.org/10.1007/s10847-009-9570-5]
[83]
Shahraki, S.; Heydari, A. New zinc(II) N4 tetradentate Schiff base complex: A potential cytotoxic metallodrug and simple precursor for the preparation of ZnO nanoparticles. Colloids Surf. B Biointerfaces, 2017, 160, 564-571.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.026] [PMID: 29028604]
[84]
Lydon, D.P.; Cave, G.W.; Rourke, J.P. Cyclopalladated acac and cp liquid crystals: a comparativestudy. J. Mater. Chem., 1997, 7(3), 403-406.
[http://dx.doi.org/10.1039/a605791h]
[85]
Holland, D.; Laidler, D.A.; Milner, D.J. Catalytic asymmetric synthesis of cyclopropane carboxylates: ligand—reagent interactions in di-azoacetate reactions catalysed by copper (II) species bearing sugar-Schiff base ligands. J. Mol. Catal., 1981, 11(1), 119-127.
[http://dx.doi.org/10.1016/0304-5102(81)85071-7]
[86]
Sakthilatha, D.; Rajavel, D. Synthesis, characterization and biological studies of homobimetallic schiff Base Cu(II) and Ni(II) complexes. Chem. Sci. Trans., 2013, 2(3), 711-726.
[87]
Sreedaran, S.; Shanmuga Bharathi, K.; Kalilur Rahiman, A.; Jagadish, L.; Kaviyarasan, V.; Narayanan, V. Synthesis, characterisation and anti-fungal activities of some new copper(II) complexes of octamethyl tetraaza-cyclotetradecadiene. Polyhedron, 2008, 27(13), 2931-2938.
[http://dx.doi.org/10.1016/j.poly.2008.06.025]
[88]
Emara, A.A.A.; Adly, O.M.I. Synthesis, spectroscopic, thermal and anti-microbialstudies of transition metal complexes of hydrazone derived from 4,6-diacetylresorcinol and methyldithiocarbazate. Transit. Metal Chem., 2007, 32(7), 889-901.
[http://dx.doi.org/10.1007/s11243-007-0245-z]
[89]
Ahmad, N.; Iqbal, N.; Munir, C. Synthesis, Characterization, and antibacterial activity of complexes of (1S,2S)-N,N-1,2-Diphenylethylene-bis-(5-imino-1-phenyl-1,3-hexanedione). Monatsh. Chem., 2000, 131, 1067-1072.
[http://dx.doi.org/10.1007/s007060070039]
[90]
Bhattacharjee, C.R.; Datta, C.; Das, G.; Das, D.; Mondal, P.; Prasad, S.K.; Rao, D.S.S. Photoluminescent columnar zinc(II) bimetal-lomesogen of tridentate [ONO]-donor Schiff base ligand. Liq. Cryst., 2013, 40(7), 942-950.
[http://dx.doi.org/10.1080/02678292.2013.788229]
[91]
Kasare, M.S. Synthesis of azo schiff base ligands and their Ni (II), Cu (II) and Zn (II) metal complexes as highly&active antibacterial agents. ChemistrySelect, 2019, 4(36), 10792-10797.
[http://dx.doi.org/10.1002/slct.201901605]
[92]
Cavero, E.; Uriel, S.; Romero, P.; Serrano, J.L.; Giménez, R. Tetrahedral zinc complexes with liquid crystalline and luminescent properties: interplay between nonconventional molecular shapes and supramolecular mesomorphic order. J. Am. Chem. Soc., 2007, 129(37), 11608-11618.
[http://dx.doi.org/10.1021/ja073639c] [PMID: 17713910]
[93]
Gulcan, M. Mononuclear complexes based on pyrimidine ring azo schiff base ligand: synthesis, characterization, antioxidant, antibacterial, and thermal investigations. Z. Anorg. Allg. Chem., 2014, 640(809), 1754-1762.
[http://dx.doi.org/10.1002/zaac.201400078]
[94]
Doughari, J.; Nuya, S. Vitro antifungal activity of deterium microcarpum. Pak. J. Med. Sci., 2008, 24(1), 91.
[95]
Al-Hamdani, A.; Balkhi, A.; Falah, A. Synthesis, Spectroscopic and biological activity Studies of Azo-Schiff base and Metal Complexes derived from 5-Methyltryptamine. J. for Basic Sci, 2013, 29(2), 21-41.
[96]
Bal, S. A novel azo-schiff base ligand and its cobalt, copper, nickel complexes: synthesis, characterization, antimicrobial, catalytic and electrochemical features. Anadolu Univ. J. Sci. Tech. A: Appl. Sci. Eng., 2016, 17(2), 315-326.
[http://dx.doi.org/10.18038/btda.42413]
[97]
Mahdi, E.S.; Al-Sa’edi, R.T.M. Preparation and antibacterial activity of new azo-schiff thiazol ligand and some of its metal complexes. Nano Biomed. Eng., 2018, 10(4), 369-378.
[http://dx.doi.org/10.5101/nbe.v10i4.p369-378]
[98]
Mathur, S.; Tabassum, S. New homodi- and heterotrinuclear metal complexes of Schiff base compartmental ligand; interaction studies of copper complexes with calf thymus DNA. Cent. Eur. J. Chem., 2006, 4(3), 502-522.
[99]
Ali, S.; Taj, M.S.; Raheel, A.; Alelwani, W.; Tirmizi, S.A. A mini review on mixed chelation parameters. Biomed. J. Sci. Tech. Res., 2019, 20(4), 12287-12292.
[100]
Zahoor, A.F.; Yousaf, M.; Pervaiz, M.; Anjum, A.; Ali, K.G.; Zahid, F.M.; Ahmad, S.; Bukhari, S.A.; Parveen, B. Synthesis and Spectral Investigation (1H and 13C) of T etradentate Schiff Base Ligands for the Preparation of Post Transition Bimetallic Complexes of Antimicro-bial Importance. Asian J. Chem., 2014, 26(3), 841-845.
[http://dx.doi.org/10.14233/ajchem.2014.15834]
[101]
Joseyphus, R.S.; Nair, M.S. Antibacterial and antifungal studies on some schiff base complexes of zinc (II). Mycobiology, 2008, 36(2), 93-98.
[http://dx.doi.org/10.4489/MYCO.2008.36.2.093] [PMID: 23990740]
[102]
Pervaiz, M.; Yousaf, M.; Jabbar, A.; Zahoor, A.F.; Bokhari, T.H.; Anjum, A.; Sagir, M.; Khan, M.; Ali, K.G.; Ahmad, S.; Zia-ur-rehman, M.; Ashraf, S.; Qeureshi, K.S. Synthesis, characterization and biological studies of Bis{µ-2,2&-[N,N&-diylbis(nitrile-methylidyne)]diphenolato}dicobalt(II) using triple component solvent system. Asian J. Chem., 2013, 25(4), 2161-2164.
[http://dx.doi.org/10.14233/ajchem.2013.13374]
[103]
Çal&k, H.S. Ruthenium (II) complexes of NO ligands: Synthesis, characterization and application in transfer hydrogenation of carbonyl compounds. J. Organomet. Chem., 2016, 801, 122-129.
[http://dx.doi.org/10.1016/j.jorganchem.2015.10.028]
[104]
Hassan, R.; Arida, H.; Montasser, M.; Latif, N.A. Synthesis of new schiff base from natural products for remediation of water pollution with heavy metals in industrial areas. J. Chem., 2013, 2013, Article ID 240568.
[http://dx.doi.org/10.1155/2013/240568]
[105]
Aliyu, H.N.; Mohammed, A.S. Synthesis and characterization of iron (ii) and nickel (ii) schiff base complexes. Bajopas, 2009, 2(1), 132-134.
[106]
Bader, N. Elmajbry.; Al borki, A.Z.; Ahmida, A.; Geath, A. Physico-chemical studies of the complexes of Hippuric acid with Cu(II), Ni(II), Zn(II), and Pb(II) ions in ethanol-water mixed solvent system. Prog. Chem. Biochem. Res., 2020, 3(1), 1-6.
[http://dx.doi.org/10.33945/SAMI/PCBR.2020.1.1]
[107]
Saghatforoush, L.A.; Aminkhani, A.; Ershad, S.; Karimnezhad, G.; Ghammamy, S.; Kabiri, R. Preparation of Zinc (II) and cadmium (II) complexes of the tetradentate Schiff base ligand 2-((E)-(2-(2- (pyridine-2-yl)- ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH). Molecules, 2008, 13(4), 804-811.
[http://dx.doi.org/10.3390/molecules13040804] [PMID: 18463582]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy