Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy

Author(s): Sadie K. Dierschke and Michael D. Dennis*

Volume 18, Issue 2, 2022

Published on: 11 January, 2021

Article ID: e011121190177 Pages: 15

DOI: 10.2174/1573399817999210111205933

open access plus

Abstract

It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.

Keywords: Diabetes, retinopathy, O-GlcNAcylation, mRNA translation, renin-angiotensin system, oxidative stress, inflammation.

[1]
Fong DS, Aiello LP, Ferris FL III, Klein R. Diabetic retinopathy. Diabetes Care 2004; 27(10): 2540-53.
[http://dx.doi.org/10.2337/diacare.27.10.2540] [PMID: 15451934]
[2]
Lott ME, Slocomb JE, Shivkumar V, et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol 2013; 91(6): e462-9.
[http://dx.doi.org/10.1111/aos.12129] [PMID: 23742315]
[3]
Zaleska-Żmijewska A, Piątkiewicz P, Śmigielska B, et al. Retinal photoreceptors and microvascular changes in prediabetes measured with adaptive optics (rtx1™): A case-control study. J Diabetes Res 2017; 2017: 4174292.
[http://dx.doi.org/10.1155/2017/4174292] [PMID: 29238728]
[4]
Klein R, Barrett-Connor EL, Blunt BA, Wingard DL. Visual impairment and retinopathy in people with normal glucose tolerance, impaired glucose tolerance, and newly diagnosed NIDDM. Diabetes Care 1991; 14(10): 914-8.
[http://dx.doi.org/10.2337/diacare.14.10.914] [PMID: 1773692]
[5]
Karadeniz S, Kir N, Yilmaz MT, et al. Alteration of visual function in impaired glucose tolerance. Eur J Ophthalmol 1996; 6(1): 59-62.
[http://dx.doi.org/10.1177/112067219600600112] [PMID: 8744852]
[6]
Chan JY, Cole E, Hanna AK. Diabetic nephropathy and proliferative retinopathy with normal glucose tolerance. Diabetes Care 1985; 8(4): 385-90.
[http://dx.doi.org/10.2337/diacare.8.4.385] [PMID: 4042806]
[7]
Harrower AD, Clarke BF. Diabetic retinopathy with normal glucose tolerance. Br J Ophthalmol 1976; 60(6): 459-63.
[http://dx.doi.org/10.1136/bjo.60.6.459] [PMID: 952818]
[8]
Hutton WL, Snyder WB, Vaiser A, Siperstein MD. Retinal microangiopathy without associated glucose intolerance. Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology 1972; 76: 968-80.
[9]
Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4(9): 877-86.
[http://dx.doi.org/10.1038/nn0901-877] [PMID: 11528418]
[10]
Masland RH. The neuronal organization of the retina. Neuron 2012; 76(2): 266-80.
[http://dx.doi.org/10.1016/j.neuron.2012.10.002] [PMID: 23083731]
[11]
Gollisch T, Meister M. Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron 2010; 65(2): 150-64.
[http://dx.doi.org/10.1016/j.neuron.2009.12.009] [PMID: 20152123]
[12]
Flores-Herr N, Protti DA, Wässle H. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci 2001; 21(13): 4852-63.
[http://dx.doi.org/10.1523/JNEUROSCI.21-13-04852.2001] [PMID: 11425912]
[13]
Bruesch SR, Arey LB. The number of myelinated and unmyelinated fibers in the optic nerve of vertebrates - Bruesch. J Comp Neurol 1942; 77: 361.
[http://dx.doi.org/10.1002/cne.900770310]
[14]
Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 2008; 211(Pt 11): 1792-804.
[http://dx.doi.org/10.1242/jeb.017574] [PMID: 18490395]
[15]
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2016; 51: 1-40.
[http://dx.doi.org/10.1016/j.preteyeres.2015.06.003] [PMID: 26113209]
[16]
Watanabe T, Raff MC. Retinal astrocytes are immigrants from the optic nerve. Nature 1988; 332(6167): 834-7.
[http://dx.doi.org/10.1038/332834a0] [PMID: 3282180]
[17]
Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 1995; 15(7 Pt 1): 4738-47.
[http://dx.doi.org/10.1523/JNEUROSCI.15-07-04738.1995] [PMID: 7623107]
[18]
Ozaki H, Seo MS, Ozaki K, et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000; 156(2): 697-707.
[http://dx.doi.org/10.1016/S0002-9440(10)64773-6] [PMID: 10666398]
[19]
Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2007; 55(3): 233-8.
[http://dx.doi.org/10.1002/glia.20459] [PMID: 17106878]
[20]
Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res 2001; 20(6): 799-821.
[http://dx.doi.org/10.1016/S1350-9462(01)00012-X] [PMID: 11587918]
[21]
Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74(4): 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[22]
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vision Res 2017; 139: 93-100.
[http://dx.doi.org/10.1016/j.visres.2017.03.013] [PMID: 28866025]
[23]
Subirada PV, Paz MC, Ridano ME, et al. A journey into the retina: Müller glia commanding survival and death. Eur J Neurosci 2018; 47(12): 1429-43.
[http://dx.doi.org/10.1111/ejn.13965] [PMID: 29790615]
[24]
Agte S, Junek S, Matthias S, et al. Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J 2011; 101(11): 2611-9.
[http://dx.doi.org/10.1016/j.bpj.2011.09.062] [PMID: 22261048]
[25]
Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina. Exp Physiol 2007; 92(4): 635-40.
[http://dx.doi.org/10.1113/expphysiol.2006.036376] [PMID: 17434916]
[26]
Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2017; 255(1): 1-6.
[http://dx.doi.org/10.1007/s00417-016-3548-y] [PMID: 27832340]
[27]
Antonetti DA, Barber AJ, Bronson SK, et al. JDRF diabetic retinopathy center group. Diabetic retinopathy: Seeing beyond glucose-induced microvascular disease. Diabetes 2006; 55(9): 2401-11.
[http://dx.doi.org/10.2337/db05-1635] [PMID: 16936187]
[28]
Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: Does it really matter? Diabetologia 2018; 61(9): 1902-12.
[http://dx.doi.org/10.1007/s00125-018-4692-1] [PMID: 30030554]
[29]
Barber AJ, Baccouche B. Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017; 139: 82-92.
[http://dx.doi.org/10.1016/j.visres.2017.06.014] [PMID: 28988945]
[30]
Adams AJ, Bearse MA Jr. Retinal neuropathy precedes vasculopathy in diabetes: A function-based opportunity for early treatment intervention? Clin Exp Optom 2012; 95(3): 256-65.
[http://dx.doi.org/10.1111/j.1444-0938.2012.00733.x] [PMID: 22497728]
[31]
Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45(3): 948-54.
[http://dx.doi.org/10.1167/iovs.03-1101] [PMID: 14985316]
[32]
Kempen JH, O’Colmain BJ, Leske MC, et al. Eye Diseases prevalence research group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004; 122(4): 552-63.
[http://dx.doi.org/10.1001/archopht.122.4.552] [PMID: 15078674]
[33]
Roy MS, Klein R, O’Colmain BJ, Klein BE, Moss SE, Kempen JH. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch Ophthalmol 2004; 122(4): 546-51.
[http://dx.doi.org/10.1001/archopht.122.4.546] [PMID: 15078673]
[34]
Reiter CE, Wu X, Sandirasegarane L, et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 2006; 55(4): 1148-56.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-0744] [PMID: 16567541]
[35]
Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol 2007; 81(6): 1345-51.
[http://dx.doi.org/10.1189/jlb.0207114] [PMID: 17405851]
[36]
Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102(4): 783-91.
[http://dx.doi.org/10.1172/JCI2425] [PMID: 9710447]
[37]
Kern TS, Tang J, Mizutani M, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: Comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 2000; 41(12): 3972-8.
[PMID: 11053301]
[38]
Aiello LP. Angiogenic pathways in diabetic retinopathy. N Engl J Med 2005; 353(8): 839-41.
[http://dx.doi.org/10.1056/NEJMe058142] [PMID: 16120866]
[39]
Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118(4): 445-50.
[http://dx.doi.org/10.1016/S0002-9394(14)75794-0] [PMID: 7943121]
[40]
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331(22): 1480-7.
[http://dx.doi.org/10.1056/NEJM199412013312203] [PMID: 7526212]
[41]
Bressler NM, Varma R, Suñer IJ, et al. RIDE and RISE research groups. Vision-related function after ranibizumab treatment for diabetic macular edema: Results from RIDE and RISE. Ophthalmology 2014; 121(12): 2461-72.
[http://dx.doi.org/10.1016/j.ophtha.2014.07.008] [PMID: 25148789]
[42]
Kita T, Clermont AC, Murugesan N, et al. Plasma kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes 2015; 64(10): 3588-99.
[http://dx.doi.org/10.2337/db15-0317] [PMID: 25979073]
[43]
Pusparajah P, Lee LH, Abdul Kadir K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front Physiol 2016; 7: 200.
[http://dx.doi.org/10.3389/fphys.2016.00200] [PMID: 27313539]
[44]
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol 2016; 61(2): 187-96.
[http://dx.doi.org/10.1016/j.survophthal.2015.06.001] [PMID: 26074354]
[45]
Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: Vascular and inflammatory disease. J Diabetes Res 2015; 2015: 582060.
[http://dx.doi.org/10.1155/2015/582060] [PMID: 26137497]
[46]
Lind M, Odén A, Fahlén M, Eliasson B. The true value of HbA1c as a predictor of diabetic complications: Simulations of HbA1c variables. PLoS One 2009; 4(2): e4412.
[http://dx.doi.org/10.1371/journal.pone.0004412] [PMID: 19209233]
[47]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[48]
Nathan DM, Genuth S, Lachin J, et al. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[49]
Group UPDS. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[50]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[51]
Kaiser N, Sasson S, Feener EP, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993; 42(1): 80-9.
[http://dx.doi.org/10.2337/diab.42.1.80] [PMID: 7678404]
[52]
Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1995; 96(4): 1802-14.
[http://dx.doi.org/10.1172/JCI118226] [PMID: 7560072]
[53]
Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416(1): 15-8.
[http://dx.doi.org/10.1016/S0014-5793(97)01159-9] [PMID: 9369223]
[54]
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[55]
Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13(1): 23-30.
[http://dx.doi.org/10.1096/fasebj.13.1.23] [PMID: 9872926]
[56]
Wells L, Hart GW. O-GlcNAc turns twenty: Functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 2003; 546(1): 154-8.
[http://dx.doi.org/10.1016/S0014-5793(03)00641-0] [PMID: 12829252]
[57]
Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984; 259(5): 3308-17.
[PMID: 6421821]
[58]
Copeland RJ, Bullen JW, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: Roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 2008; 295(1): E17-28.
[http://dx.doi.org/10.1152/ajpendo.90281.2008] [PMID: 18445751]
[59]
Hahne H, Sobotzki N, Nyberg T, et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res 2013; 12(2): 927-36.
[http://dx.doi.org/10.1021/pr300967y] [PMID: 23301498]
[60]
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta 2006; 1761(5-6): 599-617.
[http://dx.doi.org/10.1016/j.bbalip.2006.04.007] [PMID: 16781888]
[61]
Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: Current status. Am J Physiol Endocrinol Metab 2006; 290(1): E1-8.
[http://dx.doi.org/10.1152/ajpendo.00329.2005] [PMID: 16339923]
[62]
Hu Y, Riesland L, Paterson AJ, Kudlow JE. Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem 2004; 279(29): 29988-93.
[http://dx.doi.org/10.1074/jbc.M401547200] [PMID: 15133036]
[63]
Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I. cDNA cloning and mapping of a novel subtype of glutamine: Fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics 1999; 57(2): 227-34.
[http://dx.doi.org/10.1006/geno.1999.5785] [PMID: 10198162]
[64]
Dai W, Dierschke SK, Toro AL, Dennis MD. Consumption of a high fat diet promotes protein O-GlcNAcylation in mouse retina via NR4A1-dependent GFAT2 expression. Biochim Biophys Acta Mol Basis Dis 2018; 1864(12): 3568-76.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.006] [PMID: 30254013]
[65]
Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 2003; 278(45): 44230-7.
[http://dx.doi.org/10.1074/jbc.M303810200] [PMID: 12941958]
[66]
Konrad RJ, Kudlow JE. The role of O-linked protein glycosylation in beta-cell dysfunction. Int J Mol Med 2002; 10(5): 535-9.
[PMID: 12373287]
[67]
Walgren JL, Vincent TS, Schey KL, Buse MG. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 2003; 284(2): E424-34.
[http://dx.doi.org/10.1152/ajpendo.00382.2002] [PMID: 12397027]
[68]
Kim SJ, Yoo WS, Choi M, Chung I, Yoo JM, Choi WS. Increased O-GlcNAcylation of NF-κB enhances retinal ganglion cell death in streptozotocin-induced diabetic retinopathy. Curr Eye Res 2016; 41(2): 249-57.
[http://dx.doi.org/10.3109/02713683.2015.1006372] [PMID: 25835259]
[69]
Gurel Z, Sieg KM, Shallow KD, Sorenson CM, Sheibani N. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy. Mol Vis 2013; 19: 1047-59.
[PMID: 23734074]
[70]
Xu C, Liu G, Liu X, Wang F. O-GlcNAcylation under hypoxic conditions and its effects on the blood-retinal barrier in diabetic retinopathy. Int J Mol Med 2014; 33(3): 624-32.
[http://dx.doi.org/10.3892/ijmm.2013.1597] [PMID: 24366041]
[71]
Yki-Järvinen H, Daniels MC, Virkamäki A, Mäkimattila S, DeFronzo RA, McClain D. Increased glutamine: Fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 1996; 45(3): 302-7.
[http://dx.doi.org/10.2337/diab.45.3.302] [PMID: 8593934]
[72]
Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 2002; 99(8): 5313-8.
[http://dx.doi.org/10.1073/pnas.072072399] [PMID: 11959983]
[73]
Reiter CE, Sandirasegarane L, Wolpert EB, et al. Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol Endocrinol Metab 2003; 285(4): E763-74.
[http://dx.doi.org/10.1152/ajpendo.00507.2002] [PMID: 12799319]
[74]
Barber AJ, Nakamura M, Wolpert EB, et al. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 2001; 276(35): 32814-21.
[http://dx.doi.org/10.1074/jbc.M104738200] [PMID: 11443130]
[75]
Andreozzi F, D’Alessandris C, Federici M, et al. Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta-cells. Endocrinology 2004; 145(6): 2845-57.
[http://dx.doi.org/10.1210/en.2003-0939] [PMID: 15001544]
[76]
Yang X, Ongusaha PP, Miles PD, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008; 451(7181): 964-9.
[http://dx.doi.org/10.1038/nature06668] [PMID: 18288188]
[77]
Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010; 285(8): 5204-11.
[http://dx.doi.org/10.1074/jbc.M109.077818] [PMID: 20018868]
[78]
Patti ME, Virkamäki A, Landaker EJ, Kahn CR, Yki-Järvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 1999; 48(8): 1562-71.
[http://dx.doi.org/10.2337/diabetes.48.8.1562] [PMID: 10426374]
[79]
D’Alessandris C, Andreozzi F, Federici M, et al. Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. FASEB J 2004; 18(9): 959-61.
[http://dx.doi.org/10.1096/fj.03-0725fje] [PMID: 15059979]
[80]
Nakamura M, Barber AJ, Antonetti DA, et al. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 2001; 276(47): 43748-55.
[http://dx.doi.org/10.1074/jbc.M108594200] [PMID: 11560942]
[81]
Gurel Z, Zaro BW, Pratt MR, Sheibani N. Identification of O-GlcNAc modification targets in mouse retinal pericytes: implication of p53 in pathogenesis of diabetic retinopathy. PLoS One 2014; 9(5): e95561.
[http://dx.doi.org/10.1371/journal.pone.0095561] [PMID: 24788674]
[82]
Huang Q, Sheibani N. High glucose promotes retinal endothelial cell migration through activation of Src, PI3K/Akt1/eNOS, and ERKs. Am J Physiol Cell Physiol 2008; 295(6): C1647-57.
[http://dx.doi.org/10.1152/ajpcell.00322.2008] [PMID: 18945941]
[83]
Donovan K, Alekseev O, Qi X, Cho W, Azizkhan-Clifford J. O-GlcNAc modification of transcription factor Sp1 mediates hyperglycemia-induced VEGF-A upregulation in retinal cells. Invest Ophthalmol Vis Sci 2014; 55(12): 7862-73.
[http://dx.doi.org/10.1167/iovs.14-14048] [PMID: 25352121]
[84]
Matthews JA, Belof JL, Acevedo-Duncan M, Potter RL. Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. Mol Cell Biochem 2007; 298(1-2): 109-23.
[http://dx.doi.org/10.1007/s11010-006-9358-5] [PMID: 17136481]
[85]
Mao X, Zhang D, Tao T, et al. O-GlcNAc glycosylation of p27(kip1) promotes astrocyte migration and functional recovery after spinal cord contusion. Exp Cell Res 2015; 339(2): 197-205.
[http://dx.doi.org/10.1016/j.yexcr.2015.11.007] [PMID: 26562163]
[86]
Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 1990; 265(12): 6548-51.
[PMID: 2182619]
[87]
Watanabe T, Mio Y, Hoshino FB, Nagamatsu S, Hirosawa K, Nakahara K. GLUT2 expression in the rat retina: Localization at the apical ends of Müller cells. Brain Res 1994; 655(1-2): 128-34.
[http://dx.doi.org/10.1016/0006-8993(94)91606-3] [PMID: 7812765]
[88]
Capozzi ME, Giblin MJ, Penn JS. Palmitic acid induces Muller cell inflammation that is potentiated by co-treatment with glucose. Sci Rep 2018; 8(1): 5459.
[http://dx.doi.org/10.1038/s41598-018-23601-1] [PMID: 29626212]
[89]
Capozzi ME, McCollum GW, Cousins DB, Penn JS. Linoleic acid is a diabetes-relevant stimulator of retinal inflammation in human retinal Muller cells and microvascular endothelial cells. J Diabetes Metab 2016; 7(12): 7.
[http://dx.doi.org/10.4172/2155-6156.1000718] [PMID: 28066685]
[90]
Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998; 393(6686): 684-8.
[http://dx.doi.org/10.1038/31474] [PMID: 9641678]
[91]
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302(10): H1905-18.
[http://dx.doi.org/10.1152/ajpheart.00445.2011] [PMID: 22287582]
[92]
Comer FI, Hart GW. O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1999; 1473(1): 161-71.
[http://dx.doi.org/10.1016/S0304-4165(99)00176-2] [PMID: 10580136]
[93]
Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008; 19(10): 380-9.
[http://dx.doi.org/10.1016/j.tem.2008.09.001] [PMID: 18929495]
[94]
Nagel AK, Ball LE. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 2015; 126: 137-66.
[http://dx.doi.org/10.1016/bs.acr.2014.12.003] [PMID: 25727147]
[95]
Hart GW. Nutrient regulation of signaling and transcription. J Biol Chem 2019; 294(7): 2211-31.
[http://dx.doi.org/10.1074/jbc.AW119.003226] [PMID: 30626734]
[96]
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem 2012; 287(28): 23549-61.
[http://dx.doi.org/10.1074/jbc.M111.330910] [PMID: 22605332]
[97]
Lewis BA, Burlingame AL, Myers SA. Human RNA polymerase II promoter recruitment in vitro is regulated by O-linked N-acetylglucosaminyltransferase (OGT). J Biol Chem 2016; 291(27): 14056-61.
[http://dx.doi.org/10.1074/jbc.M115.684365] [PMID: 27129214]
[98]
Resto M, Kim BH, Fernandez AG, Abraham BJ, Zhao K, Lewis BA. O-GlcNAcase is an RNA polymerase II elongation factor coupled to pausing factors SPT5 and TIF1β. J Biol Chem 2016; 291(43): 22703-13.
[http://dx.doi.org/10.1074/jbc.M116.751420] [PMID: 27601472]
[99]
Wang P, Peng C, Liu X, et al. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response. J Genet Genomics 2015; 42(9): 467-75.
[http://dx.doi.org/10.1016/j.jgg.2015.07.002] [PMID: 26408091]
[100]
Leturcq M, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAcylation and chromatin remodeling in mammals: An up-to-date overview. Biochem Soc Trans 2017; 45(2): 323-38.
[http://dx.doi.org/10.1042/BST20160388] [PMID: 28408473]
[101]
Fujiki R, Hashiba W, Sekine H, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 2011; 480(7378): 557-60.
[http://dx.doi.org/10.1038/nature10656] [PMID: 22121020]
[102]
Zhang Y, Qu Y, Niu T, Wang H, Liu K. O-GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun 2017; 484(1): 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.068] [PMID: 28104396]
[103]
Baltimore D. NF-κB is 25. Nat Immunol 2011; 12(8): 683-5.
[http://dx.doi.org/10.1038/ni.2072] [PMID: 21772275]
[104]
Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE. NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets 2011; 10(3): 208-17.
[http://dx.doi.org/10.2174/187152811795564046] [PMID: 21495968]
[105]
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016; 165(3): 535-50.
[http://dx.doi.org/10.1016/j.cell.2016.03.014] [PMID: 27104977]
[106]
Wellensiek BP, Larsen AC, Stephens B, et al. Genome-wide profiling of human cap-independent translation-enhancing elements. Nat Methods 2013; 10(8): 747-50.
[http://dx.doi.org/10.1038/nmeth.2522] [PMID: 23770754]
[107]
Powers ET. Translation: An O-GlcNAc stamp of approval. Nat Chem Biol 2015; 11(5): 307-8.
[http://dx.doi.org/10.1038/nchembio.1777] [PMID: 25774940]
[108]
Zeidan Q, Wang Z, De Maio A, Hart GW. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol Biol Cell 2010; 21(12): 1922-36.
[http://dx.doi.org/10.1091/mbc.e09-11-0941] [PMID: 20410138]
[109]
Dierschke SK, Miller WP, Favate JS, et al. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294(14): 5508-20.
[http://dx.doi.org/10.1074/jbc.RA119.007494] [PMID: 30733333]
[110]
Pestova TV, Kolupaeva VG, Lomakin IB, et al. Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA 2001; 98(13): 7029-36.
[http://dx.doi.org/10.1073/pnas.111145798] [PMID: 11416183]
[111]
López-Lastra M, Rivas A, Barría MI. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res 2005; 38(2-3): 121-46.
[http://dx.doi.org/10.4067/S0716-97602005000200003] [PMID: 16238092]
[112]
Svitkin YV, Herdy B, Costa-Mattioli M, Gingras AC, Raught B, Sonenberg N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 2005; 25(23): 10556-65.
[http://dx.doi.org/10.1128/MCB.25.23.10556-10565.2005] [PMID: 16287867]
[113]
Pestova TV, Hellen CU, Shatsky IN. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 1996; 16(12): 6859-69.
[http://dx.doi.org/10.1128/MCB.16.12.6859] [PMID: 8943341]
[114]
Schrufer TL, Antonetti DA, Sonenberg N, Kimball SR, Gardner TW, Jefferson LS. Ablation of 4E-BP1/2 prevents hyperglycemia- mediated induction of VEGF expression in the rodent retina and in Muller cells in culture. Diabetes 2010; 59(9): 2107-16.
[http://dx.doi.org/10.2337/db10-0148] [PMID: 20547975]
[115]
Dennis MD, Schrufer TL, Bronson SK, Kimball SR, Jefferson LS. Hyperglycemia-induced O-GlcNAcylation and truncation of 4E-BP1 protein in liver of a mouse model of type 1 diabetes. J Biol Chem 2011; 286(39): 34286-97.
[http://dx.doi.org/10.1074/jbc.M111.259457] [PMID: 21840999]
[116]
Miller WP, Mihailescu ML, Yang C, et al. The translational repressor 4E-BP1 contributes to diabetes-induced visual dysfunction. Invest Ophthalmol Vis Sci 2016; 57(3): 1327-37.
[http://dx.doi.org/10.1167/iovs.15-18719] [PMID: 26998719]
[117]
Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996; 21(7): 267-71.
[http://dx.doi.org/10.1016/S0968-0004(96)10031-1] [PMID: 8755249]
[118]
Bornes S, Prado-Lourenco L, Bastide A, et al. Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circ Res 2007; 100(3): 305-8.
[http://dx.doi.org/10.1161/01.RES.0000258873.08041.c9] [PMID: 17255526]
[119]
Bastide A, Karaa Z, Bornes S, et al. An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 2008; 36(7): 2434-45.
[http://dx.doi.org/10.1093/nar/gkn093] [PMID: 18304943]
[120]
Morris MJ, Negishi Y, Pazsint C, Schonhoft JD, Basu S. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 2010; 132(50): 17831-9.
[http://dx.doi.org/10.1021/ja106287x] [PMID: 21105704]
[121]
Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 1998; 18(11): 6178-90.
[http://dx.doi.org/10.1128/MCB.18.11.6178] [PMID: 9774635]
[122]
Dennis MD, Shenberger JS, Stanley BA, Kimball SR, Jefferson LS. Hyperglycemia mediates a shift from cap-dependent to cap-independent translation via a 4E-BP1-dependent mechanism. Diabetes 2013; 62(7): 2204-14.
[http://dx.doi.org/10.2337/db12-1453] [PMID: 23434932]
[123]
Dennis MD, Kimball SR, Fort PE, Jefferson LS. Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents. J Biol Chem 2015; 290(6): 3865-74.
[http://dx.doi.org/10.1074/jbc.M114.623058] [PMID: 25548280]
[124]
Portillo JC, Lopez Corcino Y, Miao Y, et al. CD40 in retinal Müller cells induces P2X7-dependent cytokine expression in macrophages/microglia in diabetic mice and development of early experimental diabetic retinopathy. Diabetes 2017; 66(2): 483-93.
[http://dx.doi.org/10.2337/db16-0051] [PMID: 27474370]
[125]
Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA 2009; 106(33): 13939-44.
[http://dx.doi.org/10.1073/pnas.0907143106] [PMID: 19666516]
[126]
Jang I, Kim HB, Seo H, et al. O-GlcNAcylation of eIF2α regulates the phospho-eIF2α-mediated ER stress response. Biochim Biophys Acta 2015; 1853(8): 1860-9.
[http://dx.doi.org/10.1016/j.bbamcr.2015.04.017] [PMID: 25937070]
[127]
Jo S, Lockridge A, Alejandro EU. eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic β-cells contributes to hyperproinsulinemia in mice. J Biol Chem 2019; 294(35): 13040-50.
[http://dx.doi.org/10.1074/jbc.RA119.008670] [PMID: 31300553]
[128]
Li X, Zhu Q, Shi X, et al. O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proc Natl Acad Sci USA 2019; 116(16): 7857-66.
[http://dx.doi.org/10.1073/pnas.1813026116] [PMID: 30940748]
[129]
Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5(11): 2108-16.
[http://dx.doi.org/10.1101/gad.5.11.2108] [PMID: 1682219]
[130]
Richter K, Haslbeck M, Buchner J. The heat shock response: Life on the verge of death. Mol Cell 2010; 40(2): 253-66.
[http://dx.doi.org/10.1016/j.molcel.2010.10.006] [PMID: 20965420]
[131]
Zhang X, Shu XE, Qian SB. O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat Chem Biol 2018; 14(10): 909-16.
[http://dx.doi.org/10.1038/s41589-018-0120-6] [PMID: 30127386]
[132]
Phipps JA, Dixon MA, Jobling AI, et al. The renin-angiotensin system and the retinal neurovascular unit: A role in vascular regulation and disease. Exp Eye Res 2019; 187: 107753.
[http://dx.doi.org/10.1016/j.exer.2019.107753] [PMID: 31408629]
[133]
Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. J Curr Ophthalmol 2016; 29(1): 7-16.
[http://dx.doi.org/10.1016/j.joco.2016.09.009] [PMID: 28367520]
[134]
Culman J, Höhle S, Qadri F, et al. Angiotensin as neuromodulator/neurotransmitter in central control of body fluid and electrolyte homeostasis. Clin Exp Hypertens 1995; 17(1-2): 281-93.
[http://dx.doi.org/10.3109/10641969509087071] [PMID: 7735275]
[135]
Chung O, Kühl H, Stoll M, Unger T. Physiological and pharmacological implications of AT1 versus AT2 receptors. Kidney Int Suppl 1998; 67: S95-9.
[http://dx.doi.org/10.1046/j.1523-1755.1998.06719.x] [PMID: 9736262]
[136]
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29(4): 284-311.
[http://dx.doi.org/10.1016/j.preteyeres.2010.03.003] [PMID: 20380890]
[137]
Wang B, Wang F, Zhang Y, et al. Effects of RAS inhibitors on diabetic retinopathy: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015; 3(4): 263-74.
[http://dx.doi.org/10.1016/S2213-8587(14)70256-6] [PMID: 25660574]
[138]
Campbell DJ, Lawrence AC, Towrie A, Kladis A, Valentijn AJ. Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension 1991; 18(6): 763-73.
[http://dx.doi.org/10.1161/01.HYP.18.6.763] [PMID: 1660448]
[139]
Kohara K, Brosnihan KB, Ferrario CM. Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides 1993; 14(5): 883-91.
[http://dx.doi.org/10.1016/0196-9781(93)90063-M] [PMID: 8284265]
[140]
Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7). Hypertension 2002; 40(5): 774-9.
[http://dx.doi.org/10.1161/01.HYP.0000035396.27909.40] [PMID: 12411476]
[141]
Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension 1998; 31(1 Pt 2): 362-7.
[http://dx.doi.org/10.1161/01.HYP.31.1.362] [PMID: 9453329]
[142]
Roks AJ, van Geel PP, Pinto YM, et al. Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension 1999; 34(2): 296-301.
[http://dx.doi.org/10.1161/01.HYP.34.2.296] [PMID: 10454457]
[143]
Guimaraes PS, Oliveira MF, Braga JF, et al. Increasing angiotensin-(1-7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension 2014; 63(5): 1078-85.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01847] [PMID: 24516106]
[144]
Williams IM, Otero YF, Bracy DP, Wasserman DH, Biaggioni I, Arnold AC. Chronic Angiotensin-(1-7) improves insulin sensitivity in high-fat fed mice independent of blood pressure. Hypertension 2016; 67(5): 983-91.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06935] [PMID: 26975707]
[145]
Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ. ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 2003; 46(3): 401-8.
[http://dx.doi.org/10.1007/s00125-003-1042-7] [PMID: 12687339]
[146]
Gilbert RE, Kelly DJ, Cox AJ, et al. Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes. Diabetologia 2000; 43(11): 1360-7.
[http://dx.doi.org/10.1007/s001250051539] [PMID: 11126403]
[147]
Funatsu H, Yamashita H, Noma H, Mimura T, Sakata K, Hori S. Risk evaluation of outcome of vitreous surgery for proliferative diabetic retinopathy based on vitreous level of vascular endothelial growth factor and angiotensin II. Br J Ophthalmol 2004; 88(8): 1064-8.
[http://dx.doi.org/10.1136/bjo.2003.032656] [PMID: 15258026]
[148]
Senanayake PD, Bonilha VL, W Peterson J, et al. Retinal angiotensin II and angiotensin-(1-7) response to hyperglycemia and an intervention with captopril. J Renin Angiotensin Aldosterone Syst 2018; 19(3): 1470320318789323.
[http://dx.doi.org/10.1177/1470320318789323] [PMID: 30126320]
[149]
Verma A, Shan Z, Lei B, et al. ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy. Mol Ther 2012; 20(1): 28-36.
[http://dx.doi.org/10.1038/mt.2011.155] [PMID: 21792177]
[150]
Singh R, Singh AK, Alavi N, Leehey DJ. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol 2003; 14(4): 873-80.
[http://dx.doi.org/10.1097/01.ASN.0000060804.40201.6E] [PMID: 12660321]
[151]
Hsieh TJ, Fustier P, Zhang SL, et al. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology 2003; 144(10): 4338-49.
[http://dx.doi.org/10.1210/en.2003-0220] [PMID: 12960040]
[152]
Vidotti DB, Casarini DE, Cristovam PC, Leite CA, Schor N, Boim MA. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol 2004; 286(6): F1039-45.
[http://dx.doi.org/10.1152/ajprenal.00371.2003] [PMID: 14722017]
[153]
Marsh SA, Dell’Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids 2011; 40(3): 819-28.
[http://dx.doi.org/10.1007/s00726-010-0699-8] [PMID: 20676904]
[154]
Tanaka T, Sohmiya K, Kono T, et al. Thiamine attenuates the hypertension and metabolic abnormalities in CD36-defective SHR: Uncoupling of glucose oxidation from cellular entry accompanied with enhanced protein O-GlcNAcylation in CD36 deficiency. Mol Cell Biochem 2007; 299(1-2): 23-35.
[http://dx.doi.org/10.1007/s11010-005-9032-3] [PMID: 16645728]
[155]
Einstein FH, Fishman S, Bauman J, et al. Enhanced activation of a “nutrient-sensing” pathway with age contributes to insulin resistance. FASEB J 2008; 22(10): 3450-7.
[http://dx.doi.org/10.1096/fj.08-109041] [PMID: 18566293]
[156]
Dierschke SK, Toro AL, Barber AJ, Arnold AC, Dennis MD. Angiotensin-(1-7) attenuates protein O-GlcNAcylation in the retina by EPAC/Rap1-dependent inhibition of O-GlcNAc transferase. Invest Ophthalmol Vis Sci 2020; 61(2): 24.
[http://dx.doi.org/10.1167/iovs.61.2.24] [PMID: 32068794]
[157]
Gellai R, Hodrea J, Lenart L, et al. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 311(6): F1172-81.
[http://dx.doi.org/10.1152/ajprenal.00545.2015] [PMID: 27029430]

© 2024 Bentham Science Publishers | Privacy Policy