Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Different Inductive Effects of Praziquantel Racemate and its Enantiomers on the Enzyme CYP3A4 Mediated by Pregnane X Receptor and its Variants

Author(s): Ran Meng, Xueli Zhang, Haina Wang*, Danlu Zhang and Xin Zhao

Volume 22, Issue 3, 2021

Published on: 04 January, 2021

Page: [232 - 239] Pages: 8

DOI: 10.2174/1389200221999210104204057

Price: $65

Abstract

Background: Praziquantel (PZQ), which possesses an asymmetric center, is classified as a pyrazinoisoquinoline and has been the mainstay in the treatment of schistosomiasis since 1980. PZQ undergoes a pronounced first-pass metabolism in the liver through the CYP450 system which could be mediated by nuclear receptors.

Objective: The purpose of this study was to investigate the possible different induction effects of CYP3A4 by PZQ racemate and enantiomers via the pregnane X receptor (PXR) and the effect of PXR polymorphism on the induction potency of PZQs.

Methods: The dual-luciferase reporter gene systems constructed in HepG2 cells were used to measure the abilities of PZQs to induce CYP3A4 expression mediated by PXR. The mRNA and protein levels of CYP3A4 were evaluated by polymerase chain reaction (PCR) and western blotting, respectively.

Results: In HepG2 cells transfected with PXRwt, PXR158, PXR163, PXR370 or PXR403 expression plasmids, PZQ racemate and its enantiomers up-regulated the luciferase activity in a concentration-dependent manner, while reaching saturation after transfected with PXR379 expression plasmids. The mRNA and protein expression of CYP3A4 was effectively activated in PXR-transfected HepG2 cells. The induction ability of CYP3A4 mediated by PXR activation by PZQ racemate and its enantiomers were statistically different between the same PXR group and different PXR groups.

Conclusion: The enantioselective induction effects of PZQs on CYP3A4 were related to the enantioselective activations of PXR by PZQs and were influenced by the PXR gene polymorphism. These findings provide a basis for further understanding the enantiomeric metabolism and the variable efficacy of PZQs.

Keywords: Praziquantel, enantiomers, pregnane X receptor, CYP3A4, enantioselectivity, PXR polymorphism.

Graphical Abstract

[1]
Dömling, A.; Khoury, K. Praziquantel and schistosomiasis. ChemMedChem, 2010, 5(9), 1420-1434.
[http://dx.doi.org/10.1002/cmdc.201000202] [PMID: 20677314]
[2]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother., 2017, 61(5)
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[3]
Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: praziquantel forever? Mol. Biochem. Parasitol., 2014, 195(1), 23-29.
[http://dx.doi.org/10.1016/j.molbiopara.2014.06.002] [PMID: 24955523]
[4]
Wilson, R.A. Schistosomiasis then and now: what has changed in the last 100 years? Parasitology, 2020, 147(5), 507-515.
[http://dx.doi.org/10.1017/S0031182020000049] [PMID: 31965953]
[5]
Dziwornu, G.A.; Attram, H.D.; Gachuhi, S.; Chibale, K. Chemotherapy for human schistosomiasis: How far have we come? What’s new? Where do we go from here? RSC Medicinal Chemistry, 2020, 11(4), 455-490.
[http://dx.doi.org/10.1039/D0MD00062K]
[6]
Committee, W.H.O.E. WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ. Tech. Rep. Ser., 2002, 912, i-vi, 1-57, back cover.
[PMID: 12592987]
[7]
Olliaro, P.; Delgado-Romero, P.; Keiser, J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J. Antimicrob. Chemother., 2014, 69(4), 863-870.
[http://dx.doi.org/10.1093/jac/dkt491] [PMID: 24390933]
[8]
Cioli, D.; Pica-Mattoccia, L. Praziquantel. Parasitol. Res., 2003, 90(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1007/s00436-002-0751-z] [PMID: 12811543]
[9]
da Silva, V.B.R.; Campos, B.R.K.L.; de Oliveira, J.F.; Decout, J.L.; do Carmo Alves de Lima, M. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorg. Med. Chem., 2017, 25(13), 3259-3277.
[http://dx.doi.org/10.1016/j.bmc.2017.04.031] [PMID: 28495384]
[10]
Meyer, T.; Sekljic, H.; Fuchs, S.; Bothe, H.; Schollmeyer, D.; Miculka, C. Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment. PLoS Negl. Trop. Dis., 2009, 3(1)
[http://dx.doi.org/10.1371/journal.pntd.0000357] [PMID: 19159015]
[11]
Caffrey, C.R. Chemotherapy of schistosomiasis: present and future. Curr. Opin. Chem. Biol., 2007, 11(4), 433-439.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.031] [PMID: 17652008]
[12]
Roszkowski, P.; Maurin, J.K.; Czarnocki, Z. Enantioselective synthesis of (R)-(-)-praziquantel (PZQ). Tetrahedron Asymmetry, 2006, 17(9), 1415-1419.
[http://dx.doi.org/10.1016/j.tetasy.2006.04.023]
[13]
Zhang, D.; Wang, H.; Ji, J.; Nie, L.; Sun, D. A quantification method for determination of racemate praziquantel and R-enantiomer in rat plasma for comparison of their pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1048, 64-69.
[http://dx.doi.org/10.1016/j.jchromb.2017.02.013] [PMID: 28222334]
[14]
Wang, H.; Fang, Z.Z.; Zheng, Y.; Zhou, K.; Hu, C.; Krausz, K.W.; Sun, D.; Idle, J.R.; Gonzalez, F.J. Metabolic profiling of praziquantel enantiomers. Biochem. Pharmacol., 2014, 90(2), 166-178.
[http://dx.doi.org/10.1016/j.bcp.2014.05.001] [PMID: 24821110]
[15]
Meister, I.; Ingram-Sieber, K.; Cowan, N.; Todd, M.; Robertson, M.N.; Meli, C.; Patra, M.; Gasser, G.; Keiser, J. Activity of praziquantel enantiomers and main metabolites against Schistosoma mansoni. Antimicrob. Agents Chemother., 2014, 58(9), 5466-5472.
[http://dx.doi.org/10.1128/AAC.02741-14] [PMID: 24982093]
[16]
Abla, N.; Keiser, J.; Vargas, M.; Reimers, N.; Haas, H.; Spangenberg, T. Evaluation of the pharmacokinetic-pharmacodynamic relationship of praziquantel in the Schistosoma mansoni mouse model. PLoS Negl. Trop. Dis., 2017, 11(9), e0005942.
[http://dx.doi.org/10.1371/journal.pntd.0005942] [PMID: 28934207]
[17]
Li, X.Q.; Björkman, A.; Andersson, T.B.; Gustafsson, L.L.; Masimirembwa, C.M. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur. J. Clin. Pharmacol., 2003, 59(5-6), 429-442.
[http://dx.doi.org/10.1007/s00228-003-0636-9] [PMID: 12920490]
[18]
Meister, I.; Kovac, J.; Duthaler, U.; Odermatt, P.; Huwyler, J.; Vanobberghen, F.; Sayasone, S.; Keiser, J. Pharmacokinetic study of praziquantel enantiomers and its main metabolite R-trans-4-OH-PZQ in plasma, blood and dried blood spots in opisthorchis viverrini-infected patients. PLoS Negl. Trop. Dis., 2016, 10(5)
[http://dx.doi.org/10.1371/journal.pntd.0004700] [PMID: 27152952]
[19]
Casabar, R.C.; Das, P.C.; Dekrey, G.K.; Gardiner, C.S.; Cao, Y.; Rose, R.L.; Wallace, A.D. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor. Toxicol. Appl. Pharmacol., 2010, 245(3), 335-343.
[http://dx.doi.org/10.1016/j.taap.2010.03.017] [PMID: 20361990]
[20]
Huang, L.; Huang, M.; Li, Y.H.; Li, R.M.; Zeng, Y.; Kuang, S.Y.; Zhang, L.; Wang, Y.T.; Bi, H.C. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn. J. Ethnopharmacol., 2013, 148(2), 596-602.
[http://dx.doi.org/10.1016/j.jep.2013.05.008] [PMID: 23702042]
[21]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[22]
Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol., 2015, 28(1), 38-42.
[http://dx.doi.org/10.1021/tx500444e] [PMID: 25485457]
[23]
Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev., 2012, 64, 256-269.
[http://dx.doi.org/10.1016/j.addr.2012.09.017] [PMID: 12406645]
[24]
Ridtitid, W.; Ratsamemonthon, K.; Mahatthanatrakul, W.; Wongnawa, M. Pharmacokinetic interaction between ketoconazole and praziquantel in healthy volunteers. J. Clin. Pharm. Ther., 2007, 32(6), 585-593.
[http://dx.doi.org/10.1111/j.1365-2710.2007.00862.x] [PMID: 18021336]
[25]
Nleya, L.; Thelingwani, R.; Li, X.Q.; Cavallin, E.; Isin, E.; Nhachi, C.; Masimirembwa, C. The effect of ketoconazole on praziquantel pharmacokinetics and the role of CYP3A4 in the formation of X-OH-praziquantel and not 4-OH-praziquantel. Eur. J. Clin. Pharmacol., 2019, 75(8), 1077-1087.
[http://dx.doi.org/10.1007/s00228-019-02663-8] [PMID: 31089768]
[26]
Masimirembwa, C.M.; Hasler, J.A. Characterisation of praziquantel metabolism by rat liver microsomes using cytochrome P450 inhibitors. Biochem. Pharmacol., 1994, 48(9), 1779-1783.
[http://dx.doi.org/10.1016/0006-2952(94)90464-2] [PMID: 7980647]
[27]
Masimirembwa, C.M.; Naik, Y.S.; Hasler, J.A. The effect of chloroquine on the pharmacokinetics and metabolism of praziquantel in rats and in humans. Biopharm. Drug Dispos., 1994, 15(1), 33-43.
[http://dx.doi.org/10.1002/bdd.2510150103] [PMID: 8161714]
[28]
Dayan, A.D. Albendazole, mebendazole and praziquantel. Review of non- clinical toxicity and pharmacokinetics. Acta Trop., 2003, 86(2-3), 141-159.
[http://dx.doi.org/10.1016/S0001-706X(03)00031-7] [PMID: 12745134]
[29]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[30]
Bonate, P.L.; Wang, T.; Passier, P.; Bagchus, W.; Burt, H.; Lüpfert, C.; Abla, N.; Kovac, J.; Keiser, J. Extrapolation of praziquantel pharmacokinetics to a pediatric population: a cautionary tale. J. Pharmacokinet. Pharmacodyn., 2018, 45(5), 747-762.
[http://dx.doi.org/10.1007/s10928-018-9601-1] [PMID: 30218416]
[31]
Bagchus, W.M.; Bezuidenhout, D.; Harrison-Moench, E.; Kourany-Lefoll, E.; Wolna, P.; Yalkinoglu, O. Relative bioavailability of orally dispersible tablet formulations of levo- and racemic praziquantel: two phase I studies. Clin. Transl. Sci., 2019, 12(1), 66-76.
[http://dx.doi.org/10.1111/cts.12601] [PMID: 30536632]
[32]
Metwally, A.; Bennett, J.; Botros, S.; Ebeid, F.; el attar, Gel.D. Impact of drug dosage and brand on bioavailability and efficacy of praziquantel. Pharmacol. Res., 1995, 31(1), 53-59.
[http://dx.doi.org/10.1016/1043-6618(95)80048-4] [PMID: 7784306]
[33]
Bustinduy, A.L.; Waterhouse, D.; de Sousa-Figueiredo, J.C.; Roberts, S.A.; Atuhaire, A.; Van Dam, G.J.; Corstjens, P.L.; Scott, J.T.; Stanton, M.C.; Kabatereine, N.B.; Ward, S.; Hope, W.W.; Stothard, J.R. Population pharmacokinetics and pharmacodynamics of praziquantel in Ugandan children with intestinal schistosomiasis: higher dosages are required for maximal efficacy. MBio, 2016, 7(4), e00227-16.
[http://dx.doi.org/10.1128/mBio.00227-16] [PMID: 27507822]
[34]
Okubo, M.; Murayama, N.; Shimizu, M.; Shimada, T.; Guengerich, F.P.; Yamazaki, H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J. Toxicol. Sci., 2013, 38(3), 349-354.
[http://dx.doi.org/10.2131/jts.38.349] [PMID: 23665933]
[35]
Lamba, J.; Lamba, V.; Strom, S.; Venkataramanan, R.; Schuetz, E. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab. Dispos., 2008, 36(1), 169-181.
[http://dx.doi.org/10.1124/dmd.107.016600] [PMID: 17925385]
[36]
Zhang, J.; Kuehl, P.; Green, E.D.; Touchman, J.W.; Watkins, P.B.; Daly, A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Wrighton, S.A.; Hancock, M.; Kim, R.B.; Strom, S.; Thummel, K.; Russell, C.G.; Hudson, J.R., Jr; Schuetz, E.G.; Boguski, M.S. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics, 2001, 11(7), 555-572.
[http://dx.doi.org/10.1097/00008571-200110000-00003] [PMID: 11668216]
[37]
Huang, H.; Wang, H.; Sinz, M.; Zoeckler, M.; Staudinger, J.; Redinbo, M.R.; Teotico, D.G.; Locker, J.; Kalpana, G.V.; Mani, S. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene, 2007, 26(2), 258-268.
[http://dx.doi.org/10.1038/sj.onc.1209788] [PMID: 16819505]
[38]
Stanley, L.A.; Horsburgh, B.C.; Ross, J.; Scheer, N.; Wolf, C.R. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab. Rev., 2006, 38(3), 515-597.
[http://dx.doi.org/10.1080/03602530600786232] [PMID: 16877263]
[39]
Yan, J.; Xie, W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm. Sin. B, 2016, 6(5), 450-452.
[http://dx.doi.org/10.1016/j.apsb.2016.06.011] [PMID: 27709013]
[40]
Willson, T.M.; Kliewer, S.A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov., 2002, 1(4), 259-266.
[http://dx.doi.org/10.1038/nrd753] [PMID: 12120277]
[41]
Rulcova, A.; Prokopova, I.; Krausova, L.; Bitman, M.; Vrzal, R.; Dvorak, Z.; Blahos, J.; Pavek, P. Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J. Thromb. Haemost., 2010, 8(12), 2708-2717.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04036.x] [PMID: 20735727]
[42]
Lamba, V.; Yasuda, K.; Lamba, J.K.; Assem, M.; Davila, J.; Strom, S.; Schuetz, E.G. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharmacol., 2004, 199(3), 251-265.
[http://dx.doi.org/10.1016/j.taap.2003.12.027] [PMID: 15364541]
[43]
Brewer, C.T.; Chen, T. PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm. Sin. B, 2016, 6(5), 441-449.
[http://dx.doi.org/10.1016/j.apsb.2016.07.002] [PMID: 27709012]
[44]
Rana, M.; Coshic, P.; Goswami, R.; Tyagi, R.K. Influence of a critical single nucleotide polymorphism on nuclear receptor PXR-promoter function. Cell Biol. Int., 2017, 41(5), 570-576.
[http://dx.doi.org/10.1002/cbin.10744] [PMID: 28198586]
[45]
Luo, G.; Cunningham, M.; Kim, S.; Burn, T.; Lin, J.; Sinz, M.; Hamilton, G.; Rizzo, C.; Jolley, S.; Gilbert, D.; Downey, A.; Mudra, D.; Graham, R.; Carroll, K.; Xie, J.; Madan, A.; Parkinson, A.; Christ, D.; Selling, B.; LeCluyse, E.; Gan, L.S. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab. Dispos., 2002, 30(7), 795-804.
[http://dx.doi.org/10.1124/dmd.30.7.795] [PMID: 12065438]
[46]
Koyano, S.; Kurose, K.; Saito, Y.; Ozawa, S.; Hasegawa, R.; Komamura, K.; Ueno, K.; Kamakura, S.; Kitakaze, M.; Nakajima, T.; Matsumoto, K.; Akasawa, A.; Saito, H.; Sawada, J. Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab. Dispos., 2004, 32(1), 149-154.
[http://dx.doi.org/10.1124/dmd.32.1.149] [PMID: 14709632]
[47]
Koyano, S.; Kurose, K.; Ozawa, S.; Saeki, M.; Nakajima, Y.; Hasegawa, R.; Komamura, K.; Ueno, K.; Kamakura, S.; Nakajima, T.; Saito, H.; Kimura, H.; Goto, Y.; Saitoh, O.; Katoh, M.; Ohnuma, T.; Kawai, M.; Sugai, K.; Ohtsuki, T.; Suzuki, C.; Minami, N.; Saito, Y.; Sawada, J. Eleven novel single nucleotide polymorphisms in the NR1I2 (PXR) gene, four of which induce non-synonymous amino acid alterations. Drug Metab. Pharmacokinet., 2002, 17(6), 561-565.
[http://dx.doi.org/10.2133/dmpk.17.561] [PMID: 15618712]
[48]
Donato, M.T.; Lahoz, A.; Castell, J.V.; Gómez-Lechón, M.J. Cell lines: a tool for in vitro drug metabolism studies. Curr. Drug Metab., 2008, 9(1), 1-11.
[http://dx.doi.org/10.2174/138920008783331086] [PMID: 18220566]
[49]
Sinz, M.W. Evaluation of pregnane X receptor (PXR)-mediated CYP3A4 drug-drug interactions in drug development. Drug Metab. Rev., 2013, 45(1), 3-14.
[http://dx.doi.org/10.3109/03602532.2012.743560] [PMID: 23330538]
[50]
Chang, T.K.H.; Waxman, D.J.; Pregnane, X. Receptor-mediated transcription., 2005, 400, 588-598.
[51]
Zhu, Z.; Kim, S.; Chen, T.; Lin, J.H.; Bell, A.; Bryson, J.; Dubaquie, Y.; Yan, N.; Yanchunas, J.; Xie, D.; Stoffel, R.; Sinz, M.; Dickinson, K. Correlation of high-throughput pregnane X receptor (PXR) transactivation and binding assays. J. Biomol. Screen., 2004, 9(6), 533-540.
[http://dx.doi.org/10.1177/1087057104264902] [PMID: 15452340]
[52]
Sinz, M.; Kim, S.; Zhu, Z.; Chen, T.; Anthony, M.; Dickinson, K.; Rodrigues, A.D. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr. Drug Metab., 2006, 7(4), 375-388.
[http://dx.doi.org/10.2174/138920006776873535] [PMID: 16724927]
[53]
Raucy, J.L.; Lasker, J.M. Cell-based systems to assess nuclear receptor activation and their use in drug development. Drug Metab. Rev., 2013, 45(1), 101-109.
[http://dx.doi.org/10.3109/03602532.2012.737333] [PMID: 23330544]
[54]
Pavek, P.; Pregnane, X. Pregnane X receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions. Front. Pharmacol., 2016, 7, 456.
[http://dx.doi.org/10.3389/fphar.2016.00456] [PMID: 27932985]
[55]
Lu, H. Stereoselectivity in drug metabolism. Expert Opin. Drug Metab. Toxicol., 2007, 3(2), 149-158.
[http://dx.doi.org/10.1517/17425255.3.2.149] [PMID: 17428147]
[56]
Zhang, Z.; Gao, B.; He, Z.; Li, L.; Shi, H.; Wang, M. Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes. Chemosphere, 2019, 224, 77-84.
[http://dx.doi.org/10.1016/j.chemosphere.2019.02.119] [PMID: 30818197]
[57]
Kovač, J.; Vargas, M.; Keiser, J. in vitro and in vivo activity of R- and S-praziquantel enantiomers and the main human metabolite trans-4-hydroxy-praziquantel against Schistosoma haematobium. Parasit. Vectors, 2017, 10(1), 365.
[http://dx.doi.org/10.1186/s13071-017-2293-3] [PMID: 28764732]
[58]
Lombardo, F.C.; Perissutti, B.; Keiser, J. Activity and pharmacokinetics of a praziquantel crystalline polymorph in the Schistosoma mansoni mouse model. Eur. J. Pharm. Biopharm., 2019, 142, 240-246.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.029] [PMID: 31265895]
[59]
Vendrell-Navarro, G.; Scheible, H.; Lignet, F.; Burt, H.; Luepfert, C.; Marx, A.; Abla, N.; Swart, P.; Perrin, D. Insights into praziquantel metabolism and potential enantiomeric cytochrome P450-mediated drug-drug interaction. Drug Metab. Dispos., 2020, 48(6), 481-490.
[http://dx.doi.org/10.1124/dmd.119.089888] [PMID: 32193358]
[60]
Lim, Y.P.; Liu, C.H.; Shyu, L.J.; Huang, J.D. Functional characterization of a novel polymorphism of pregnane X receptor, Q158K, in Chinese subjects. Pharmacogenet. Genomics, 2005, 15(5), 337-341.
[http://dx.doi.org/10.1097/01213011-200505000-00009] [PMID: 15864135]
[61]
Chai, S.C.; Cherian, M.T.; Wang, Y.M.; Chen, T. Small-molecule modulators of PXR and CAR. Biochim. Biophys. Acta, 2016, 1859(9), 1141-1154.
[http://dx.doi.org/10.1016/j.bbagrm.2016.02.013] [PMID: 26921498]
[62]
Oladimeji, P.O.; Chen, T. PXR: more than just a master xenobiotic receptor. Mol. Pharmacol., 2018, 93(2), 119-127.
[http://dx.doi.org/10.1124/mol.117.110155] [PMID: 29113993]
[63]
Ngan, C.H.; Beglov, D.; Rudnitskaya, A.N.; Kozakov, D.; Waxman, D.J.; Vajda, S. The structural basis of pregnane X receptor binding promiscuity. Biochemistry, 2009, 48(48), 11572-11581.
[http://dx.doi.org/10.1021/bi901578n] [PMID: 19856963]
[64]
Bosch, T.M.; Deenen, M.; Pruntel, R.; Smits, P.H.; Schellens, J.H.; Beijnen, J.H.; Meijerman, I. Screening for polymorphisms in the PXR gene in a Dutch population. Eur. J. Clin. Pharmacol., 2006, 62(5), 395-399.
[http://dx.doi.org/10.1007/s00228-006-0108-0] [PMID: 16568343]
[65]
Hustert, E.; Zibat, A.; Presecan-Siedel, E.; Eiselt, R.; Mueller, R.; Fuss, C.; Brehm, I.; Brinkmann, U.; Eichelbaum, M.; Wojnowski, L.; Burk, O. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos., 2001, 29(11), 1454-1459.
[PMID: 11602521]
[66]
Rana, M.; Devi, S.; Gourinath, S.; Goswami, R.; Tyagi, R.K. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim. Biophys. Acta, 2016, 1859(9), 1183-1197.
[http://dx.doi.org/10.1016/j.bbagrm.2016.03.001] [PMID: 26962022]
[67]
Lim, Y.P.; Huang, J.D. Pregnane X receptor polymorphism affects CYP3A4 induction via a ligand-dependent interaction with steroid receptor coactivator-1. Pharmacogenet. Genomics, 2007, 17(5), 369-382.
[http://dx.doi.org/10.1097/FPC.0b013e32803e40d7] [PMID: 17429319]
[68]
Lamba, V.; Panetta, J.C.; Strom, S.; Schuetz, E.G. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J. Pharmacol. Exp. Ther., 2010, 332(3), 1088-1099.
[http://dx.doi.org/10.1124/jpet.109.160804] [PMID: 19934400]
[69]
Martínez-Jiménez, C.P.; Jover, R.; Donato, M.T.; Castell, J.V.; Gómez-Lechón, M.J. Transcriptional regulation and expression of CYP3A4 in hepatocytes. Curr. Drug Metab., 2007, 8(2), 185-194.
[http://dx.doi.org/10.2174/138920007779815986] [PMID: 17305497]
[70]
Watanabe, K.; Sakurai, K.; Tsuchiya, Y.; Yamazoe, Y.; Yoshinari, K. Dual roles of nuclear receptor liver X receptor α (LXRα) in the CYP3A4 expression in human hepatocytes as a positive and negative regulator. Biochem. Pharmacol., 2013, 86(3), 428-436.
[http://dx.doi.org/10.1016/j.bcp.2013.05.016] [PMID: 23732298]
[71]
Thomas, M.; Burk, O.; Klumpp, B.; Kandel, B.A.; Damm, G.; Weiss, T.S.; Klein, K.; Schwab, M.; Zanger, U.M. Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor alpha (PPARα). Mol. Pharmacol., 2013, 83(3), 709-718.
[http://dx.doi.org/10.1124/mol.112.082503] [PMID: 23295386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy